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Abstract. This paper presents a framework to decompose a single
GSPN model into a set of small interacting models. This decomposition
technique can be applied to any GSPN model with a finite set of tangi-
ble markings and a generalized tensor algebra (Kronecker) representation
can be produced automatically. The numerical impact of all the possi-
ble decompositions obtained by our technique is discussed. To do so we
draw the comparison of the results for some practical examples. Finally,
we present all the computational gains achieved by our technique, as well
as the future extensions of this concept for other structured formalisms.

1 Introduction

It is common knowledge in the research community the advantages in using
the GSPN (Generalized Stochastic Petri Nets) formalism [2] to model complex
systems, i.e., systems with both parallel and synchronous behavior. For a quite
long time, the main limitation to use the GSPN formalism was the absence of
an efficient numerical support to handle useful, and consequently large, models.
Ciardo and Trivedi’s work [14] brought a first approach that could be employed
to decompose a single model into components. However, their approach does
not mention any specific storage or numerically suitable solution technique. The
need of a theoretical tool to represent such structured models naturally leads
to Tensor Algebra representations [4, 8, 3, 15]. The term Tensor Algebra is being
employed in this paper, but many authors still prefer the classic denomination
Kronecker Algebra chosen in honor of Leopold Kronecker.

The first complete approaches in this direction were the works of Donatelli
in the SGSPN (Superposed GSPN ) formalism [16, 17]. By complete, we under-
stand that it was proposed a complete framework to: construct a SGSPN model
by assembling synchronized components; generate a Markovian descriptor, i.e.,
a tensor algebra formula, as the infinitesimal generator of the equivalent Markov
chain; and consequently an efficient way to solve it (functional elements). How-
ever, the SGSPN formalism could only be used to model a rather small class
of GSPN models which comply to the restrictive rules of generation defined by
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Donatelli, i.e., a SGSPN model is composed of a set of standard GSPN models
which interact only through a set of synchronized transitions.

The SGSPN application scope restriction, and the consequent disadvantages
in terms of numerical performance, suggests the use of other formalisms that
could be closer to the tensor representation, such as SAN (Stochastic Automata
Networks) [26]. At this time, the solution through the shuffle algorithm used
in SAN [18, 7] presents an efficient solution with reasonable memory needs.
Evidently, the use of other structured storage and solution techniques instead
of the tensor algebra also presents good alternatives to the limited scope of the
SGSPN formalism. This is the case of the quite impressive techniques based on
MDD (Multi-valued Decision Diagrams) [22] and MxD (Matrix Diagrams) [21]
proposed by Ciardo and Miner. Furthermore, the MDD and MxD techniques
are very efficient to solve very sparse models, i.e., models with a huge product
state space and a comparatively small number of reachable states. In fact, we
believe that the techniques based on tensor algebra are still worthy, at least
considering the new improvements to handle tensor structures [5, 10].

This paper presents a study about the decomposition of a very general class of
GSPN models, exploiting the description power of the GSPN formalism. It also
proposes a memory efficient tensor algebra format to describe the components
and their interactions. As the first step, we formally define the class of GSPN
models in which our technique can be applied. The proposed decomposition
technique and the consequent tensor format representation are generalizations
of the SGSPN formalism [17], but we extend the application scope following the
ideas firstly advanced in [14] and employed later in [20]. The new contribution
of our work is justified by the numerical impact of the decomposition choices on
the storage demands.

We are specifically interested to handle models with a really large reachable
state space. Buchholz, Ciardo, Donatelli, Kemper, and Miner [9, 23, 11] already
present very efficient methods to deal with absolutely huge models (e.g., 9.18 ×
10626 states in 1000 dining philosophers example [22]), but with considerably
fewer reachable states. Our decomposition technique intends to split a GSPN
model into subnets providing a structured representation. Regardless the number
of subnets, we will always have the same reachable state space. With many
(small) subnets, we have a very structured (and therefore memory efficient)
representation, but also a product state space much larger than the reachable
state space. With few (large) subnets, we have a less structured representation,
but a product state space equal or a little bit larger than the reachable state
space. In fact, we intend to compare possible decompositions in order to show
the trade off between many small and few large subnets.

In addition, we point out the underestimated benefits of the use of guards in
the GSPN formalism, which can be clearly demonstrated by the tensor format
proposed in our work. We do not pay much attention in this paper to the com-
putational cost to solve the tensor representations. The recent evolutions in pure
tensor solutions [5, 10], the promising ideas of parallel implementations, and the
MDD and MxD techniques [12] suggest many changes in the computational
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cost in a near future. We focus our interest in the memory savings due to our
decomposition techniques and the corresponding tensor format.

The next section briefly presents the theoretical tool used to the tensor rep-
resentation: Classical (CTA) and Generalized Tensor Algebra (GTA). Section 3
describes the GSPN formalism, the application scope of our technique and the
scope of the technique proposed for SGSPN. Section 4 presents our decomposi-
tion technique and the corresponding tensor format. Section 5 draws some con-
siderations about the possible choices of decomposition. Section 6 presents some
modeling examples in order to discuss numerical issues about the decomposition
technique. Finally, the conclusion summarizes our contribution and suggests the
still vast future work to be done.

2 Tensor Algebra

In this section, the concepts of Classical Tensor Algebra [3, 15] and Generalized
Tensor Algebra [25, 18] are briefly presented.

2.1 CTA - Classical Tensor Algebra

The tensor product of two matrices: A of dimensions (ρ1 × γ1) and B of dimen-
sions (ρ2×γ2) is a tensor with dimensions (ρ1ρ2×γ1γ2) which may be considered
as consisting of ρ1γ1 blocks each having dimensions (ρ2γ2), i.e., the dimensions
of B. To specify a particular element, it suffices to specify the block in which
the element occurs and the position within that block of the element under con-
sideration. Thus, as mentioned previously, element c36 (a11b02) is in the (1, 1)
block and at position (0, 2) of that block. The tensor C = A ⊗ B is defined by
assigning to the element of C that is in the (k, l) position of block (i, j), the
value aijbkl, i.e., c[ik][jl] = aijbkl. The tensor sum of two square matrices A and
B is defined in terms of tensor products as:

A ⊕ B = A ⊗ InB
+ InA

⊗ B

where nA is the order of A; nB is the order of B; Ini
is the identity matrix of order

ni; and “+” represents the usual operation of matrix addition. Since both sides
of this operation (matrix addition) must have identical dimensions, it follows
that tensor addition is defined for square matrices only. The value assigned to
the element c[ik][jl] of the tensor C = A⊕B is c[ik][jl] = aijδkl + bklδij , where δij

is the element of ith row and jth column of an identity matrix defined as δij = 1
for i = j and δij = 0 for i �= j.

2.2 GTA - Generalized Tensor Algebra

Generalized Tensor Algebra is an extension of Classical Tensor Algebra. The
main distinction of GTA with respect to CTA is the addition of the concept of
functional elements. However, a matrix can be composed of constant elements
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(belonging to R) or functional elements. A functional element is a function eval-
uated in R according to a set of parameters composed of the rows of one or
more matrices. Generalized tensor product is denoted by ⊗

g
. The value assigned

to the element c[ik][jl] of the tensor C = A(B)⊗
g

B(A) is c[ik][jl] = aij(bk)bkl(ai).

Generalized tensor sum is also analogous to the ordinary tensor sum, and is
denoted by ⊕

g
. The elements of the tensor C = A(B) ⊕

g
B(A) are c[ik][jl] =

aij(bk)δkl + bkl(ai)δij .

3 Generalized Stochastic Petri Nets

The GSPN formalism [2] is a performance analysis tool on the graphical system
representation typical of Petri Nets [27, 24]. The GSPN formalism is derived
from the SPN formalism and contains two types of transitions: timed and im-
mediate. An exponentially distributed random firing time is associated with each
timed transition, whereas immediate transitions, by definition, fire in zero time.
Immediate transitions always have precedence to fire over timed transitions. The
GSPN models with immediate transitions can always be represented by a model
with timed transitions.

In the graphical representation of a GSPN model, places are drawn as circles,
timed transitions as rectangles and immediate transitions as bars. Places may
contains tokens, which are drawn as black dots. A place is an input to a transition
if an arc exists from the place to the transition. A place is an output from a
transition if an arc exists from the transition to the place. A transition is enabled
when all of its input places contain at least one token. Enabled transitions can
fire, thus removing one token from each input place and placing one token in each
output place. Additionally, a condition can be associated to enable the firing of
the transitions. Such conditions are called guards and, with the availability of
tokens in the input places, they are the only restrictions to enable the firing of
a given transition. A formal description is presented as follows.

Let

C set of conditions associated to transitions of T .

Definition 1. A GSPN is defined by tuple (P, T , π, I, O, W , G, M0), where:

1.1. P non-empty set of places;
1.2. T non-empty set of transitions;
1.3. π: T → {0, 1} priority function of the transitions;
1.4. I and O: T → P input and output functions of the transitions;
1.5. W : T → R

+ function that assigns a rate to each transition;
1.6. G: T → C function, called guard, that associates a necessary, but not suffi-

cient, condition c ∈ C to the firing of each transition t ∈ T ;
1.7. M0: P → N initial marking in each place.
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Definition 2. c ∈ C is a condition that may be associated to a transition t ∈ T ,
which depends on tokens of one or more p ∈ P. This condition is a function with
domain on tokens of all places p and counter-domain on R.

A condition c defines the firing rate of a transition according to the number
of tokens in a specific set of places. Although the counter-domain of c is R,
only a discrete set of values can be obtained, since the possible combination of
markings of places (i.e., the domain of c) is a discrete set.

Definition 3. Set of timed transitions TT of a GSPN is defined as TT = {t ∈
T | π(t) = 0}.

Definition 4. Set of immediate transitions TI of a GSPN is defined as TI =
{t ∈ T | π(t) = 1}.

Definition 5. Set of transitions T of a GSPN is defined as T = TT ∪ TI and
TT ∩ TI = ∅.

Numerical Solution Restriction. Although the framework proposed in this
paper could be applied to a larger class of GSPN models, we assume a single
restriction in order to facilitate the stationary or transient numerical solution:
the set of tangible markings of the models must be finite.

4 Framework

We present in this section a framework to decompose GSPN models. Our de-
composition technique is shown in Fig. 1.

The basic idea is to decompose a GSPN model into N components GSPN (i)

(i ∈ [1..N ]), where each component GSPN (i) is viewed as a subsystem of the
GSPN model. A component GSPN (i) may not be a GSPN model. It is then
necessary to know the possible tangible markings. This is done by the con-
struction of T RG(i) considering the possible firing of all transitions limited
by: availability of tokens; guards; and maximum number of tokens in each
place.

A component GSPN (i) has an independent behavior (local transitions) and
occasional interdependencies (synchronized transitions and/or transitions with
guards). It is important to notice that there is a strong equivalence between
the decomposition of all T RG(i) and the T RG of the whole GSPN (which is
the underlying Markov Chain). Nevertheless the computational cost to obtain
the T RG from the composition of all T RG(i) is usually too high. In fact, the
memory needs can be prohibitive as will be seem in the Section 6.

In the next section, we define a component GSPN (i) and its properties. In
Section 4.2, we formally present the tensor format (Markovian Descriptor) used
to obtain the infinitesimal generator Q of a decomposed GSPN model.
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4.1 Decomposition

There is no restriction to decompose a GSPN model with a finite set of tan-
gible marking into N components GSPN (i) (i ∈ [1..N ]). Our technique is less
restrictive than the definition of the SGSPN formalism.
Definition 6. Each component GSPN (i) is defined as a GSPN, i.e., it is
defined by tuple (P(i), T (i), π(i), I(i), O(i), W (i), G(i), M

(i)
0 ), where:

6.1. P(i) non-empty set of places, such that p(i) ∈ P(i) → p(i) ∈ P and
N
∪

i=1
P(i) =

P and �P(i) = P;
6.2. T (i) non-empty set of transitions, such that t(i) ∈ T (i) → t(i) ∈ T and

∃p ∈ I(i)(t) or ∃p ∈ O(i)(t) such that p ∈ P(i);
6.3. π(i): T (i) → {0, 1} priority function of the transitions;
6.4. I(i) and O(i): T (i) → P(i)∗ input and output functions of the transitions in

which P(i)∗ denotes a possibly empty set of places;
6.5. W (i): T (i) → R

+ function that assigns a rate to each transition;
6.6. G(i): T (i) → C function guard that associates a necessary, but not sufficient,

condition c(i) ∈ C to the firing of each transition t(i) ∈ T (i);
6.7. M

(i)
0 : P(i) → N initial marking in each place p(i) ∈ P(i).

It is important to notice that the set of places P(i) is a subset of P, as well as
the set of transitions T (i) is a subset of T . Obviously, the subset of places P(i)

of a component GSPN (i) cannot be the whole set of places P, otherwise there
is no decomposition. The same restriction does not apply to T (i), since it can be
identical to T .

There is no restriction to places superposition. A place p ∈ P can be in as
many subsets of places P(i) as wanted. Obviously, the same applies to transi-
tions. The sole restriction regards the immediate transitions that cannot be used
to synchronized two or more partitions. However such restriction is a minor dis-
comfort since all GSPN model can be described by an equivalent SPN (i.e.,
without immediate transitions) model. Elements of tuple (P(i), T (i), π(i), I(i),
O(i), W (i), G(i), M

(i)
0 ) are conservatives, i.e., an element in component GSPN (i)

has the same value of the corresponding element in that original GSPN, e.g., if
t(i) correspond to t, then W (i)(t(i)) has the same value of W (t).

4.2 Tensor Format

We now formally present the tensor format (Markovian Descriptor) used to
obtain the infinitesimal generator Q of a decomposed GSPN model. As shown
in Fig. 1, the decomposition technique uses the concepts of Tangible Reachability
Graph and Stochastic State Machine.

So we firstly remind the classical definitions of P-invariants, Reachability Set
(RS), Tangible Reachability Set (TRS), Tangible Reachability Graph (TRG)
and Stochastic State Machine (SSM).
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Descriptor
Markovian

...

...

...

T RG(1) T RG(N)

SSM(1) SSM(N)

GSPN

GSPN (1) GSPN (N)

Fig. 1. Decomposition technique

Let

C incidence matrix of a GSPN (dimensions: |P| × |T |);
cjk element from row j and column k of an incidence matrix.

Definition 7. Elements of an incidence matrix C are defined by:

7.1. ∀pj ∈ P,∀tk ∈ T

cjk =

⎧
⎪⎨

⎪⎩

+1 if pj ∈ O(tk)
−1 if pj ∈ I(tk)
0 if pj �∈ O(tk) and pj �∈ I(tk)

Definition 8. P-invariants of a GSPN are defined by vector solutions σ com-
posed of non-negative integer: 0 and 1, given by equation σC = 0 [27], where
value 1 in ith position of σ means that ith place of GSPN belongs to the P-
invariant.

Let

PI minimal set of P-invariants, where PI = {PI1,PI2, ...}.

The scalar product between a P-invariant and any marking M produces a
constant. If in a GSPN all places are covered by P-invariant, the maximum
number of tokens in any place in any reachable marking is finite, and the net
is said to be bounded [1]. Therefore, a GSPN must have all places covered by
P-invariants (all places are bounded) in order to have a finite set of tangible
markings. We assume a minimal set of P-invariants as a set with the smaller
number of P-invariants that covers all places of the whole net.

Let

Mi(p) number of tokens in place p in marking Mi;

B(PIi) number of tokens in any P-invariant PIi (bound);

max(p) maximum number of tokens in place p defined as the minimum
B(PIi) for all PIi, where p ∈ PIi;

Mk[t > Ml change from marking Mk to Ml due to the firing of t.
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Definition 9. Reachability Set RS(i)(M (i)
0 ) of component GSPN (i) is defined

as the smallest set of markings, such that:

9.1. M
(i)
0 ∈ RS(i)(M (i)

0 );
9.2. M

(i)
l ∈ RS(i)(M (i)

0 ), if and only if ∀p(i),M
(i)
l (p(i)) ≤ max(p(i)); and

∃M
(i)
k ∈ RS(i)(M (i)

0 ) and ∃t ∈ T (i) such that M
(i)
k [t > M

(i)
l .

Definition 10. Tangible Reachability Set T RS(i)(M (i)
0 ) of component GSPN (i)

is composed of all tangible markings of RS(i)(M (i)
0 ).

Definition 11. Tangible Reachability Graph T RG(i)(M (i)
0 ) of component

GSPN (i) given an initial marking M
(i)
0 is a labelled directed multigraph whose

set of nodes T M(i) is composed of markings of Tangible Reachability Set T RS(i)

(M (i)
0 ) and whose set of arcs T ARC(i) is defined as follows:

11.1. T ARC(i) ⊆ T RS(i)(M (i)
0 )×T RS(i)(M (i)

0 )× T (i)
T ×T (i)∗

I ;
11.2. a(i) = [M (i)

k ,M
(i)
l , t0, σ] ∈ T ARC(i), if and only if

M
(i)
k [t0 > M

(i)
1 , σ = t1, . . . , tn, (n ≥ 0); and

11.3. ∃M
(i)
2 , . . . ,M

(i)
n such that M

(i)
1 [t1 > M

(i)
2 [t2 > . . . M

(i)
n [tn > M

(i)
l .

Definition 12. A Stochastic State Machine (SSM) is defined by tuple
(P, T , F, Λ), where:

12.1. P set of non-empty places;
12.2. T set of non-empty transitions;
12.3. F ⊆ ((P × T ) ∪ (T × P)) with dom(F ) ∪ codom(F ) = P ∪ T is the flow

relation. It has to satisfy the following restriction1: ∀t ∈ T : |◦t| = |t◦|= 1;
12.4. Λ : T → R

+, where Λ(t) is the rate of the exponential probability distribu-
tion associated to transition t.

A decomposed GSPN model has N components GSPN (i), where i ∈ [1..N ].
Each component GSPN (i) has a tangible reachability graph T RG(i) (Definition
12). Each tangible reachability graph T RG(i) has an equivalent stochastic state
machine SSM(i) such that:

1. Each node M
(i)
j ∈ T M(i) corresponds to p(i) ∈ P(i) of SSM(i);

2. Each arc a(i) ∈ T ARC(i) corresponds to [p(i), t(i)] ∈ F (i) and [t(i), q(i)] ∈
F (i), if and only if exist a(i) = [M (i)

k ,M
(i)
l , t, σ] such that M

(i)
k corresponds

to place p(i) ∈ P(i), M
(i)
l corresponds to place q(i) ∈ P(i), t ∈ T (i)

T , and
σ ∈ T (i)∗

I .

1 |◦t| and |t◦| indicate the number of input and output places of t.
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The transition rate of t(i) ∈ T (i) (obtained from [M (i)
k ,M

(i)
l , t, σ]) can be

computed as Λ(t).Λ(σ)2, where Λ(t) is the transition rate of t. Any transition
t(i) ∈ T (i), whose guard has dependency on markings of other components
GSPN (j) (i, j ∈ [1..N ] and i �= j), has a function f multiplied by its rate.
Function f is evaluated as true for all markings whose its guard is satisfied, and
false otherwise. So we can now classify a transition as local or synchronized.

Let

T (i)
l set of local transitions of component SSM(i);

T (i)
s set of synchronized transitions of component SSM(i).

Definition 13. Set of synchronized transitions Ts of a decomposed GSPN model
is defined as Ts = T (1)

s ∪ T (2)
s ∪ . . . ∪ T (N)

s .

Markovian Descriptor is an algebraic formula that allows to store, in a com-
pact form, the infinitesimal generator of an equivalent Markov chain. This math-
ematical formula describes the infinitesimal generator through the transition
tensors of each component. Each component SSM(i) has associated:

– 1 tensor Q
(i)
l , which has all transition rates for local transitions in T (i)

l ;
– 2|Ts| tensors Q

(i)
t+ and Q

(i)
t− , which have all transition rates for synchronized

transitions in T (i)
s .

Let

Q(i)
k (p(i), q(i)) tensor element Q

(i)
k from row p(i) and column q(i), where i ∈

[1..N ] and k ∈ {l, t+, t−};
I|P(i)| identity tensor of order |P(i)|, where i ∈ [1..N ];

τt(p(i), q(i)) occurrence rate of transition t ∈ T (i), where [p(i), t] ∈ F (i) and
[t, q(i)] ∈ F (i);

succt(p(i)) successor place q(i) such that [p(i), t] ∈ F (i) and [t, q(i)] ∈ F (i).

Definition 14. Tensor elements Q
(i)
l , which represent all local transitions t ∈

T (i)
l of component SSM(i), are defined by:

14.1. ∀p(i), q(i) ∈ P(i) such that q(i) ∈ succt(p(i)) and p(i) �= q(i)

Q
(i)
l (p(i), q(i)) =

∑

t∈T (i)
l

τt(p(i), q(i));

14.2. ∀p(i) ∈ P(i) such that q(i) ∈ succt(p(i))
Q

(i)
l (p(i), p(i)) = −

∑

t∈T (i)
l

τt(p(i), q(i));

2 See [1] for the computation of Λ(σ) (sequence of immediate transitions).
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14.3. ∀p(i), q(i) ∈ P(i) such that q(i) �∈ succt(p(i)) and p(i) �= q(i)

Q
(i)
l (p(i), q(i)) = 0.

Let

η(t) set of indices i (i ∈ [1..N ]) such that component SSM(i) has at
least one transition t ∈ T (i);

ι(t) index of the component SSM which has the transition rate of
synchronized transition t ∈ Ts, where ι(t) ∈ [1..N ].

Actually a transition t can be viewed as local transition if |η(t)|= 1 or as
synchronized transition if |η(t)|> 1.

Definition 15. Tensor elements Q
(i)
t+ , which represent the occurrence of syn-

chronized transition t ∈ T (i)
s , are defined by:

15.1. ∀i �∈ η(t)

Q
(i)
t+ = I|P(i)|;

15.2. ∀p(ι(t)), q(ι(t)) ∈ P(ι(t)) such that q(ι(t)) ∈ succt(p(ι(t)))

Q
(ι(t))
t+ (p(ι(t)), q(ι(t))) = τt(p(ι(t)), q(ι(t)));

15.3. ∀i ∈ η(t) such that i �= ι(t), ∀p(i), q(i) ∈ P(i) such that q(i) ∈ succt(p(i))
Q

(i)
t+ (p(i), q(i)) = 1;

15.4. ∀i ∈ η(t), ∀p(i), q(i) ∈ P(i) such that q(i) �∈ succt(p(i))
Q

(i)
t+ (p(i), q(i)) = 0.

Definition 16. Tensor elements Q
(i)
t− , which represent the adjustment of syn-

chronized transition t ∈ T (i)
s , are defined by:

16.1. ∀i �∈ η(t)

Q
(i)
t− = I|P(i)|;

16.2. ∀p(ι(t)) ∈ P(ι(t))

Q
(ι(t))
t− (p(ι(t)), p(ι(t))) =

{
0 if �q(ι(t)) ∈ succt(p(ι(t)))
−τt(p(ι(t)), q(ι(t))) if ∃q(ι(t)) ∈ succt(p(ι(t)))

16.3. ∀i ∈ η(t), i �= ι(t) and ∀p(i) ∈ P(i)

Q
(i)
t−(p(i), p(i)) =

{
0 if �q(i) ∈ succt(p(i))
1 if ∃q(i) ∈ succt(p(i))

16.4. ∀i ∈ η(t), ∀p(i), q(i) ∈ P(i) and p(i) �= q(i)

Q
(i)
t−(p(i), q(i)) = 0.

Definition 17. Infinitesimal generator Q corresponding to the Markov chain
associated to a decomposed GSPN model is represented by tensor formula called
Markovian Descriptor:

Q =
N⊕

g
i=1

Q
(i)
l +

∑

t∈Ts

⎛

⎝
N⊗

g
i=1

Q
(i)
t+ +

N⊗

g
i=1

Q
(i)
t−

⎞

⎠ (1)
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Once a tensor sum is equivalent to a sum of particular product tensors, the
Markovian Descriptor may be represented as:

Q =
(N+2|Ts|)∑

j=1

N⊗

g
i=1

Q
(i)
j , (2)

where Q
(i)
j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

I|P(i)| if j ≤ N and j �= i

Q
(i)
l if j ≤ N and j = i

Q
(i)

t+(j−N)
if N < j ≤ (N+ | Ts |)

Q
(i)

t−(j−(N+|Ts|))
if j > (N+ | Ts |)

5 Choosing a Decomposition

In this section, we present several approaches to decompose a GSPN model.
We show the necessary steps to obtain all components SSM. Afterwards, we
comment about the side effect of guards and its consequences.

Fig. 2 presents an example of a GSPN model. Based on this model, we show
our decomposition technique applied in three different approaches. For all the
possible decomposition approaches, the demonstration in Section 4.2 can be used
to obtain the equivalent tensor algebra representation automatically.

5.1 Decomposing by Places

Firstly, we analyse a quite naive approach, which is based on decomposing a
GSPN model by places. Each place has a maximum number of tokens K, and
so we can view each place as a SSM with K + 1 states. A decomposed GSPN
model by places of Fig. 2 is presented in Fig. 3.

Each component SSM(i) represents the possible states of place pi of a GSPN
model. Note that places p2 and p5 in Fig. 2 are 2-bounded, i.e., there are no

P1

P2 P3 P4

t1

t2 t3 t4

P5 P6 P7

t5

Fig. 2. An example of a GSPN model
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SSM(1)

SSM(3) SSM(4)

SSM(5)

SSM(6) SSM(7)

t1 t5

t3

t3

t2

t2
t3 t1 t4 t1

t2

t2

t3

t3

t5 t3 t5 t4

SSM(2)

0

1

2

0

1

0

1 1

0

0

1

2

0

1

0

1

Fig. 3. Decomposed GSPN model by places

more than 2 tokens in each place in any marking M ∈ RS. Hence SSM(2)

and SSM(5) have three places which represent the states (0, 1 and 2) of places
p2 and p5 respectively. Analogously, places p1, p3, p4, p6, and p7 are 1-bounded.
So SSM(1), SSM(3), SSM(4), SSM(6), and SSM(7) have two states
(0 and 1).

5.2 Decomposing by P-Invariants

Other decomposition of GSPN models is based on P-invariants. A P-invariant
is composed of a set of places with constant token count. Fig. 4 presents a
decomposed model of Fig. 2 using the P-invariants concept.

There are three minimal solutions of σ given by equation σC = 0 (see Def-
inition 8). So we can define three P-invariants to GSPN model of Fig. 2. PI1

has two places (p2 and p5), PI2 has three places (p1, p3 and p6), and PI3 also
has three places (p1, p4 and p7).

SSM(1) SSM(2) SSM(3)

t2

t2

t3

t3

t1

t4

t5

t1

t3

t5

Fig. 4. Decomposed GSPN model by P-invariants
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Each PIi corresponds to a component SSM(i) of the GSPN model. So, in
this example, we can decompose the GSPN model in three components SSM.
It is important to note that, besides the transition superposition, there is a place
superposition between components SSM(2) and SSM(3).

5.3 Decomposing as Superposed GSPN

Another possible approach to decompose a GSPN model is through transition
superposition proposed by Donatelli [17]. Donatelli proposed the SGSPN for-
malism in which components (subsystems) interact each other through transition
superposition.

Example of Fig. 2 can be decomposed by SGSPN, since there is a transition t3
which synchronizes two components GSPN . Component GSPN (1) is composed
of two places (p2 and p5), whereas component GSPN (2) is composed of five places
(p1, p3, p4, p6, and p7). Once defined the components GSPN (i), it is possible
to obtain the equivalent components SSM(i). Fig. 5 presents the equivalent
components SSM of the GSPN model (Fig. 2).

SSM(2)

SSM(1)

t2

t2

t3

t3

t3

t4

t4

t3

t5

t1

Fig. 5. Decomposed GSPN model by SGSPN

5.4 Decomposing Arbitrarily

It is also possible to decompose a GSPN model according to an arbitrarily chosen
semantic. We can decompose the GSPN model of Fig. 2 as follows: markings
of places p1, p2, p3, and p4, as well as markings of places p5, p6, and p7. Hence
component SSM(1) is obtained from distinct markings of places p1, p2, p3, and
p4 of T RG, and component SSM(2) is also obtained from distinct markings of
places p5, p6, and p7 of T RG.

Note that the decomposition choice may privilege some features of the tensor
format which is important to the solution method. In some cases, it may be
important to decompose a GSPN model considering: a large or small number
of components SSM; a small number of reachable states; or even the difference
between reachable and unreachable states.
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5.5 Side Effect of Guards

The concept of guards in the GSPN formalism allows transition firing depen-
dency according to the number of tokens in each place. Guards in GSPN are
quite similar to functional elements in the SAN formalism [26, 18]. A natural
decomposition among components GSPN of a GSPN model can be viewed
through the use of guards. Therefore, guards in the GSPN models can allow to
produce disconnected GSPN models, which have synchronization through the
guards on theirs transitions.

As shown in Section 4.2, tensor format (Markovian Descriptor) of a decom-
posed GSPN model uses generalized tensor sum and products. GTA operators
in the Markovian descriptor are used to represent the functional rates of tran-
sitions, but as long as there are no guards defined to transitions, they can be
classical tensor products. Hence, guards on transitions are evaluated in Marko-
vian Descriptor by GTA operators.

Another consequence of the use of guards is the possibility to define GSPN
models with “disconnected parts”, i.e., models where there is not only a single
net, but two or more nets with no arcs connecting them. In this case, there
must be guards referring to places of other components in order to establish an
interdependency (not a synchronization) among parts. The last example (Section
6.3) shows a net with disconnected parts and the use of guards to establish the
interdependency.

6 Modeling Examples

We now present three modeling examples in order to present the approaches
discussed in the previous section. The first one presents a Structured model, the
second one describes a Simultaneous Synchronized Tasks model, whereas the last
one shows a Resource Sharing model.

6.1 Structured Model

Fig. 6 presents an example of a Structured model composed of four submod-
els. The submodel i is composed of four places (pai

, pbi
, pci

, pdi
) and two local

transitions. There are also four synchronized transitions responsible for the syn-
chronization of the submodels. It is important to observe that guards were chosen
to define the possible firing sequence of transitions. This model was introduced
by Miner [20].

In this model, the decomposition by places is rather catastrophic, since there
is a correlation among marking of places. It results in a quite large product state
space (65, 536 states) for a rather small reachable state space (only 486 states).
According to the SGSPN and P-invariants approaches, we have exactly the same
decomposition and a more reasonable product state space (1, 296 states). As a
general conclusion one may discard the decomposition by places approach, but
this is not really a fair conclusion, since this model is quite particular. Models
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3

2

4

1

Guards
ga1 = (tk(pb1) == 0)
gd1 = (tk(pa1) == 0)
ga2 = (tk(pb2) == 0)
gb2 = (tk(pc2) == 0)
gb3 = (tk(pc3) == 0)
gc3 = (tk(pd3) == 0)
gc4 = (tk(pd4) == 0)
gd4 = (tk(pa4) == 0)
g12 =((tk(pc1) == 0)&(tk(pa2) == 0))
g23 =((tk(pd2) == 0)&(tk(pb3) == 0))
g34 =((tk(pa3) == 0)&(tk(pc4) == 0))
g41 =((tk(pd1) == 0)&(tk(pb4) == 0))

pa1 ta1
pb1 pa2 ta2

pb2

td1

pd1 pd2

tsynch41

pa4 pb4 pa3 pb3

td4

pd4
tc4 pd3

tc3

pc1 pc2

tsynch12

tsynch23

tsynch34

pc4 pc3

tb2

tb3

Fig. 6. Example of a structured model

with places with a larger bound (nets with more tokens) may be more interesting,
as the next example will demonstrate.

6.2 Simultaneous Synchronized Tasks

Fig. 7 describes a Simultaneous Synchronized Tasks (SST) model in which five
tasks are modeled. Such tasks have synchronization behavior among them, and
those synchronization behaviors occur in different levels of the task execution.

t0

P0

t1

P1 P5 P9

t5t2

P2 P6 P7 P10

t3 t6 t9

P3 P8 P11 P13

t10t7t4

P4 P12 P14

P16
t11P15

N

t8

Fig. 7. Simultaneous Synchronized Tasks
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Table 1. Indices of decomposed SST models

N approach #SSM SSM sizes pss rss mem

1
Places 17 (2 × · · · × 2 × 2 × 2) 1.31 × 105 98 1 KB
P-Inv 6 (5 × 5 × 5 × 5 × 5 × 2) 6.25 × 103 98 1 KB
SGSPN 2 (49 × 2) 9.80 × 101 98 1 KB

3
Places 17 (4 × · · · × 4 × 2 × 2) 4.29 × 109 12, 100 2 KB
P-Inv 6 (35 × 35 × 35 × 35 × 35 × 2) 1.05 × 108 12, 100 7 KB
SGSPN 2 (6, 050 × 2) 1.21 × 104 12, 100 236 KB

9
Places 17 (10 × · · · × 10 × 2 × 2) 4.00 × 1015 22, 391, 512 6 KB
P-Inv 6 (715 × · · · × 715 × 2) 3.74 × 1014 22, 391, 512 201 KB
SGSPN 2 (11, 195, 756 × 2) 2.24 × 107 22, 391, 512 672 MB

10
Places 17 (11 × · · · × 11 × 2 × 2) 1.67 × 1016 51, 887, 550 6 KB
P-Inv 6 (1, 001 × · · · × 1, 001 × 2) 2.01 × 1015 51, 887, 550 288 KB
SGSPN 2 (25, 943, 775 × 2) 5.19 × 107 51, 887, 550 -

20
Places 17 (21 × · · · × 21 × 2 × 2) 2.72 × 1020 18, 994, 747, 662 12 KB
P-Inv 6 (10, 626 × · · · × 10, 626 × 2) 2.71 × 1020 18, 994, 747, 662 3 MB
SGSPN 2 (9, 497, 373, 831 × 2) 1.90 × 1010 18, 994, 747, 662 -

21
Places 17 (22 × · · · × 22 × 2 × 2) 5.48 × 1020 29, 368, 986, 350 13 KB
P-Inv 6 (12, 650 × · · · × 12, 650 × 2) 6.48 × 1020 29, 368, 986, 350 4 MB
SGSPN 2 (14, 684, 493, 175 × 2) 2.94 × 1010 29, 368, 986, 350 -

27
Places 17 (28 × · · · × 28 × 2 × 2) 2.04 × 1022 286, 448, 238, 746 16 KB
P-Inv 6 (31, 465 × · · · × 31, 465 × 2) 6.17 × 1022 286, 448, 238, 746 10 MB
SGSPN 2 (143, 224, 119, 373 × 2) 2.86 × 1011 286, 448, 238, 746 -

Table 1 presents some indices to compare the decomposition alternatives.
In this example, we use the following approaches: decomposing by Places (Sec-
tion 5.1), decomposing by P-invariants (Section 5.2) and decomposing by Su-
perposed GSPN (Section 5.3). N represents the number of tokens in place
P0. The number of SSM components, decomposed by all approaches, is indi-
cated by #SSM. SSM sizes represents the number of states in each component
SSM. Product State Space, Reachable State Space, and memory needs to store
the Markovian Descriptor3 of the model are denoted by pss, rss, and mem
respectively.

The first important phenomenon to observe in Table 1 is the increasing gains
of the P-invariant and Places approaches achieved to models with large N values.
For small N values, there is much waste in the product state space that is not
significant compared to the memory savings, specially for the Places approach.
Regarding the comparison between SGSPN and P-invariant approaches, the
model with N = 9 is a turning point, since the memory savings are already quite
significant. In fact, larger models could not even be generated using the SGSPN
decomposition. The relationship between product and reachable state space for

3 We do not take into account the memory needs to store neither the probability
vector to compute solution, nor any special structure to represent the reachable
state space.
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decomposition based on P-invariants is considerably large, but we believe that
an optimized solution for models with sparse reachable state space could take
great advantage from this decomposition approach.

The second very impressive results taken from Table 1 is the very consistent
gains of the Places approach. Even though the product state space waste is
considerably large for smaller models (roughly one or two orders of magnitude),
the difference between the product state space for the P-invariant and Places
approaches becomes insignificant for the N = 20 model. Taking the model to its
limits (N = 21 to 27) we observe an inversion, since the Places approach has a
smaller product state space than the P-invariant approach.

6.3 Resource Sharing

Fig. 8 (a) shows a traditional example of a Resource Sharing (RS) model, which
has N process sharing R resources. Each process i is composed of two places: Si

(sleeping) and Ui (using). Tokens in place RS represent the number of available
resources, whereas they represent the number of using resources in place RU .
Fig. 8 (b) is an equivalent model in which guards impose a restriction to the
firing of each transition tai.

...

...

...

...

S1

ta1

U1

tr1

UN

trN

taN

SN RS

RU

R

(a)

...

...

...

...

S1

ta1

U1

tr1

(b)

trN

UN

taN

SN

Guards
ga1 = ((tk(U1) + ... + tk(UN)) < R)

.

.

.
gaN =((tk(U1) + ... + tk(UN)) < R)

Fig. 8. (a) Resource Sharing without guards - (b) Resource Sharing with guards

Table 2 shows some indices to compare the use of guards in a GSPN model
producing, in this case, an equivalent disconnected model. The indices for the
model of Fig. 8 (a) are shown in the without guards rows, whereas indices for the
model of Fig. 8 (b) are presented in the with guards rows. R indicates the number
of tokens in place RS of Fig. 8 (a), as well as the number of available resources
in the model of Fig. 8 (b). The computational cost (number of multiplications)
to evaluate the product of a probability vector by the Markovian Descriptor4,
the memory needs and the CPU time to perform one single power iteraction
are denoted by c.c., mem and time respectively. The numerical results for those

4 The vector-descriptor multiplication is the basic operation for most of the iterative
solutions, e.g., Power method, Uniformization [28].
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Table 2. Indices of decomposed RS models (N = 16)

R model #SSM SSM sizes pss rss c.c. mem time

1
without guards 17 (2 × · · · × 2 × 2) 131, 072 17 1.34 × 108 6 KB 0.33 s
with guards 16 (2 × · · · × 2) 65, 536 17 2.10 × 106 1 KB 0.45 s

3
without guards 17 (2 × · · · × 2 × 4) 262, 144 697 2.73 × 108 8 KB 0.71 s
with guards 16 (2 × · · · × 2) 65, 536 697 2.10 × 106 1 KB 0.49 s

9
without guards 17 (2 × · · · × 2 × 10) 655, 360 50, 643 6.88 × 108 14 KB 1.81 s
with guards 16 (2 × · · · × 2) 65, 536 50, 643 2.10 × 106 1 KB 0.53 s

15
without guards 17 (2 × · · · × 2 × 16) 1, 048, 576 65, 535 1.10 × 109 20 KB 3.07 s
with guards 16 (2 × · · · × 2) 65, 536 65, 535 2.10 × 106 1 KB 0.53 s

examples were obtained on a 2.8 GHz Pentium IV Xeon under Linux operating
system with 2 GBytes of memory.

The results in Table 2 show the decomposition based on P-invariants, since
decomposition based on SGSPN could only be applied to the without guards
model. Observe that SGSPN approach would result in exactly the same decom-
position as P-invariants. The main conclusion observing this table is the absolute
gains represented by the use of guards. It results in a model which has the same
product state space independently from the number of resources, as well as the
pss sizes are always smaller than those in the without guards models. It also
has a smaller memory need and a more efficient solution (smaller computational
cost).

It is a common mistake in some segments of the research community to
assume that a model which requires functional evaluations (GTA operators) has
a bigger CPU time to perform vector-descriptor multiplication than equivalent
models described only with CTA operators. In fact, such use of guards gives to
this GSPN model an efficiency as good as the one achieved by an equivalent SAN
model [7]. Obviously, it happens due to the Markovian Descriptor representation
using GTA.

7 Conclusion

The main contribution of this paper is to follow up the pioneer works of Cia-
rdo and Trivedi [14], Donatelli [17], and Miner [20]. Our starting point is the
assumption that for really large (and therefore structured) models the main dif-
ficulty is the storage of the infinitesimal generator. The solution techniques are
rapidly evolving and many improvements, probably based on efficient parallel
solutions, will soon enough be available. Using this assumption, we do believe
that the tensor format based on Generalized Tensor Algebra has an important
role to play.

For the moment, it benefits the Stochastic Automata Networks and it can
also be applied to Generalized Stochastic Petri Nets. A natural future theoret-
ical work is to expand those gains to other formalisms, such as PEPANETs
[19]. A more immediate future work would be the integration of this decompo-
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sition analysis to the solvers for SAN and GSPN (PEPS [6] and SMART [13]
software tools respectively). It is easy to precompute the possible decomposi-
tion with their memory and computational costs. Therefore, the integration of
such precalculation may automatically suggest the best decomposition approach
according to the amount of memory available.

Finally, we would like to conclude stating that the use of tensor based storage
can still give very interesting results and allows the solution (which cannot be
done without the storage) of larger and larger models.
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