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Roman S�lowiński1,2 and Salvatore Greco3

1 Institute of Computing Science, Poznań University of Technology,
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Abstract. Rules mined from a data set represent knowledge patterns
relating premises and decisions in ‘if . . . , then . . . ’ statements. Premise
is a conjunction of elementary conditions relative to independent vari-
ables and decision is a conclusion relative to dependent variables. Given
a set of rules, it is interesting to rank them with respect to some attrac-
tiveness measures. In this paper, we are considering rule attractiveness
measures related to three semantics: knowledge representation, predic-
tion and efficiency of intervention based on a rule. Analysis of exist-
ing measures leads us to a conclusion that the best suited measures for
the above semantics are: support and certainty, a Bayesian confirmation
measure, and two measures related to efficiency of intervention, respec-
tively. These five measures induce a partial order in the set of rules. For
building a strategy of intervention, we propose rules discovered using
the Dominance-based Rough Set Approach – the “at least” type rules
indicate opportunities for improving assignment of objects, and the “at
most” type rules indicate threats for deteriorating assignment of objects.

Keywords: Knowledge discovery, Rules, Attractiveness measures, Effi-
ciency of intervention, Dominance-based Rough Set Approach.

1 Introduction

Knowledge patterns discovered from data are usually represented in a form of
‘if . . . , then . . . ’ rules, being consequence relations between premise built of
independent variables and decision expressed in terms of dependent variables.
In data mining and knowledge discovery such rules are induced from data sets
concerning a finite set of objects described by a finite set of condition and decision
attributes, corresponding to dependent and independent variables, respectively.
The rules mined from data may be either decision rules or association rules,
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depending if the division into condition and decision attributes has been fixed
or not. Association rules and decision rules have a double utility:

– they represent knowledge about relationships between dependent and
independent variables existing in data,

– they can be used for prospective decisions.

The use of rules for prospective decisions can be understood, however, in two
ways:

– matching up the rules to new objects with given values of independent
variables, in view of predicting possible values of dependent variables,

– building a strategy of intervention based on discovered rules, in view
of transforming a universe in a desired way.

For example, rules mined from data concerning medical diagnosis are useful
to represent relationships between symptoms and diseases. Moreover, from one
side, the rules can be used to diagnose new patients, assuming that a patient
with particular symptoms will probably be sick of a disease suggested by a rule
showing a strong relationship between the disease and these symptoms. From
the other side, such rules can be seen as general laws and can be considered
for application in course of an intervention which consists in modifying some
symptoms strongly related with a disease, in order to get out from this disease.

While the first kind of prospective use of rules is rather usual, building a
strategy of intervention is relatively new.

Problems related to mining rules from data in view of knowledge representa-
tion and building a strategy of intervention can be encountered in many fields,
like medical practice, market basket analysis, customer satisfaction and risk anal-
ysis. In all practical applications, it is crucial to know how good the rules are for
both knowledge representation and efficient intervention. “How good” is a ques-
tion about attractiveness measures of discovered rules. A review of literature on
this subject shows that there is no single measure which would be the best for
applications in all possible perspectives (see e.g. [1], [6], [7], [12]).

We claim that the adequacy of interestingness measures to different applica-
tion perspectives of discovered rules is dependent on semantics of these mea-
sures. In this paper, we will distinguish three main semantics and for each of
them we propose some adequate measures:

– knowledge representation semantics, characterized by the strength and by
the certainty degree of discovered rules,

– prediction semantics, underlining the strength of support that a premise
gives to a conclusion of a particular rule, known as confirmation degree,

– efficiency of intervention semantics, referring to efficiency of an action based
on a rule discovered in one universe and performed in another universe.

The differences between these semantics make impossible any compensatory ag-
gregation of the corresponding measures for ranking the discovered rules accord-
ing to a comprehensive value. Thus, we postulate to use them all in view of
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establishing a partial order in the set of discovered rules. While this leaves some
rules incomparable, it permits to identify a set of most attractive rules with
respect to preferred application perspective.

Considerations of the present article are valid for both association rules and
for decision rules; however, for the sake of brevity, we speak about decision rules
only.

The paper is organized as follows. In the preliminaries, we introduce some
notation and basic definitions concerning rules. Then, we characterize attrac-
tiveness measures corresponding to the three semantics mentioned above and,
finally, we give an interpretation of the intervention based on monotonic rules
coming from Dominance-based Rough Set Approach (DRSA).

2 Preliminaries

Discovering rules from data is the domain of inductive reasoning. Contrary to
deductive reasoning, where axioms expressing some universal truths constitute
a starting point of reasoning, inductive reasoning uses data about a sample of
larger reality to start inference.

Let S = (U,A) be a data table, where U and A are finite, non-empty sets called
the universe and the set of attributes, respectively. If in the set A two disjoint
subsets of attributes, called condition and decision attributes, are distinguished,
then the system is called a decision table and is denoted by S = (U,C,D), where
C and D are sets of condition and decision attributes, respectively. With every
subset of attributes, one can associate a formal language of logical formulas L
defined in a standard way and called the decision language. Formulas for a subset
B ⊆ A are build up from attribute-value pairs (a, v), where a ∈ B and v ∈ Va

(set Va is a domain of a), by means of logical connectives ∧ (and), ∨ (or), ¬
(not). We assume that the set of all formula sets in L is partitioned into two
classes, called condition and decision formulas, respectively.

A decision rule induced from S and expressed in L is presented as Φ → Ψ ,
and read as “if Φ, then Ψ”, where Φ and Ψ are condition and decision formulas in
L, called premise and decision, respectively. A decision rule Φ → Ψ is also seen as
a binary relation between premise and decision, called consequence relation (see
a critical discussion about interpretation of decision rules as logical implications
in [6]).

Let ||Φ||S denote the set of all objects from universe U , having property Φ in
S. If Φ → Ψ is a decision rule, then suppS(Φ, Ψ) = card(||Φ∧Ψ ||S) is the support
of the decision rule and

strS(Φ, Ψ) =
suppS(Φ, Ψ)

card(U)
(1)

is the strength of the decision rule.
With every decision rule Φ → Ψ we associate a certainty factor, called also

confidence,

cerS(Φ, Ψ) =
suppS(Φ, Ψ)
card(||Φ||S)

, (2)
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and a coverage factor

covS(Φ, Ψ) =
suppS(Φ, Ψ)
card(||Ψ ||S)

. (3)

Certainty and coverage factors refer to Bayes’ theorem:

cerS(Φ, Ψ) = Pr(Ψ |Φ) =
Pr(Ψ ∧ Φ)

Pr(Φ)
, covS(Φ, Ψ) = Pr(Φ|Ψ) =

Pr(Φ ∧ Ψ)
Pr(Ψ)

Taking into account that given decision table S, the probability (frequency) is
calculated as:

Pr(Φ) =
card(||Φ||S)

card(U)
, P r(Ψ) =

card(||Ψ ||S)
card(U)

, P r(Φ ∧ Ψ) =
card(||Φ ∧ Ψ ||S)

card(U)

one can observe the following relationship between certainty and coverage fac-
tors, without referring to prior and posterior probability:

cerS(Φ, Ψ) =
covS(Φ, Ψ)card(||Ψ ||S)

card(||Φ||S)
(4)

Indeed, what is certainty factor for rule Φ → Ψ is a coverage factor for inverse
rule Ψ → Φ, and vice versa. This result underlines a directional character of the
statement ‘if Φ, then Ψ ’.

If cerS(Φ, Ψ) = 1, then the decision rule Φ → Ψ is certain, otherwise the de-
cision rule is uncertain. A set of decision rules supported in total by the universe
U creates a decision algorithm in S.

3 Attractiveness Measures with Different Semantics

3.1 Knowledge Representation Semantics

Decision rules Φ → Ψ induced from some universe U represent knowledge about
this universe in terms of laws relating some properties Φ with properties Ψ .
These laws are naturally characterized by a number of cases from U supporting
them, and by a probability of obtaining a particular decision Ψ considering a
condition Φ. These correspond precisely to the strength form one side, and to the
certainty or coverage factor from the other side. With respect to the latter side,
we saw in the previous section that due to (4), in order to characterize the truth
of the relationship between Φ and Ψ , it is enough to use one of these factors
only; moreover, for the directional character of the statement ‘if Φ, then Ψ ’, it
is natural to choose the certainty factor.

In consequence, we propose to use strength strS(Φ, Ψ) and certainty
cerS(Φ, Ψ) as attractiveness measures of rules, adequate to the semantics of
knowledge representation.

For example, in a data table with medical information on a sample of patients,
we can consider as condition attributes a set of symptoms C = {c1, . . . , cn}, and
as decision attributes, a set of diseases D = {d1, . . . , dm}. In the decision table so
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obtained we can induce decision rules of the type: “if symptoms ci1, ci2, . . . , cih

appear, then there is disease dj”, with ci1, ci2, . . . , cih ∈ C and dj ∈ D. Such
a rule has interpretation of a law characterized as follows (the % is calculated
from a hypothetical data table):

– the patients having symptoms ci1, ci2, . . . , cih and disease dj constitute 15%
of all the patients in the sample, i.e. 15% is the strength of the rule,

– 91% of the patients having symptoms ci1, ci2, . . . , cih have also disease dj ,
i.e. 91% is the certainty factor of the rule.

It is worth noting that strength strS(Φ, Ψ) and certainty cerS(Φ, Ψ) are more
general than a large variety of statistical interestingness measures, like entropy
gain, gini, laplace, lift, conviction, chi-squared value and the measure proposed
by Piatetsky-Shapiro. Bayardo and Agrawal [1] demonstrated that, for given
data table S, the set of Pareto-optimal rules with respect to strength and cer-
tainty includes all rules that are best according to any of the above measures.

3.2 Prediction Semantics

The use of rule Φ → Ψ for prediction is based on reasoning by analogy: an object
having property Φ will have property Ψ . The truth value of this analogy has the
semantics of a degree to which a piece of evidence Φ supports the hypothesis Ψ .
As shown in [6], this corresponds to a Bayesian confirmation measure (see e.g.
[3] and [8] for surveys). While the confirmation measure is certainly related to
the strength of relationship between Φ and Ψ , its meaning is different from a
simple statistics of co-occurrence of properties Φ and Ψ in universe U , as shown
by the following example borrowed from Popper [9].

Consider a possible result of rolling a die: 1,2,3,4,5,6. We can built a decision
table, presented in Table 1, where the fact that the result is even or odd is the
condition attribute, while the result itself is the decision attribute.

Table 1. Decision Table

Condition attribute Decision attribute

(result odd or even) (result of rolling the die)

odd 1

even 2

odd 3

even 4

odd 5

even 6

Now, consider the case Ψ = “the result is 6” and the case ¬Ψ = “the result
is not 6”. Let us also take into account the information Φ = “the result is an even
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number (i.e. 2 or 4 or 6)”. Therefore, we can consider the following two decision
rules:

– Φ → Ψ = “if the result is even, then the result is 6”, with certainty
cerS(Φ, Ψ) = 1/3,

– Φ → ¬Ψ = “if the result is even, then the result is 6”, with certa
inty cerS(Φ,¬Ψ) = 2/3.

Remark that rule Φ → Ψ has a smaller certainty than rule Φ → ¬Ψ . However,
the probability that the result is 6 is 1/6, while the probability that the result is
different from 6 is 5/6. Thus, the information Φ raises the probability of Ψ from
1/6 to 1/3, and decreases the probability of ¬Ψ from 5/6 to 2/3. In conclusion,
we can say that Φ confirms Ψ and disconfirms ¬Ψ , independently of the fact that
the certainty of Φ → Ψ is smaller than the certainty of Φ → ¬Ψ .

From this simple example, one can see that certainty and confirmation are
two completely different concepts.

Bayesian confirmation measure, denoted by c(Φ, Ψ), exhibits the impact of
evidence Φ on hypothesis Ψ by comparing probability Pr(Ψ |Φ) with probability
Pr(Ψ) as follows:

c(Φ, Ψ)

⎧
⎨

⎩

> 0 if Pr(Ψ |Φ) > Pr(Ψ)
= 0 if Pr(Ψ |Φ) = Pr(Ψ)
< 0 if Pr(Ψ |Φ) < Pr(Ψ)

(5)

In data mining, the probability Pr of Ψ is substituted by the relative frequency
Fr in the considered data table S, i.e.

FrS(Ψ) =
card(||Φ||)
card(U)

.

Analogously, given Φ and Ψ , Pr(Ψ |Φ) is substituted by the certainty factor
cerS(Φ, Ψ) of the decision rule Φ → Ψ , therefore, a measure of confirmation
of property Ψ by property Φ can be rewritten as:

c(Φ, Ψ)

⎧
⎨

⎩

> 0 if cerS(Φ, Ψ) > FrS(Ψ)
= 0 if cerS(Φ, Ψ) = FrS(Ψ)
< 0 if cerS(Φ, Ψ) < FrS(Ψ)

(6)

(6) can be interpreted as follows:

– c(Φ, Ψ) > 0 means that property Ψ is satisfied more frequently when Φ is
satisfied (then, this frequency is cerS(Φ, Ψ)), rather than generically in the
whole decision table (where this frequency is FrS(Ψ)),

– c(Φ, Ψ) = 0 means that property Ψ is satisfied with the same frequency when
Φ is satisfied and generically in the whole decision table,

– c(Φ, Ψ) < 0 means that property Ψ is satisfied less frequently when Φ is
satisfied, rather than generically in the whole decision table.

In other words, the confirmation measure for rule Φ → Ψ is the credibility of the
following proposition: Ψ is satisfied more frequently when Φ is satisfied
rather than when Φ is not satisfied.

not -
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Apart from property (5), many authors have considered other properties of
confirmation measures (see [3] for a survey). Among the desirable properties
there is a kind of symmetry called hypothesis symmetry [2]:

c(Φ, Ψ) = −c(Φ,¬Ψ) (7)

Greco, Pawlak and S�lowiński [6] have formulated yet another desirable property
for confirmation measures of rules mined from data tables – this property is
called monotonicity. It underlines an important difference existing between rules
considered as consequence relations and rules considered as logical (material)
implications.

Using the denotation: a = suppS(Φ, Ψ), b = suppS(¬Φ, Ψ), c = suppS(Φ,¬Ψ),
d = suppS(¬Φ,¬Ψ), the monotonicity property says that c(Φ, Ψ) = F (a, b, c, d),
where F is a function non-decreasing with respect to a and d and non-increasing
with respect to b and c.

While monotonicity of the confirmation measure with respect to a and c
makes no doubt, the monotonicity with respect to b and d needs a comment.
Remembering that c(Φ, Ψ) is the credibility of the proposition: Ψ is satisfied more
frequently when Φ is satisfied rather than when Φ is not satisfied, we can state
the following. An evidence in which Φ is not satisfied and Ψ is satisfied (objects
||¬Φ∧Ψ ||) increases the frequency of Ψ in situations where Φ is not satisfied, so
it should decrease the value of c(Φ, Ψ). Analogously, an evidence in which both
Φ and Ψ are not satisfied (objects||¬Φ ∧ ¬Ψ || ) decreases the frequency of Ψ in
situations where Φ is not satisfied, so it should increase the value of c(Φ, Ψ).

In [6], six confirmation measures well known from the literature have been
analyzed from the viewpoint of the desirable monotonicity property. It has been
proved that only three of them satisfy this property. Moreover, among these three
confirmation measures, only two satisfy the hypothesis symmetry (7); these are:

l(Φ, Ψ) = log
[

cerS(Ψ, Φ)
cerS(¬Ψ, Φ)

]

= log
[
a/(a + b)
c/(c + d)

]

and

f(Φ, Ψ) =
cerS(Ψ, Φ) − cerS(¬Ψ, Φ)
cerS(Ψ, Φ) + cerS(¬Ψ, Φ)

=
ad − bc

ad + bc + 2ac
. (8)

As proved by Fitelson [3], these measures are ordinally equivalent, i.e. for all
rules Φ → Ψ and Φ′ → Ψ ′, l(Φ, Ψ) ≥ l(Φ′, Ψ ′) if and only if f(Φ, Ψ) ≥ f(Φ′, Ψ ′).
Thus, it is sufficient to use one of them, e.g. f(Φ, Ψ).

In consequence, we propose to use confirmation measure f(Φ, Ψ) as at-
tractiveness measure of rules, adequate to the semantics of reasoning by analogy
for prediction.

3.3 Efficiency of Intervention Semantics

The attractiveness measures considered above can be interpreted as characteris-
tics of the universe U where the rules come from, and do not measure the future
effects of a possible intervention based on these rules. In [5], we considered ex-
pected effects of an intervention which is a three-stage process:
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1. Mining rules in universe U .
2. Modification (manipulation) of universe U ′, based on a rule mined from U ,

with the aim of getting a desired result.
3. Transition from universe U ′ to universe U ′′ due to the modification made in

stage 2.

For example, let us suppose a medical rule has been induced from universe U :
r ≡ ‘if absence of symptom Φ, then no disease Ψ ’ whose certainty is 90% (i.e.
in 90% of cases where symptom Φ is absent there is no disease Ψ). On the basis
of r, an intervention may be undertaken in universe U ′ consisting in eliminating
symptom Φ to get out from disease Ψ in universe U ′′. This intervention is based
on a hypothesis of homogeneity of universes U and U ′. This homogeneity means
that r is valid also in U ′ in the sense that one can expect that 90% of sick
patients with symptom Φ will get out from the sickness due to the intervention.

In another application concerning customer satisfaction analysis, the universe
is a set of customers and the intervention is a strategy (promotion campaign)
modifying perception of a product so as to increase customer satisfaction.

Measures of efficiency of intervention depend not only on characteristics of
rules in universe U , but also on characteristics of universe U ′ where the inter-
vention takes place.

Let S = (U,A), S′ = (U ′, A) and S′′ = (U ′′, A) denote three data tables
referring to universes U , U ′ and U ′′, respectively.

In [5], the following reasoning has been applied to measure the effect of an
intervention based on rule Φ → Ψ : if we modify property ¬Φ to property Φ in the
set ||¬Φ ∧ ¬Ψ ||S′ , we may reasonably expect that cerS(Φ, Ψ) × suppS′(¬Φ,¬Ψ)
objects from set ||¬Φ ∧ ¬Ψ ||S′ in universe U ′ will enter decision class Ψ in uni-
verse U ′′. In consequence, the expected relative increment of objects from U ′

entering decision class Ψ in universe U ′′ is:

incrSS′(Ψ) = cerS(Φ, Ψ) × card(||¬Φ ∧ ¬Ψ ||S′)
card(U ′)

(9)

The relative increment (9) can be rewritten as:

incrSS′(Ψ) = cerS(Φ, Ψ) × card(||¬Φ∧¬Ψ ||S′ )
card(||¬Ψ ||S′ ) × card(||¬Ψ ||S′ )

card(U ′) =

= cerS(Φ, Ψ) × cerS′(¬Ψ,¬Φ) × card(||¬Ψ ||S′ )
card(U ′) (10)

where cerS′(¬ψ,¬φ)is a certainty factor of the contrapositive rule s ≡ ¬Ψ → ¬Φ
in U ′. Taking into account that card(||¬Ψ ||S′)/card(U ′) is a fraction of all objects
having not property Ψ in universe U ′, the remaining part of (10) is just expressing
the efficiency of the intervention:

eff SS′(Φ, Ψ) = cerS(Φ, Ψ) × cerS′(¬Ψ,¬Φ). (11)

Assuming that the condition formula Φ is composed of n elementary conditions
Φ1 ∧ Φ2 ∧ . . . ∧ Φn, we consider rule r ≡ Φ1 ∧ Φ2 ∧ . . . ∧ Φn → Ψ , with certainty
cerS(Φ, Ψ). Using this rule, one can perform a multi-attribute intervention which
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consists in modification of attributes with indices from each subset P ⊆ N =
{1, . . . , n} on all objects from U ′ having none of properties Φi, i ∈ P , while
having all properties Φj , j �∈ P , and having not property Ψ . In this case, the
relative increment (10) takes the form:

incrSS′(Ψ) = (12)

=
∑

∅⊂P⊂N

⎡

⎣cerS(Φ, Ψ) × cerS′

⎛

⎝¬Ψ,
∧

i∈P

¬Φi ∧
∧

j �∈P

Φj

⎞

⎠

⎤

⎦ × card(||¬Ψ ||S′)
card(U ′)

where cerS′

(

¬Ψ,
∧

i∈P

¬Φi ∧
∧

j �∈P

Φj

)

is a certainty factor of the contrapositive

rule sP ≡ ¬Ψ → ∧

i∈P

¬Φi ∧
∧

j �∈P

Φj in U ′, for P ⊆ N . From (12) it follows that

the efficiency of the multi-attribute intervention is equal to:

eff SS′(Φ, Ψ) = cerS(Φ, Ψ) ×
∑

∅⊂P⊂N

cerS′

⎛

⎝¬Ψ,
∧

i∈P

¬Φi ∧
∧

j �∈P

Φj

⎞

⎠ . (13)

Using calculations analogous to calculation of the Shapley value in terms of
the Möbius transform of the Choquet capacity, one can assess a contribution of
each particular elementary condition Φi, i ∈ N , in the efficiency of the whole
intervention [5].

Remark that relative increment incrSS′(Ψ) and efficiency of intervention
eff SS′(Φ, Ψ) have a meaning analogical to knowledge representation measures,
i.e. strength strS(Φ, Ψ) and certainty factor cerS(Φ, Ψ), respectively; they
refer, however, to intervention in another universe than that of the knowledge
representation.

3.4 Partial Order of Rules with Respect to the Five Measures of
Attractiveness

A set of rules can be partially ordered using the five attractive measures proposed
in this section. These are:

– rule strength strS(Φ, Ψ) (1),
– certainty factor cerS(Φ, Ψ) (2),
– confirmation measure f(Φ, Ψ) (8),
– relative increment due to intervention incrSS′(Ψ) (12),
– efficiency of intervention eff SS′(Φ, Ψ) (13).

Such a partial ranking supports an interactive search in which the user can
browse the best rule according to preferences related to a specific application:
representation, prediction or intervention. Remark that it also makes sense to
use these measures in a lexicographic procedure, ordering first the rules with
respect to the most important measure, then, ordering a subset of best rules
using the second-most important measure, and so on.
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4 Interpretation of the Intervention Based on Monotonic
Rules

Let us complete our considerations by interpretation of the intervention based
on monotonic rules coming from the Dominance-based Rough Set Approach
(DRSA) [4], [10].

Considering decision table S = (U,C,D), where C is a finite set of attributes
with preference-ordered domains Xq (q ∈ C), and D is a finite set of decision
attributes partitioning U into a finite set of preference-ordered decision classes
Cl1, Cl2, . . . , Clk (the higher the index the better the class), DRSA permits to
mine two kinds of decision rules:

– “at least” rules
if xq1 	q1 rq1 and xq2 	q2 rq2 and . . . xqp 	qp rqp, then x ∈ Cl≥t ,
where for each wq, zq ∈ Xq, “wq 	q zq” means “wq is at least as good as
zq”, and x ∈ Cl≥t means “x belongs to class Clt or better”,

– “at most” rules
if xq1 
q1 rq1 and xq2 
q2 rq2 and . . . xqp 
qp rqp, then x ∈ Cl≤t ,
where for each wq, zq ∈ Xq, “wq 
q zq” means “wq is at most as good as
zq”, and x ∈ Cl≤t means “x belongs to class Clt or worse”.

The rules “at least” indicate opportunities for improving the assignment of
object x to class Clt or better, if it was not assigned as high and its evaluation
on q1, q2, . . . , qp would grow to rq1, rq2, . . . , rqp or better.

The rules “at most” indicate threats for deteriorating the assignment of
object x to class Clt or worse, if it was not assigned as low and its evaluation
on q1, q2, . . . , qp would drop to rq1, rq2, . . . , rqp or worse.

In the context of these two kinds of rules, an intervention means either
an action of taking the opportunity of improving the assignment of a subset
of objects, or an action of protecting against threats of deteriorating the
assignment of a subset of objects.

For example, consider the following “at least” rule mined from a hypothetical
data set of customer satisfaction questionnaires:

‘if (q1 ≥ 5) ∧ (q5 ≥ 4), then Satisfaction 	 High’

Suppose that an intervention based on this rule is characterized by
incrSS′(High) = 77%; this means that increasing q1 above 4 and increasing
q5 above 3 will result in improvement of customer satisfaction from Medium or
Low to High for 77% of customers with Medium or Low satisfaction.

Now, consider the following “at most” rule:

‘if (q2 ≤ 4) ∧ (q4 ≤ 4) ∧ (q6 ≤ 4), then Satisfaction 
 Medium’

In this case, incrSS′(Medium) = 89% means that dropping q2, q4 and q6 below
5 will result in deterioration of customer satisfaction from High to Medium or
Low for 89% of customers with High satisfaction.
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In practical applications, the choice of rules used for intervention can also be
supported by some additional measures, like:

– length of the rule chosen for intervention (the shorter the better),
– cost of intervention on attributes present in the rule,
– priority of intervention on some types of attributes, like short-term attributes

or attributes on which competing firms perform better.

Remark that intervention based on rules shows some similarity with an interest-
ing concept of action rules considered by Tsay and Raś [11], however, action
rules are pairs of rules representing two scenarios for assignment of an object:
one desired and another unsatisfactory, and the action consists in passing from
the undesired scenario to desired one, by changing values of so-called flexible
attributes. Action rules are characterized by support and confidence only.

5 Conclusions

In this paper, we considered attractiveness measures of rules mined from data,
taking into account three application perspectives: knowledge representation,
prediction of new classifications and interventions based on discovered rules in
some other universe. In order to choose attractiveness measures concordant with
the above perspectives we analyzed semantics of particular measures which lead
us to a conclusion that the best suited measures for the above applications
are: support and certainty, a Bayesian confirmation measure, and two measures
related to efficiency of intervention, respectively. These five measures induce a
partial order in the set of rules, giving a starting point for an interactive browsing
procedure. For building a strategy of intervention, we proposed rules discovered
using the Dominance-based Rough Set Approach – the “at least” type rules
indicate opportunities for improving assignment of objects, and the “at most”
type rules indicate threats for deteriorating assignment of objects.
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