Carrot?: Design of a Flexible and Efficient
Web Information Retrieval Framework

Stanistaw Osinski and Dawid Weiss

Institute of Computing Science, Poznan University of Technology,
ul. Piotrowo 3A, 60-965 Poznan, Poland
Dawid.Weiss@cs.put.poznan.pl

Abstract. In this paper we present the design goals and implementation
outline of Carrot?, an open source framework for rapid development of
applications dealing with Web Information Retrieval and Web Mining.
The framework has been written from scratch keeping in mind flexibility
and efficiency of processing. We show two software architectures that
meet the requirements of these two aspects and provide evidence of their
use in clustering of search results.

We also discuss the importance and advantages of contributing and in-
tegrating the results of scientific projects with the open source community.

Keywords: Information Retrieval, Clustering, Systems Design.

1 Introduction

With a few notable exceptions, software projects rooting from academia are of-
ten perceived as useful prototypes, spike-solutions to use a software engineering
term, that provide proofs for novel ideas but turn out to be unusable in produc-
tion systems. In Carrot? we made an attempt to provide a useful, flexible and
research-wise interesting system that can be efficient enough to satisfy real-life
demands of commercial deployments. Two different software architectures coex-
ist in the system: the XML-driven architecture is aimed at flexibility and ease
of use, the local-interfaces architecture, developed later, targets the efficiency of
processing.

Carrot? is mostly known for its Web search results clustering components,
which successfully compete with commercial clustering solutions, such as Vivi-
simo or iBoogie (Carrot? was written at the same time Vivisimo was first re-
leased). The goal of this paper is to provide some insight into the internal archi-
tecture of Carrot? and to show that the applications of the framework are not
limited to search results clustering only.

2 Goals, Design Assumptions and Requirements

The primary goal of Carrot? was to enable rapid research experiments with novel
text/web mining techniques. To minimize the effort involved in implementation

P.S. Szczepaniak et al. (Eds.): AWIC 2005, LNAI 3528, pp. 439 2005.
(© Springer-Verlag Berlin Heidelberg 2005

440 S. Osinski and D. Weiss

and evaluation of a new algorithm, Carrot? provides ready-to-use implementa-
tions of the most common text processing tasks, such as:

— an efficient JFlex-based (http://jflex.de/) text tokenizer,

— tigram-based language identification [1]

— stopword filtering, stemming for 7 languages,

— search engine interfaces (HTML scraping, API access),

— access to test collections, e.g. Open Directory Project data (http://dmoz.
org),

— presentation of results (HTML rendering) and automatic quality measure-
ments.

Additionally, Carrot? contains implementations of a number of search results
clustering algorithms, including classic agglomerative techniques (AHC), K-means,
fuzzy clustering [2], biology-inspired clustering [3], Suffix Tree Clustering (STC)
[4] and Lingo [5].

To be truly useful in both research and production settings, Carrot? had to
meet a number of requirements:

Component Architecture. The project should be a library; a set of components
with clearly established communication interfaces and all the infrastructure needed to
combine them into useful applications. Some of these applications should be provided
as demonstration and proof-of-concept.

Flexibility. Components should be relatively autonomous and easy to reconfigure and
customize. That is, components can be taken out of the project and put into other
software easily.

Language and OS Independence. It should be possible to reuse components for
systems written in any language and working on any operating system.

High Performance. The infrastructure in which the components cooperate should
impose as little additional overhead as possible. In other words: efficient components
combined together should produce an efficient system.

Permissive Licensing Options. Certain open source licenses impose rigorous re-
strictions on derivative works. The framework and any third party libraries it includes,
should be covered by a permissive license that lets everyone use the framework, or its
subcomponents in other software (commercial or open source).

3 Overview of the Design and Implementation

3.1 Framework’s Fundamental Elements: Components

Central to the architecture of Carrot? is the notion of a component. The task of an
input component is to acquire, or generate data for further processing based on some
query (usually typed by a human). Examples of input components include search engine
wrappers, test collections or even components returning random data. Filter compo-
nents transform the data in some way. Examples include text segmentation, stemming,
feature extraction, clustering or classification. Qutput components are responsible for
consuming the result of previous components. Output components usually present the

Carrot?: Design of a Flexible and Efficient Web Information 441

| <«— General processing flow /7 _S.\ APl enforced calls Q_Z7 Local interface calls |

HTTP/XML Mode 1t

SN =

[in | [fiter| [fitter| [fitter] | out] in ﬁlter It @
Lin] foer) []

Fig. 1. Query processing in XML-based and local interfaces communication schemes

Local interfaces 11t

result to the human user, but may also process the result automatically as in bench-
marking applications or tuning. A controller component combines other components
into a processing chain: an ordered list of components where data obtained by an input
component passes through a number of filtering components and is finally consumed
by an output component.

3.2 Two Architectures for Component Communication Layers

Flexibility is usually achieved at the cost of performance and performance rarely goes
along with flexibility. The mutually exclusive requirements are reflected in the frame-
work’s two different component communication layers: one design was aimed at lan-
guage independence, component distribution and flexibility (XML-based architecture)
the other was targeted at efficiency of processing (local interfaces architecture).

XML-Based Architecture. In the XML-based architecture, components commu-
nicate solely using HTTP POST requests, exchanging custom XML messages (an ap-
proach similar to XML-RPC protocol). The communication is mediated by the con-
troller component that knows the order of components to invoke from the current
processing chain (see Figure 1). This communication scheme is characterized by the
following features:

— components can be easily distributed — the controller component takes care of
remote components’ invocations, regardless of their physical location;

— components can be written in virtually any programming language that supports
rudimentary elements of XML parsing and HTTP protocol;

— data-centric processing; components may not know how or where the data is pro-
duced. The only required information is the format of the input and output XML
files;

— configuration and order of components in a processing chain takes place at the level
of the controller component. This makes load balancing and component failover
quite trivial to achieve.

Local Interfaces Architecture. The XML-based architecture provides a great
deal of flexibility with implementation and configuration of components. Alas, it also
involves much cost in parsing/ serialization of XML files and network transfers. For
production systems, an alternative solution had to be found.

We designed local interfaces architecture that stands for a very general concept of
combining components using local method calls rather than network APIs. Note that
from the viewpoint of the framework, nothing is known about these method calls — their
signatures are not available for the framework until the components are assembled in

442 S. Osinski and D. Weiss

a processing chain at runtime — this poses a very interesting design challenge. We have
identified the following key criteria driving the local interfaces design:

Local Method Calls. Local method calls are the key to achieving high performance.
Data must not be passed via bounded buffers, but directly from component to compo-
nent.

Memory/Object Reuse. Intense memory allocation/ garbage collection slows down
any application by a factor of magnitude. The design must provide means to reuse
intermediate component data from request to request.

Incremental Pipelines. Components may not need all of their successors’ data at
one time. Data should be passed between components as soon as possible.

Flexible Data Types. Components should be able to exchange any data they need
(using local method calls). The framework should provide means for this to happen
with no extra overhead.

We separated the communication between components into system and application-
related method calls. System-related calls are defined at the core Carrot? level. They
include component lifecycle management methods and request-lifecycle methods; all
components must implement these. Application-related method calls are unspecified,
the components must perform an initial ‘handshake’ to establish their compatible meth-
ods.

At runtime, each processing chain is assembled dynamically by the controller com-
ponent in the following way: each component knows its direct successor in the process-
ing chain and itself expects data from its predecessor. Each component also declares its
capabilities and capabilities it requires from the predecessor and successor component.
A processing chain is successfully assembled only if capabilities of all components are
pairwise compatible.

Capabilities are usually used to denote data-specific interfaces (with arbitrary
method signatures) to perform a narrowing cast from an abstract component to a
specific required type that lets the components communicate directly. For example, a
component declaring RawDocumentConsumer capability may also declare a Java method
void nextDocument (RawDocument document) that would accept a new document from
its predecessor. The predecessor component, knowing its successor must be a raw doc-
ument consumer, will simply cast the successor’s object reference to a known interface
and invoke the data-specific method nextDocument repeatedly for each new incom-
ing document. This ‘custom’ communication between components is depicted as gray
arrows in Fig. 1.

Each processing chain is assembled only once for all queries, so the casting and
verification of capabilities overhead is minimal. After that, everything is already known
and configured — almost no overhead at all is imposed by the framework at runtime.
This makes local method calls extremely fast.

4 Examples of Practical Deployment and Use

We developed Carrot? to be a generic framework, but we also provided several im-
plementations of components serving for clustering of search results: clustering algo-
rithms, input (search engine wrappers) and output (XML/XSLT generators) compo-
nents. Shortly after publishing the framework, we received a great deal of positive

Carrot?: Design of a Flexible and Efficient Web Information 443

" “BHICUl yenr - july 3, 1997
 AOECEN [EHH) — A v AsiCHM - Tariakans

ST AN M MATRAN R EMK - CHecean e aaers acACRR - Chrema

7 |[Fring Sefisticsl

il

Fig. 2. Screenshots from commercial and open source software using Carrot? clustering
and linguistic components (marked with red circles)

feedback from the research community. New research projects and papers were based
on the foundation of the Carrot? architecture: an ant-colony document clustering al-
gorithm [3] or a rough set approach to clustering documents from the Web [2]. Appli-
cations reusing certain components of the system were presented [6]. The framework
was used as a testbed for cross-comparison of existing algorithms [7].

We were equally pleased to observe substantial commercial interest in Carrot? and
its selected components (see Figure 2 for screenshots of systems that somehow in-
tegrated Carrot®> components). The project’s clustering components (with local con-
troller components) were also swiftly integrated in other open source projects: Lucene
(http://jakarta.apache.org/lucene), Nutch (http://www.nutch.org) and Egothor
(http://www.egothor.org).

5 ‘Open Sourcing’ Academic Software

From the very beginning, development of Carrot? followed the principles of open source
software. The project is licensed under very permissive BSD license and hosted at
SourceForge (http://carrot2.sourceforge.net). Communication among the devel-
opers and support for users community is provided through a mailing list. Public CVS
access to source code and continuous integration facility (nightly builds and a demo)
are also provided (http://carrot.cs.put.poznan.pl).

Our experience with Open Sourcing the software has been very positive. We espe-
cially appreciate broad interest and support from the user community — both academic
and commercial. Releasing academic software as open source helps to confront it with
real requirements and expectations of Web users. It also helps to make the software
last longer and gain a wider audience by integration with other Open Source products
— something the community is more than willing to undertake if there are evident gains
from such fusions.

444 S. Osinski and D. Weiss
6 Summary and Conclusions

We have presented requirements and two different architectures for an efficient and
flexible component-based software framework for simplifying the development of Web
information retrieval and data mining applications. The presented ideas have been
implemented and published as an open source project that spawned other research and
commercial projects.

Acknowledgement

The authors would like to thank to all the committers, supporters and users of the
Carrot? project. This research has been supported by grant KBN 3 T11C 050 26.

References

1. Grefenstette, G.: Comparing two language identification schemes. In: Proceedings
of the 3rd International Conference on Statistical Analysis of Textual Data. (1995)

2. Lang, H.C.: A tolerance rough set approach to clustering web search results. Faculty
of Mathematics, Informatics and Mechanics, Warsaw University (2004)

3. Schockaert, S.: Het clusteren van zoekresultaten met behulp van vaagmieren (clus-
tering of search results using fuzzy ants). Master thesis, University of Ghent (2004)

4. Zamir, O.: Clustering Web Documents: A Phrase-Based Method for Grouping
Search Engine Results. PhD thesis, University of Washington (1999)

5. Osinski, S., Stefanowski, J., Weiss, D.: Lingo: Search results clustering algorithm
based on Singular Value Decomposition. In Klopotek, M.A., Wierzchon, S.T.,
Trojanowski, K., eds.: Proceedings of the International IIS: Intelligent Information
Processing and Web Mining Conference. Advances in Soft Computing, Zakopane,
Poland, Springer (2004) 359-368

6. Jensen, L.R.: A reuse repository with automated synonym support and cluster
generation. Department of Computer Science at the Faculty of Science, University
of Aarhus, Denmark (2004)

7. Osiniski, S.: Dimensionality reduction techniques for search results clustering. MSc
thesis, University of Sheffield, UK (2004)

	Introduction
	Goals, Design Assumptions and Requirements
	Overview of the Design and Implementation
	Framework’s Fundamental Elements: Components
	Two Architectures for Component Communication Layers

	Examples of Practical Deployment and Use
	‘Open Sourcing’ Academic Software
	Summary and Conclusions
	Acknowledgement
	References

