
An Abstract Machine for the Kell Calculus�

Philippe Bidinger��, Alan Schmitt, and Jean-Bernard Stefani

INRIA Rhône-Alpes, 38334 St Ismier, France
{Philippe.Bidinger,Alan.Schmitt,Jean-Bernard Stefani}

@inrialpes.fr

Abstract. The Kell Calculus is a family of process calculi intended as a basis
for studying distributed component-based programming. This paper presents an
abstract machine for an instance of this calculus, a proof of its correctness, and a
prototype OCaml implementation. The main originality of our abstract machine
is that it does not mandate a particular physical configuration (e.g. mapping of
localities to physical sites), and it is independent of any supporting network ser-
vices. This allows to separate the proof of correctness of the abstract machine per
se, from the proof of correctness of higher-level communication and migration
protocols which can be implemented on the machine.

1 Introduction

The Kell calculus [17, 18] is a family of higher-order process calculi with hierarchical
localities and locality passivation, which is indexed by the pattern language used in
input constructs. It has been introduced to study programming models for wide-area
distributed systems and component-based systems. A major assumption in a wide-area
environment is the need for modular dynamicity, i.e. the ability to modify a running
system by replacing some of its components, or by introducing new components (e.g.
plug-ins). The Kell calculus can be seen as an attempt to understand the operational
basis of modular dynamicity: localities in the Kell calculus model named components,
and locality passivation provides the basis for dynamic reconfiguration operations.

Two of the main design principles for the calculus are to keep all the actions “lo-
cal” in order to facilitate its distributed implementation, and to allow different forms
of localities to coexist. A consequence of the locality principle is that the calculus al-
lows different forms of networks to be modeled (by different processes). Thus, on the
one hand, an implementation of the calculus should not need to consider atomic actions
occurring across wide-area networks. On the other hand, an implementation of the cal-
culus should not imply the use of purely asynchronous communications between local-
ities: one can have legitimate implementations of the calculus that exploit and rely on
the synchronous or quasi-synchronous properties of specific environments (e.g. a local
machine with different processes, a high-performance, low-latency local area network
for homogeneous PC clusters).

� This work has been supported by EU project MIKADO IST-2001-32222.
�� Partly supported by EU IHP Marie Curie Training Site ‘DisCo: Semantic Foundations of Dis-

tributed Computation’, contract HPMT-CT-2001-00290.

M. Steffen and G. Zavattaro (Eds.): FMOODS 2005, LNCS 3535, pp. 31–46, 2005.
c© IFIP International Federation for Information Processing 2005

32 Philippe Bidinger, Alan Schmitt, and Jean-Bernard Stefani

We present in this paper a distributed abstract machine for an instance of the Kell
calculus, and its implementation in OCaml. The original feature of our abstract machine
is that, in contrast to other works on abstract machines for distributed process calculi, it
does not depend on a given network model, and can be used to implement the calculus
in different physical configurations. Let us explain in more detail what this means. An
implementation of our abstract machine typically comprises two distinct parts:

– An implementation of the abstract machine specification per se, that conforms to
the reduction rules given in section 3 below.

– Libraries, in the chosen implementation language, that provides access to network
services, and that conform to a Kell calculus model of these services (i.e. a Kell
calculus process).

For instance, assume that one wants to realize a physical configuration consisting of a
network N , that interconnects two computers m1 and m2, that each run an implemen-
tation of the Kell calculus abstract machine, and a Kell calculus program (P1 and P2,
respectively). This configuration would be modelled in the Kell calculus by the process

C
∆
= N [Net | m1[NetLib | P1] | m2[NetLib | P2]]

where the process Net models the behavior of network N , and where the process
NetLib models the presence, at each site, of a library providing access to the network
services modeled by Net. From the point of view of the Kell calculus abstract machine,
the library NetLib is just a standard Kell calculus process, but whose communications
will have side-effects (i.e. accessing the actual network services modelled by Net) out-
side the abstract machine implementation.

The interesting aspect of our approach is the fact that we can thus provide im-
plementations for different environments which all rely on the same abstract machine
description and implementation. Consider for instance the physical configuration con-
sisting of a network N , that interconnects two computers m1 and m2, that each run two
separate processes, p1

i and p2
i (i = 1, 2). Each process pj

i runs an implementation of the
abstract machine, with a program Qj

i . This configuration can be modelled by

C′ ∆
= N [Net | M1 | M2]

M1
∆
= m1[NetOS | Ipc | p1

1[NetLib | IpcLib | Q1
1] | p2

1[NetLib | IpcLib | Q2
1]]

M2
∆
= m2[NetOS | Ipc | p1

2[NetLib | IpcLib | Q1
2] | p2

2[NetLib | IpcLib | Q2
2]]

where the process NetOS models the presence, at each site mi, of some means (e.g.
an operating system library) to access the network services modeled by Net, where the
process Ipc models the presence, at each site, of a local communication library (e.g.
an interprocess communication library provided by the local operating system), and
where the processes NetLib and IpcLib model the presence, at each process pj

i , of
interfaces for accessing the different communication services provided, respectively, by
the combination Net and NetOS, and by Ipc. Again, NetLib and IpcLib both appear
as standard Kell calculus processes from the point of view of the abstract machine (i.e.
they communicate with other processes by message exchange and can become passi-
vated with their enclosing locality). However, the communication services they give

An Abstract Machine for the Kell Calculus 33

access to can have very different semantics, if only in terms of reliability, latency, or se-
curity. The important point to note is that different communication services can coexist
in the same implementation, and can be used selectively by application processes.

An important benefit of the independence of our abstract machine specification from
any supporting network services, made possible by the local character of primitives in
the Kell calculus, is the simplification of its proof of correctness. Indeed, the proof
of correctness of our abstract machine does not involve the proof of a non-trivial dis-
tributed migration protocol, as is the case, for instance, with the JoCaml implementation
of the distributed Join calculus [5], or with various abstract machines for ambient cal-
culi [5, 7, 10, 14] 1. Furthermore, the correctness of the machine is ensured, regardless
of the network services used for the actual implementation.

The abstract machine described in this paper constitutes a first step in a potential se-
ries of more and more refined abstract machines, getting us closer to a provably correct
implementation of the calculus. Such a progressive approach aims at breaking up the
proof of correctness of an abstract machine close to implementation into more tractable
steps. For this reason, our abstract machine remains non-deterministic, and still has a
number of high-level constructs such as variable substitution. Compared to the calcu-
lus, the abstract machine realizes three important functions: (1) it handles names and
name restriction; (2) it “flattens” a Kell calculus process with nested localities into a
configuration of non-nested localities with dependency pointers; (3) it makes explicit
high-level process marshalling and unmarshalling functions which are involved in the
implementation of the locality passivation construct of the Kell calculus.

The correctness of the abstract machine is stated, following [14], as barbed bisim-
ilarity between a process of the calculus and its abstract machine interpretation. How-
ever, the results we obtain are in fact stronger than pure barbed bisimilarity as they
involve some form of contextual equivalence. The results are stated using a strong form
of bisimilarity, for we use a notion of sub-reduction to abstract away purely administra-
tive reductions. Proofs can be found in the long version of this paper, available at [11].

The paper is organized as follows. Section 2 presents the instance of the Kell cal-
culus we use in this paper. Section 3 specifies our abstract machine for the calculus. In
Section 4 we give a correctness result for the abstract machine. In Section 5, we discuss
an Ocaml prototype implementation of our abstract machine. In Section 6, we discuss
related works. Section 7 concludes the paper with a discussion of future work.

2 The Kell Calculus: Syntax and Operational Semantics

2.1 Syntax

We now define the instance of the kell calculus we use in this paper. We allow five kinds
of input patterns: kell patterns, that match a subkell, local patterns, that match a local
message, up patterns, that match a message in the parent kell, and two kinds of down
patterns, that match a message from a subkell. The syntax of the Kell calculus, together
with the syntax of evaluation contexts, is given below:

1 Note that the Channel Ambient abstract machine presented in [13] assumes that ambients
may synchronize, for instance to run an in primitive. This assumption might be difficult to
implement in an asynchronous distributed setting.

34 Philippe Bidinger, Alan Schmitt, and Jean-Bernard Stefani

P ::= 0 | x | ξ � P | νa.P | P | P | a[P] | a〈P̃ 〉
P∗ ::= 0 | x | ξ � P | P∗ | P∗ | a[P∗] | a〈P̃ 〉
ξ ::= a〈ũ〉 | a〈ũ〉↓ | a〈ũ〉↓a | a〈ũ〉↑ | a[x]

u ::= x | (x)

E ::= · | νa.E | a[E] | P | E

Filling the hole · in an evaluation context E with a Kell calculus term Q results in
a Kell calculus term noted E{Q}.

We assume an infinite set N of names. We let a, b, x, y and their decorated variants
range over N. Note that names in the kell calculus act both as name constants and as
(name or process) variables. We use Ṽ to denote finite vectors (V1, . . . , Vq). Abusing
notation, we equate Ṽ with the word V1 . . . Vn and the set {V1, . . . , Vn}.

Terms in the Kell calculus grammar are called processes. We note K the set of Kell
calculus processes. We let P , Q, R and their decorated variants range over processes.
We say that a process is in normal form when it does not contain any name restriction
operator. We use P∗, Q∗, R∗ and their decorated variants to denote these processes. We
call message a process of the form a〈P̃ 〉. We call kell 2 a process of the form a[P], with
a called the name of the kell. In a kell of the form a[. . . | aj [Pj] | . . . | Qk | . . .] we
call subkells the processes aj [Pj]. We call trigger a process of the form ξ �P , where
ξ is a receipt pattern (or pattern, for short). A pattern can be an up pattern a〈ũ〉↑, a
down pattern a〈ũ〉↓b

or a〈ũ〉↓, a local pattern a〈ũ〉, or a control pattern a[x]. A down
pattern a〈ũ〉↓b

matches a message on channel a coming from a subkell named b. A
down pattern a〈ũ〉↓ matches a message on channel a coming from any subkell.

In a term νa.P , the scope extends as far to the right as possible. In a term ξ �P ,
the scope of � extends as far to the right as possible. Thus, a〈c〉 � P | Q stands for
a〈c〉 �(P | Q). We use standard abbreviations from the the π-calculus: νa1 . . . aq.P
for νa1. . . . νaq.P , or νã.P if ã = (a1 . . . aq). By convention, if the name vector ã is

empty, then νã.P
∆= P . We also note

∏

i∈I Pi, I = {1, . . . , n} the parallel composition

(P1 | (. . . (Pn−1 | Pn) . . .)). By convention, if I = ∅, then
∏

i∈I Pi
∆= 0.

A pattern ξ acts as a binder in the calculus. All names x that do not occur within
parenthesis () in a pattern ξ are bound by the pattern. We call pattern variables (or
variables, for short) such bound names in a pattern. Variables occurring in a pattern
are supposed to be linear, i.e. there is only one occurrence of each variable in a given
pattern. Names occurring in a pattern ξ under parenthesis (i.e. occurrences of the form
(x) in ξ) are not bound in the pattern. We call them free pattern names (or free names,
for short). We assumes that bound names of a pattern are disjoint from free names.
The other binder in the calculus is the ν operator, which corresponds to the restriction
operator of the π-calculus. Free names (fn), bound names (bn), free pattern variables
(fpn), and bound pattern names (bpn) are defined as usual. We just point out the
handling of free pattern names:

fpn(a〈ũ〉) = {a} ∪ {x ∈ N | (x) ∈ ũ} bpn(a〈ũ〉) = {x ∈ N | x ∈ ũ}
2 The work “kell” is intended to remind the word “cell”, in a loose analogy with biological cells.

An Abstract Machine for the Kell Calculus 35

νa.0 ≡ 0 [S.NU.NIL] νa.νb.P ≡ νb.νa.P [S.NU.COMM]

a �∈ fn(Q)

(νa.P) | Q ≡ νa.P | Q
[S.NU.PAR]

P =α Q

P ≡ Q
[S.α]

P ≡ Q

E{P} ≡ E{Q} [S.CONTEXT]

Fig. 1. Structural equivalence

a �= b

a[νb.P]
≡→ νb.a[P]

[SR.NEW]
P

≡→ P ′

E[P]
≡→ E[P ′]

[SR.CONTEXT]

P ′ ≡ P P
≡→ Q Q ≡ Q′

P ′ ≡→ Q′ [SR.STRUCT]

ṽ = ũϕ

c〈ṽ〉 | b[R | (c〈ũ〉↑ � Q)] → b[R | Qϕ]
[R.IN]

ṽ = ũϕ

c〈ṽ〉 | (c〈ũ〉 � Q) → Qϕ
[R.LOCAL]

ṽ = ũϕ ↓•=↓b ∧ ↓•=↓
b[c〈ṽ〉 | R] | (c〈ũ〉↓• � Q) → b[R] | Qϕ

[R.OUT]

a[P∗] | (a[x] � Q) → Q{P∗/x} [R.PASS]
P → Q

E{P} → E{Q} [R.CONTEXT]

P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′ [R.STRUCT]
P ′ ≡→∗

P P → Q

P ′ → Q
[R.STRUCT.EXTR]

Fig. 2. Reduction Relation

We call substitution a function φ : N → N � K from names to names and Kell
calculus processes that is the identity except on a finite set of names. We note supp
the support of a substitution (i.e. supp(φ) = {i ∈ N | φ(i) �= i}). We assume when
writing ξφ that fpn(ξ) ∩ supp(φ) = ∅ and that supp(φ) ⊆ bpn(ξ).

We note P =α Q when two terms P and Q are α-convertible.
Formally, the reduction rules in section 2.2 could yield terms of the form P [Q],

which are not legal Kell calculus terms (i.e. the syntax does not distinguish between
names playing the role of name variables, and names playing the role of process vari-
ables). However, a simple type system can be used to rule out such illegal terms.

2.2 Reduction Semantics

The operational semantics of the Kell calculus is defined in the CHAM style [1], via a
structural equivalence relation and a reduction relation. The structural equivalence ≡ is
the smallest equivalence relation that verifies the rules in Figure 1 and that makes the
parallel operator | associative and commutative, with 0 as a neutral element.

The reduction relation → is the smallest binary relation on K that satisfies the rules
given in Figure 2.

36 Philippe Bidinger, Alan Schmitt, and Jean-Bernard Stefani

Notice that we do not have structural equivalence rules that deal with scope extru-
sion beyond a kell boundary (i.e we do not have the Mobile Ambient rule a[νb.P] ≡
νb.a[P], provided b �= a). This is to avoid phenomena as illustrated below:

(a[x] � x | x) | a[νb.P] → (νb.P) | (νb.P) (a[x] � x | x) | νb.a[P] → νb.P | P

However, such name extrusion is still needed to allow communication across kell bound-
aries. The solution adopted here is to allow only scope extrusion across kell boundaries
and to restrict passivation to processes without name restriction in evaluation context.
Formally, this is achieved by requiring a process to be in normal form (P∗) in rule
R.PASS and by adding a scope extrusion sub-reduction relation

≡→.
Rules R.IN and R.OUT govern the crossing of kell boundaries. Only messages may

cross a kell boundary. In rule R.IN, a trigger receives a message from the outside of the
enclosing kell. In rule R.OUT, a trigger receives a message from a subkell.

3 Abstract Machine

3.1 Syntax

Following [14], our abstract machine is specified in the form of a process calculus
whose terms, called machine terms, correspond to abstract machine states. Intuitively,
a machine term consists in a set of localities, each executing a different program, orga-
nized in a tree by means of pointers between localities.

The syntax of the abstract machine calculus is given below:

M ::= 0 | L | M | M M∗ ::= 0 | L∗ | M∗ | M∗

L ::= h : m[P]k,S L∗ ::= h : m[P∗]k,S

S ::= ∅ | h | S, S

P ::= 0 | x | ξ � P | νa.P | P | P | a[P] | a〈P̃ 〉 | reify(k, M∗)

P∗ ::= 0 | x | ξ � P | P∗ | P∗ | a〈P̃ 〉
ξ ::= a〈ũ〉 | a〈ũ〉↓ | a〈ũ〉↓a | a〈ũ〉↑ | a[x]

u ::= x | (x) x ∈ N h, k, l ∈ MN a, m ∈ N ∪ MN

Terms generated by the productions M , M∗ in the abstract machine grammar are
called machine terms (or machines for short, when no ambiguity arises), and are ranged
over by M , N and their decorated variants. We designate their set by M. Machine terms
make use of two sorts of names: the set N and a disjoint infinite set MN whose elements
are called machine names. We call locality a machine term of the form h : m[P]k,S . In a
locality h : m[P]k,S , m is the name of the kell the locality represents, h is the machine
name of the locality, k is the machine name of its parent locality, S is the set of the
machine names of its sublocalities, and P is the machine process being run at locality
h. We use three particular machine names: r, rn and rp, which denote, respectively, the
machine name of the root locality, the name of the root kell (associated with the root
locality), and the machine name of the (virtual) root parent locality. Machine names
appearing in a machine term are all unique (in contrast to kell names).

An Abstract Machine for the Kell Calculus 37

M =α N

M ≡ N
[M.SE.α]

P ≡ P ′ S ≡ S′

l : h[P]k,S ≡ l : h[P ′]k,S′
[M.SE.CTX]

Fig. 3. Structural equivalence for machines

We call MK the set of machine processes (i.e. terms generated via the productions
P, P∗ in the abstract machine grammar), and we have K ⊆ MK. The machine processes
are slightly different from Kell calculus processes. First a new term reify(k, M∗) is in-
troduced to represent a passivated machine. The term M∗ is a tree of machines encoded
as a parallel composition of localities and k is the machine name of the root of this tree.
Secondly, the names that can be used by a machine process belong to N ∪ MN. This
point will be made clear in the next subsection. A machine process is in normal form,
written P∗, when it has no name restriction operator nor kells in evaluation context. A
machine is in normal form when all machine processes in its localities are in normal
form. We use the .∗ suffix to denote machines and processes in normal form. The def-
initions and conventions given in section 2 extend to machine processes. Note that we
use the same meta-variables to denote processes and machine processes. When it is not
clear from the context, we will precise whether a variable denote a process or a machine
process.

3.2 Reduction Semantics

The reduction relation is defined as for the calculus via a structural congruence relation
and a reduction relation.

First, we define two equivalence relations (both denoted by ≡), on machine pro-
cesses and sets of localities, respectively, as the smallest relations that make the parallel
operator | (resp. the , operator) associative and commutative with 0 (resp. ∅) as a neu-
tral element. Then, we define the structural congruence ≡ on machines as the smallest
equivalence relation that verifies the rules in figure 3 and that makes the parallel opera-
tor | associative and commutative with 0 as a neutral element.

This structural equivalence, together with the rules M.S.CTX and M.S.STR, allows
us to view machines as sets of localities and terms S as sets of machine names. Note that
the equivalence relation on machine processes is different from the one on kell calculus
processes as it does not contain rules dealing with restriction. This is because restriction
is handled by the abstract machine as a name creation operator (rule M.S.NEW).

The reduction relation is defined as the smallest relation that satisfies the rules
in Figures 4 and 5. It uses a subreduction relation

≡→. The first subreduction rule,
M.S.NEW, deals with restriction, which is interpreted as name creation. The reason
the rule imposes the newly created name to be a machine name is related to the correct-
ness proof, where we need to distinguish between restricted and free Kell names. Rule
M.S.CELL creates a new locality when a kell is in the locality process. Rule M.S.ACT

activates a passivated machine. Activation involves releasing the process held in the root
locality of the passivated machine in the current locality, and releasing the sublocalities
of the passivated machine as new sublocalities of the current locality.

38 Philippe Bidinger, Alan Schmitt, and Jean-Bernard Stefani

l fresh ∈ MN

h : n[(νa.P) | Q]k,S
≡→ h : n[P{l/a} | Q]k,S

[M.S.NEW]

h′ fresh ∈ MN

h : n[m[P] | Q]k,S
≡→ h : n[Q]k,(S,h′) | h′ : m[P]h,∅

[M.S.CELL]

M∗ = l : n[R∗]l′,S′ | M ′
∗

locnames(M ′
∗) = {li/i ∈ I} ki fresh ∈ MN, i ∈ I

h : m[reify(l, M∗) | P]k,S
≡→ h : m[R∗ | P]k,(S,S′{ki/li}i∈I

| M ′
∗{h/l}{ki/li}i∈I

[M.S.ACT]

M
≡→ M ′

M | N
≡→ M ′ | N

[M.S.CTX]
M ≡ M ′ M ′ ≡→ M ′′ M ′′ ≡ M ′′′

M
≡→ M ′′′ [M.S.STR]

Fig. 4. Sub-reduction for machines

The reduction rules M.IN, M.OUT, M.LOCAL, and M.PASS are the direct equiv-
alent of the Kell calculus rules R.IN, R.OUT, R.LOCAL, and R.PASS, respectively. In
rule M.PASS, the localities passivated are in normal form.

The reduction rules use the auxiliary function locnames, the predicate tree, and
the notion of well-formed machine, which we now define.

The predicate tree(M, l, a, p) is defined as follows (where S may be empty):

tree(M, l, a, p) = (M ≡ l : a[P]p,S |
∏

j∈S

Mj) ∧j∈S tree(Mi, lj , aj , pj))

with the additional condition that l, p, lj, pj are all distinct.
The function locnames(M) designates the set of locality names of all localities

present in a machine M .
We say that a machine M is well-formed if we have tree(M, r, rn, rp). The set of

well-formed machines is noted WFM. Finally, we will need the relation ∼= defined as
follows: M ∼= N if and only if tree(M, l, m, p) and Mσ ≡ Nσ′ where σ and σ′ are
injective renaming of machine names such that σ(l) = σ′(l) = l and σ(p) = σ′(p) = p
and if m ∈ MN, σ(m) = σ′(m) = m.

4 Correctness

We establish the correctness of our abstract machine by establishing a strong bisim-
ilarity result between Kell calculus processes and their interpretation by the abstract
machine. The notion of equivalence we adopt is strong barbed bisimulation [15], which
we denote by ∼. This notion of bisimulation can be used to compare different transition
systems, provided that they are equipped with observability predicates and a reduction
relation. An originality of our correctness result is that it relies on a strong form of
barbed bisimilarity, instead of a weak one. This is possible because we abstract away
administrative reduction rules through the subreduction relations in both the calculus
and the abstract machine semantics. Our main result is the following:

Theorem 1 (Correctness). For any Kell calculus process P , we have [[P]] ∼ P .

An Abstract Machine for the Kell Calculus 39

P → P ′

P | Q → P ′ | Q
[M.PAR]

ξ = c〈ũ〉
ξϕ | (ξ � Q) → Qϕ

[M.LOCAL]

ξ = c〈ũ〉↑
h : a[ξϕ | P]k,S | h′ : b[(ξ � Q) | R]h,S′ �→ h : a[P]k,S | h′ : b[Qϕ | R]h,S′

[M.IN]

ξ = c〈ũ〉↓ ∨ ξ = c〈ũ〉↓a

h : a[ξϕ | P]h′,S | h′ : b[(ξ � Q) | R]k′,S′ �→ h : a[P]h′,S | h′ : b[Qϕ | R]k′,S′
[M.OUT]

M∗ = l : a[R∗]h,S′ | M ′
∗ tree(M∗, l, a, h)

h : m[(a[x] � P) | Q]k,S | M∗ �→ h : m[P{reify(l, M∗)/x} | Q]k,S\l
[M.PASS]

M �→ M ′

M | N �→ M ′ | N
[M.CTX]

M ≡ M ′ M ′ �→ M ′′ M ′′ ≡ M ′′′

M �→ M ′′′ [M.STR]

P → P ′

h : m[P]k,S �→ h : m[P ′]k,S
[M.RED]

M
≡→∗

M ′ M ′ �→ M ′′

M → M ′′ [M.NORM]

Fig. 5. Reduction for machines

This theorem asserts the equivalence of any Kell calculus process P with its translation
in the abstract machine calculus. In the rest of this section we give the main definitions
and intermediate results that intervene in the proof of Theorem 1.

We first define the translation of a Kell calculus process in the abstract machine
calculus.

Definition 1. [[P]] = r : rn[P]rp,∅

A first important property of our model is to ensure that the tree structure of the
machine is preserved through reduction.

Proposition 1 (Well-Formedness). If tree(M, l, a, p) and M ∼= M ′, M
≡→ M ′,

M �→ M ′, or M → M ′, then tree(M ′, l, a, p). In particular, well-formedness is pre-
served by reduction. Moreover, for any process P , [[P]] is well-formed.

From now on, unless otherwise stated, we only consider machine terms M such that
tree(M, l, a, p) for some names l, a, p. The definitions of strong barbed bisimulation
and strong barbed bisimilarity are classical [15]. We reproduce them below.

Definition 2 (Strong barbed bisimulation). Let TS 1 and TS 2 be two sets of tran-
sition systems equipped with the same observability predicates ↓a, a ∈ N. A relation
R ⊆ TS 1 × TS 2 is a strong barbed simulation if whenever (A, B) ∈ R, we have

– If A ↓a then B ↓a

– If A → A′ then there exists B′ such that B → B′ and (A′, B′) ∈ R′

A relation R is a strong barbed bisimulation if R and R−1 are both strong barbed
simulations.

40 Philippe Bidinger, Alan Schmitt, and Jean-Bernard Stefani

Definition 3 (Strong barbed bisimilarity). Two transition systems A and B are said
to be strongly barbed bisimilar, noted A ∼ B, if there exists a strong barbed bisimula-
tion R such that (A, B) ∈ R.

To define strong bisimilarity for Kell calculus processes and machines we rely on
the following observability predicates.

Definition 4 (Observability predicate for processes). If P is a Kell calculus process,
P ↓a holds if one of the following cases holds:

1. P ≡≡→∗
νc̃.a〈P̃ 〉 | R | P ′, with a /∈ c̃

2. P ≡≡→∗
νc̃.m[a〈P̃ 〉 | R] | P ′, with a /∈ c̃

3. P ≡≡→∗
νc̃.a[P] | P ′, with a /∈ c̃

Definition 5 (Observability predicate for machines). If M is a well-formed machine
and a ∈ N, M ↓a holds if one of the following cases holds:

1. M ≡≡→∗
r : rn[a〈P̃ 〉 | R]rp,S | M ′

2. M ≡≡→∗
h : m[a〈P̃ 〉 | R]r,S | M ′

3. M ≡≡→∗
h : a[P]r,S | M ′

Intuitively , a barb on a means that after an arbitrary number of administrative reduc-
tions, a process P (or machine M) can exhibit a local message (clause 1), a up message
(clause 2), or a kell message (clause 3). These observations are similar to those find e.g.
in Ambient calculi.

We now define two equivalence relations over machines that we use to state cor-
rectness properties. The first one identifies two machines that have the same normal
form. The second one corresponds to a form of strong barbed congruence. Note that the
second one is defined on well-formed machine only.

Lemma 1 (Normal form). If M is a machine term, then there exists M ′
∗ such that

M
≡→∗

M ′∗. Moreover, if M ≡≡→∗
M ′′∗ then M ′∗ ∼= M ′′∗ . Besides, M �≡→ if and only if

M = M ′
∗ for some M ′

∗.

Definition 6 (Equivalence). Two machines M and N are said to be equivalent, noted
M

.= N , if they have the same normal form (up to ∼=).

From now on, we will use the same notation M∗ for a normal form of M (i.e.
M

≡→∗
M∗ �≡→), and for an arbitrary term in normal form.

Definition 7. Let M = l : n[P]p,S | M ′ be a machine such that tree(M, l, n, p) and
h a fresh machine name. We define:

M | Q = l : n[P | Q]p,S | M ′

a[M] = l : n[0]p,h | h : a[P]l,S | M ′{h/l}
νa.M = M{h/a}

We extend these definitions to any contexts of the following form:

E ::= . | (R | E) | a[E] | νa.E

An Abstract Machine for the Kell Calculus 41

Definition 8 (Contextual equivalence for machines). Two well-formed machines M
and N are contextually equivalent (M ∼c N) if and only if ∀E,E[M] ∼ E[N].

We check easily that ∼c is the largest relation over machines included in strong
barbed bisimilarity that is a preserved by a[.], νa.. and . | R.

Lemma 2. ∼c,
.=, ∼= and ≡ are equivalence relations.

Lemma 3. We have ≡⊆∼=⊆ .= and if we consider the restrictions of these relations to
well-formed machines, they are all strong barbed bisimulation and

.=⊆∼c.

We now state two properties that relate machine reductions to process reductions
(soundness), and process reductions to machine reductions (completeness).

Proposition 2 (Soundness). [[P]] → M =⇒ P → P ′ with [[P ′]] ∼c M .

Proof. For lack of space, we only give here a sketch of the proof. We first define by
induction an inverse translation function [[.]]mac from machines to processes. This func-
tion has three roles: to expand the “reified” processes, to rebuild the tree structure of the
term, and to recreate restricted names from machine names.

The soundness proposition results from the following lemmas:

Lemma 4. If M is well-formed and M
≡→ N then [[M]]mac ≡≡→∗

[[N]]mac.

Lemma 5. If M is well-formed and M �→ N then [[M]]mac �→ [[N]]mac.

Lemma 6. If M is a well-formed machine, then [[[[M]]mac]] ∼c M . If P is a process,
then [[[[P]]]]mac ≡ P .

Proposition 3 (Completeness). P → P ′ =⇒ [[P]] →∼c [[P ′]]

Proof (Sketch).
The proof of this proposition is on induction on the derivation of P → P ′ and need

the two following lemmas:

Lemma 7. If P ≡ P ′ then [[P]]
.= [[P ′]]. If P

≡→ P ′ then [[P]]
.= [[P ′]].

Lemma 8. Let P∗ be a process and M∗ a machine such that tree(M∗, p, a, r). If we

have p : a[P∗]p′,∅
≡→∗∼= M∗ then for any machine N we have N{reify(p, M∗)/x} ∼c

N{P∗/x}.

The proof of Theorem 1 then results immediately from Propositions 2 and 3 by
showing that the relation {〈[[P]], P 〉 | P ∈ K} is a strong barbed bisimulation up to ∼c.

5 Implementation

We have implemented a prototype of our abstract machine in OCaml, which realizes
a Kell calculus interpreter, and is available at [11]. The source language for the in-
terpreter (called kcl) is essentially a typed extension of the calculus presented in this

42 Philippe Bidinger, Alan Schmitt, and Jean-Bernard Stefani

paper, with values. Values are either basic (integers, lists, strings), higher-order (process
abstractions, passivated processes) or expressions built upon classical operators such as
arithmetic operators or marshalling/unmarshalling primitives.

User programs are first parsed and typed-checked using a simple type inference al-
gorithm. Then, they are executed by a runtime that follows closely the reductions of the
abstract machine. Unlike the abstract machine, the runtime is deterministic (we do not
detail here the particular reduction strategy we use). Moreover, we use environments in
order to avoid the use of substitutions. The freshness conditions in the rules M.S.CELL,
M.S.ACT and M.S.NEW are implemented either through the use of runtime pointers
for locality names, or by a global fresh identifier generator for names created by a new
instruction.

An independent part of the interpreter allows user programs to access various ser-
vices as library functions, which may also be modeled as Kell Calculus processes. More
precisely, we can see an interpreter as a context vmid[Lib | u[·]] executing a user pro-
gram P (filling the hole) according to the rules of the abstract machine. The program P
can use services specified in Lib that correspond to OCaml functions, but are accessed
transparently from P like any other receiver. Similarly, these functions can generate
messages in the vmid locality that can be received by P . In the implementation, mes-
sages sent from the top level of P are treated differently whether they are addressed to a
receiver in Lib or not. A very simple library could be Lib = (echo↓〈x〉 � Q), where
Q specifies the output of the string x on the standard output, and where � denotes to a
replicated input construct (which can be encoded in the Kell calculus as shown in [17]).

A distributed configuration of interpreters can be specified as follows. If we run the
programs P0, . . . , Pn on different interpreters, the resulting behavior is specified by the
following term

Net | vmid0[Lib(vmid0) | u[P0]] | . . . | vmidn[Lib(vmidn) | u[Pn]]

where we assume vmid names to be distinct. The processes Lib model the local li-
braries and Net the network. In our implementation they are mainly defined as follows
(omitting the type annotations):

Lib(vmid) = (send↓〈x, y〉
 send〈x, y〉 | (recv↑〈(vmid), y〉
 msg〈x〉 |(echo↓〈x〉
 Q)

Net = send↓〈x, y〉
 rcv〈x, y〉
These processes specify an environment allowing the exchange of asynchronous

messages between interpreters, and providing some output capability. The vmid name
allows to send messages to uniquely deignated kells. In addition, marshalling and un-
marshalling functions allow to send arbitrary values over the network.

We give in Figure 6 the code of a distributed application consisting of a client and
a server that simply executes the code that it receives. vm is a constructor that builds an
identifier for a virtual machine (typically to locate a name server) from an address and
a port. thisloc is bound to the identifier of the machine in which it is evaluated. The
construct def in corresponds to an input (ξ �P) and rdef to a replicated input. We
use marshalling and unmarshalling functions that convert arbitrary values to string and
conversely.

The execution of the server and the client on two different machines gives the fol-
lowing result.

An Abstract Machine for the Kell Calculus 43

client.kcl
new a in new b in new c in
let serverid = vm ("plutonium.inrialpes.fr", 6000) in
let myid = thisloc in

(def a [X] in send < serverid, marshall(X) >)
| (def b [X] in X)
| (def c [X] in X | X)
| a [send < myid, marshall (echo <"good">

| b[c[echo <"bye">]]) >
| echo < "hello" >]

| rdef msg up < X > in unmarshall(X) as proc

server.kcl
rdef msg up < X > in X

Fig. 6. kcl example

plutonium:˜/kcl-0.1/bidinger$ kcl server.kcl -p 6000
hello

californium:˜/kcl-0.1/bidinger$ kcl client.kcl -p 7000
good
bye
bye

6 Related Work

There has been a number of recent papers devoted to the description and implementation
of abstract machines for distributed process calculi. One can cite notably the Jocaml
distributed implementation of the Join calculus [5, 6], the Join calculus implementation
of Mobile Ambients [7], Nomadic Pict [19, 21], the abstract machine for the M-calculus
[9], the Fusion Machine [8], the PAN and GCPAN abstract machines for Safe Ambients
[10, 14], the CAM abstract machine for Channel Ambients [13]. In addition, there have
been also implementations of distributed calculi such as the Seal calculus [20], Klaim
[2], or DiTyCO [12].

Our abstract machine specification has been designed to be independent from the
actual implementation environment and the network services it provides. It thus can be
used in widely different configurations. For instance, one is not limited to mapping top-
level localities to physical sites as in [5, 7, 9], or does not need to introduce physical sites
as a different locality abstractions than that of the supported calculus as in [10, 14]. This
separation between abstract machine behavior and network semantics is not present in
other abstract machines for distributed process calculi.

The Seal calculus [4] and the M-calculus [16] are the only calculi that share with
the Kell calculus a combination of local actions and hierarchical localities, and could
thus achieve a similar independence between abstract machine and network services.
No abstract machine is described for the Seal calculus, however (only an implementa-
tion is mentioned in [20]), and the M-calculus abstract machine described in [9] relies

44 Philippe Bidinger, Alan Schmitt, and Jean-Bernard Stefani

on a fixed network model and a mapping of top-level localities to physical sites. Calculi
which rely on an explicit flat network model such as Nomadic Pict, DiTyCO, Klaim
have abstract machines and implementations which presuppose a given physical con-
figuration and its supporting network model.

The Fusion Machine implements the general fusion calculus, where no localities are
present, but the abstract machine itself is based on a fixed asynchronous network model.
Furthermore, because of the nature of communications in Fusion, the Fusion machine
relies on a non-trivial migration protocol for achieving synchronization in presence of
multiple sites. In contrast to our calculus and abstract machine, this prevents distributed
Fusion programs to directly, and at no cost, exploit low-level network services such as
a basic datagram service.

Abstract machines and implementations for distributed process calculi with hier-
archical localities other than the Seal calculus and the M-calculus, namely the Join
calculus and Ambient calculi, must implement migration primitives, which forces a de-
pendence on a given network model. For instance, the JoCaml abstract machine for
the distributed join calculus [5] depends on an asynchronous message passing network
model and on a specific interpretation of the locality hierarchy (top level localities are
interpreted as physical sites). The PAN [14] and GCPAN [10] abstract machines for
Safe Mobile Ambients depend as well on an asynchronous message passing network
model for specifying the migration of ambients between sites (corresponding to the
interpretation of the Ambient primitive open), and on the introduction of a notion of
execution site, not related to ambients. The Channel Ambient abstract machine [13]
leaves in fact the realization of its in and out migration primitives unspecified.

7 Conclusion

We have presented an abstract machine for an instance of the Kell calculus, and dis-
cussed briefly its OCaml implementation. The originality of our abstract machine lies
in the fact that it is independent from any network services that could be used for a dis-
tributed implementation. Indeed, as our simple OCaml implementation illustrates, we
can isolate network services provided by a given environment in language libraries that
can be reified as standard Kell calculus processes for use by Kell calculus programs.
While this means that our abstract machine, just as the Kell calculus, does not embody
any sophisticated abstraction for distributed programming, it demonstrates that the cal-
culus and its associated machine provide a very flexible basis for developing these ab-
stractions. Furthermore, this independence has the advantage of simplifying the proof
of correctness of our abstract machine, as it does not depend on the correctness proof
of a sophisticated distributed protocol.

Much work remains of course towards a provably correct implementation of the
calculus. Our non-deterministic abstract machine remains too abstract in a number of
dimensions to be the basis for an efficient implementation of the calculus. First, truly
local actions can only be realized, and efficiency obtained, if there is some determinacy
in routing messages to triggers (as it is enforced in our OCaml implementation). One
can think of applying a type system similar to that reported in [3], which guarantees the
unicity of kell names, to obtain linearity conditions ensuring the unicity of message des-

An Abstract Machine for the Kell Calculus 45

tinations. Secondly, an efficient machine would require a more deterministic behavior.
Here we face the prospect of a more difficult proof of correctness, and more difficulty
in stating the correctness conditions, which must probably relate the non-determinism
at the calculus level with the determinism of the abstract machine through some sort of
fairness condition.

References

1. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer Science,
vol. 96, 1992.

2. L. Bettini, M. Loreti, and R. Pugliese. Srtuctured nets in klaim. In Proceedings of the 2000
ACM Symposium on Applied Computing, ACM Press, 2000.

3. P. Bidinger and J.B. Stefani. The Kell Calculus: Operational Semantics and Type System. In
Proc. 6th IFIP FMOODS International Conference, volume 2884 of LNCS. Springer, 2003.

4. G. Castagna and F. Zappa. The Seal Calculus Revisited. In In Proceedings 22th FST-TCS,
number 2556 in LNCS. Springer, 2002.

5. Fabrice Le Fessant. JoCaml: Conception et Implantation d’un Langage à Agents Mobiles.
PhD thesis, Ecole Polytechnique, 2001.

6. C. Fournet, G. Gonthier, J.J. Levy, L. Maranget, and D. Remy. A calculus of mobile agents.
In In Proceedings 7th International Conference on Concurrency Theory (CONCUR ‘96),
Lecture Notes in Computer Science 1119. Springer Verlag, 1996.

7. C. Fournet, J.J. Levy, and A. Schmitt. An asynchronous distributed implementation of mobile
ambients. In Proceedings of the International IFIP Conference TCS 2000, Sendai, Japan,
Lecture Notes in Computer Science 1872. Springer, 2000.

8. Philippa Gardner, Cosimo Laneve, and Lucian Wischik. The fusion machine. In CONCUR
2002, volume 2421 of LNCS. Springer-Verlag, 2002.

9. F. Germain, M. Lacoste, and J.B. Stefani. An abstract machine for a higher-order distributed
process calculus. In Proceedings of the EACTS Workshop on Foundations of Wide Area
Network Computing (F-WAN), July 2002.

10. D. Hirschkoff, D. Pous, and D. Sangiorgi. An Efficient Abstract Machine for Safe Ambients,
2004. Unpublished. Available at: http://www.cs.unibo.it/∼sangio/DOC public/gcpan.ps.gz.

11. The Kell calculus page. http://sardes.inrialpes.fr/kells/.
12. L. Lopes, F. Silva, A. Figueira, and V. Vasconcelos. DiTyCO: An Experiment in Code Mobil-

ity from the Realm of Process Calculi. In Proceedings 5th Mobile Object Systems Workshop
(MOS’99), 1999.

13. A. Phillips, N. Yoshida, and S. Eisenbach. A distributed abstract machine for boxed ambient
calculi. In Proceedings of ESOP 2004, LNCS. Springer-Verlag, April 2004.

14. D. Sangiorgi and A. Valente. A Distributed Abstract Machine for Safe Ambients. In Pro-
ceedings of the 28th ICALP, volume 2076 of LNCS. Springer-Verlag, 2001.

15. D. Sangiorgi and S. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge
University Press, 2001.

16. A. Schmitt and J.B. Stefani. The M-calculus: A Higher-Order Distributed Process Calculus.
In Proceedings 30th Annual ACM Symposium on Principles of Programming Languages
(POPL), 2003.

17. A. Schmitt and J.B. Stefani. The Kell Calculus: A Family of Higher-Order Distributed Pro-
cess Calculi. In P. Quaglia, editor, Global Computing, volume 3267 of LNCS. Springer,
2004.

18. J.B. Stefani. A Calculus of Kells. In Proceedings 2nd International Workshop on Founda-
tions of Global Computing, 2003.

46 Philippe Bidinger, Alan Schmitt, and Jean-Bernard Stefani

19. A. Unyapoth and P. Sewell. Nomadic Pict: Correct Communication Infrastructures for Mo-
bile Computation. In Proceedings ACM Int. Conf. on Principles of Programming Languages
(POPL), 2001.

20. J. Vitek and G. Castagna. Towards a calculus of secure mobile computations. In Proceedings
Workshop on Internet Programming Languages, Chicago, Illinois, USA, Lecture Notes in
Computer Science 1686, Springer, 1998.

21. P. Wojciechowski and P. Sewell. Nomadic Pict: Language and Infrastructure. IEEE Concur-
rency, vol. 8, no 2, 2000.

	An Abstract Machine for the Kell Calculus
	1 Introduction
	2 The Kell Calculus: Syntax and Operational Semantics
	2.1 Syntax
	2.2 Reduction Semantics

	3 Abstract Machine
	3.1 Syntax
	3.2 Reduction Semantics

	4 Correctness
	5 Implementation
	6 Related Work
	7 Conclusion
	References

