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Abstract. We give a method to compute the throughput in a timed
live and bounded free-choice Petri net under a total allocation (i.e. a 0-1
routing). We also characterize and compute the conflict-solving policies
that achieve the smallest throughput in the special case of a 1-bounded
net. They do not correspond to total allocations, but still have a small
period.

1 Introduction

Petri nets are logical objects, originally and above all. However, the interest of
Petri nets for modelling purposes has induced the need for timed and stochastic
extensions of the model. Performance evaluation then becomes a central issue,
and the throughput is arguably the main performance indicator.

Consider now a live and bounded free-choice Petri net (LBFC). Such Petri
nets realize a good compromise between modelling power and mathematical
tractability, see [6] for several striking examples of the latter. Assume that the
Petri net is timed with a timing specified by a constant real-valued firing time
for each transition. To remove the undeterminism of the behavior of the Petri
net, a policy for the resolution of all the conflicts needs to be decided. Once it
is chosen, all the enabled transitions start to fire as soon as possible, and the
time that elapses between the beginning and the completion of the firing of a
transition is equal to the firing time. Therefore, the timed evolution of the Petri
net is completely determined.

Our goal is to study the global activity or throughput or firing rate of the
transitions of the Petri net in a sense to be made precise later on. Of course, the
activity depends on the chosen policy for resolving conflicts.

In a free-choice Petri net, one may view a conflict-solving policy as a set of local
functions associated with conflict places, and assigning tokens to output transi-
tions. The simplest class of policies consists of the so-called 0-1 policies: for a con-
flict place p, allocate all the tokens to a fixed transition. Zero-one policies are called
total allocations in [6]. The next simplest class of policies is, arguably, the periodic
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ones: for a conflict place p, allocate the tokens to the output transitions according
to some fixed periodic pattern. Obviously, 0-1 policies are also periodic policies.

In this paper, we address the following natural questions:

– A. Given a periodic policy, is the activity explicitly computable?
– B. Consider the set of all possible, arbitrarily complex, policies for resolving

conflicts. Is the infimum, resp. supremum, of the activity over this set at-
tained by a 0-1 or a periodic policy? Can we explicitly determine the policies
realizing the infimum, resp. supremum?

For both questions, we are also concerned by the algorithmic complexity of
the computations.

Consider first Question A. It is known that the activity is explicitly com-
putable when the timings are rational-valued [3]. The solution relies on the
construction of a very large finite graph G in which a state incorporates three
different types of information: the current marking; the remaining time before
completion for the currently firing transitions; and the current position of the
cursor within the periods for the periodic policy. The timed behavior is ultimately
periodic and the period corresponds to an elementary circuit in the graph G.
The activity is computed along this circuit.

The method has two major drawbacks. First, it is not efficient from an algo-
rithmic point of view. Indeed, the graph G is in general much larger than the
reachability (marking) graph whose size may already be exponential in the one
of the Petri net. Second, it does not provide much insight on the structure of
the timed behavior.

Here, we show that both restrictions can be overcome in the special case of
a 0-1 policy: the live part of the Petri net becomes a disjoint union of event
graphs. Consequently, the activity can be computed in polynomial (cubic) time
in the size of the Petri net, using classical results on the throughput of timed
event graphs [1, 4, 5]. Furthermore, the previous restriction on having rational
timings is not necessary anymore for 0-1 policies.

Consider now Question B and assume that the timings are rational-valued
for simplicity. Using a simplified version of the above graph G, in which the
periodic policy is not coded anymore, one can easily prove that the supremum
and the infimum of the activity are obtained for periodic policies. The drawbacks
are the same as before: the time complexity, and the lack of structural insight.
Concerning the latter, the method does not allow to answer the question: is the
supremum or infimum attained by 0-1 policies?

Presumably against the intuition,we exhibit an example of a live and 1-bounded
Petri net with firing times all equal to one, and for which the infimum is attained
only by non-0-1 periodic policies. More generally, we show that for 1-bounded Petri
nets with general (0,∞)-valued timings, the infimum is attained by a periodic pol-
icy which may not be 0-1 but which can be characterized at the net level and which
has a very small period (i.e. bounded by the total number of tokens). The same re-
sult fails to hold for a k-bounded Petri net, k ≥ 2 where the general structure of in-
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fimum policies is not understood. An example is given of a 2-bounded net with tim-
ings all equal to one, for which the infimum is attained by periodic policies which
are not 0-1 nor have small periods. To be complete, let us mention that the general
structure of supremum policies is not well understood, even for 1-bounded nets.
It is easy to build examples of 1-bounded LBFC with rational timings for which
the supremum is attained only by non-0-1 Sturmian-like periodic policies, as well
as examples with irrational timings for which the supremum is attained only by
Sturmian-like non-periodic policies, see [9] and Example 6.2.

In order to obtain the above results, we use three different types of building
blocks:

– The theory of timed event graphs;
– A structural result stating that the live part of a LBFC with a total allocation

is a disjoint union of T-components; and that, given a T-component, there
exists a total allocation making this T-component the only live part of the
LBFC;

– The notion of Token-Transition invariants. It is a refinement of the classical
notion of T-invariants with a dynamical flavor to it, since it “follows” the
evolution of a token.

The first point is very classical [1, 4, 5], while the other two may be original
and of some interest by their own.

The paper is organized as follows. The known results on Question A appear
in Section 3. In Section 4, we study the 0-1 policies in detail. Section 5 intro-
duces the TT-invariants. Section 6 is devoted to Question B. In particular, we
characterize the policies which provide the infimum throughput for a 1-bounded
net in Subsection 6.3.

Due to lack of space, all the proofs are not included. The missing proofs can
be found in the corresponding research report [2].

2 Notations and Preliminaries

Denote by N the nonnegative integers, and by N
∗ the positive integers. Given a

set T and a subset S, denote by χS : T → {0, 1} the characteristic function of S
in T defined by: χS(u) = 1 if u ∈ S and χS(u) = 0 if u ∈ T\S.

A net is a bipartite directed graph (P, T ,F) with P ∪ T as the set of nodes
(P ∩ T = ∅) and F ⊆ (P × T ) ∪ (T × P) as the set of arcs. A Petri net is a
quadruple (P, T ,F ,M), where (P, T ,F) is a net and M is a map from P to N.
We sometimes write the Petri net N as (N ,M) to emphasize the special role of
M . The elements of P are called places and are represented by circles and those
of T are called transitions and represented by rectangles. The function M is
called the (initial) marking of the net and is represented by tokens in places. Let
x ∈ P ∪ T be a node. We denote by •x the set of its predecessors and by x• the
set of its successors. We also set •X = ∪x∈X

•x and X• = ∪x∈Xx•. A transition
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is conflicting if one of its input place has at least two successors. Otherwise, the
transition is non-conflicting.

The marking evolves according to the firing rule. A transition t is enabled
if: ∀p ∈ •t, M(p) ≥ 1. An enabled transition can fire, and then the marking
becomes M ′ with M ′(p) = M(p) − χ•t(p) + χt•(p).

If the marking M ′ is obtained from M by firing the transition t, we write
M

t→ M ′. If M ′ is obtained by successively firing σ = t1t2 · · · tn ∈ T ∗, we write
M

σ→ M ′. The sequence σ is called ad (admissible) firing sequence. Finally, if
M ′ can be reached from M by firing some sequence, we write M → M ′. The set
of the reachable markings of M is R(G,M) = R(M) = {M ′ | M → M ′}.

A Petri net is live if for every transition t and every reachable marking M1

there exists a marking M2, reachable from M1, that enables t. A Petri net is
deadlock-free if there exists no reachable marking in which no transition is en-
abled. A Petri net is k-bounded, k ∈ N, if for every reachable marking, the
number of tokens in a place is less or equal to k. A Petri net is bounded if it
is k-bounded for some k. A net N is structurally live if there exists a marking
M such that the Petri net (N ,M) is live. A net N is well-formed if there is a
marking M that makes the Petri net (N ,M) live and bounded.

An event graph is a (Petri) net where: ∀p ∈ P, |•p| = |p•| = 1. A state
machine is a (Petri) net where: ∀t ∈ T , |•t| = |t•| = 1. A free-choice (Petri) net
is a (Petri) net where: ∀(p, t) ∈ P×T , (p, t) ∈ F ⇒ (p• = {t}) or (•t = {p}). We
use the acronym LBFC for a live and bounded free-choice Petri net. A choice-
free (Petri) net is a (Petri) net where: ∀p ∈ P, |p•| = 1.

The incidence matrix of a Petri net is N ∈ Z
P×T with Np,t = χt•(p)−χ•t(p).

Let σ ∈ T ∗ be a firing sequence. The commutative image (or Parikh vector) of
σ is −→σ = (|σ|t)t∈T , the vector of the number of occurrences of each transition t

in σ. If M
σ→ M ′, then the equation M ′ = M + N−→σ is satisfied.

Invariants of Petri nets. A column vector J ∈ N
T \{(0, . . . , 0)T } (resp. I ∈

N
P\{(0, . . . , 0)T }) is a T-invariant (resp. S-invariant) if NJ = 0 (resp. IT N =

0). A T-invariant (resp. S-invariant) is minimal if it is minimal for the component-
wise ordering among all the T-invariants (resp. S-invariants). A subnet N ′ of the
net N with the set of nodes X is a T-component (resp. S-component) if for ev-
ery transition t of X, •t ∪ t• ⊆ X (resp. for every place p of X, •p ∪ p• ⊆ X)
and N ′ is a strongly connected event graph (resp. state machine). If (P1, T1,F1)
is a T-component (resp. S-component) of the net N , then χT1 (resp. χP1) is
a minimal T-invariant (resp. S-invariant) of N . For a well-formed free-choice
net, the converse is true: if J is a minimal T-invariant (resp. S-invariant), set
T1 = {t ∈ T | Jt �= 0} (resp. P1 = {p ∈ P | Jp �= 0}) and P1 = •T1 ∪ T •

1 (resp.
T1 = •P1∪P•

1 ), then (P1, T1,F1) is a T-component (resp. S-component). See for
instance [6–Prop. 5.7, Prop. 5.14, Th. 5.17].

A set of T-components (resp. S-components) forms a T-cover (S-cover) if ev-
ery node belongs to one of these components. Well-formed free-choice nets are
covered by T-components and also by S-components ([6–Theorems 6.6
and 5.18]).
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We will also need the following result.

Theorem 2.1. [6–Theorem 5.9] Let p be a place of a live and bounded free-
choice Petri net (N ,M). The bound of p is min{

∑
s∈P1

M(s) | p∈P1, (P1, T1,F1)
is a S-component of N}.

Clusters. The cluster [x] of x ∈ P ∪T is the smallest subset of P ∪T such that:
(i) x ∈ [x]; (ii) p ∈ P, p ∈ [x] ⇒ p• ∈ [x]; (iii) t ∈ T , t ∈ [x] ⇒ •t ∈ [x]. The
set of all the clusters of a net defines a partition of the nodes of the net. For
free-choice nets, each cluster contains only one place or only one transition.

Blocking marking. Let (N ,M) be a Petri net and t a non-conflicting transition
of N . A blocking marking of the transition t is a reachable marking such that
the only enabled transition is t. If t is a conflicting transition, a blocking marking
of t is a reachable marking such that the only enabled transitions belong to the
cluster [t].

In [8–Theorem 3.1], it is shown that in a connected LBFC, for any transition
b, there exists a unique blocking marking Mb. Moreover, Mb is reachable from
any other reachable marking without firing b.

Timed and routed nets. A timed Petri net is a Petri net in which timings have
been added on places and transitions. With no loss of generality, we only consider
timings on the transitions, and not on the places. We also consider non-null
timings. This is assumed for convenience. The results of the paper could be
generalized with null timings, under the assumption that it is not possible to
have an infinite number of firings occurring in 0 time. Set R

∗
+ = (0,+∞). A

timed Petri net is denoted by (N ,M, τ) with (N ,M) a Petri net and τ ∈ (R∗
+)T

the vector of the timings. The timed semantics is the following one. Consider a
transition t with timing τt which gets enabled at instant d. If the transition t is
fired, the firing occurs as follows:

– At time d, the firing begins. A token is frozen in each input place of t and
cannot enable another transition.

– At time d+τt, the firing ends. The frozen tokens are removed from the input
places of t and one token is added in each output place of t.

Observe that it is possible for a transition to have several ongoing firings at a
given instant. The resulting evolution is called as soon as possible (asap), since
a firing transition begins to fire as soon as it is enabled.

Any conflict-solving policy may be viewed as a set of local routing functions at
each conflicting place. The global routing function is a vector u = (up)p∈P where
up is a function from N

∗ to p•. The k-th token arriving in place p (we consider
the tokens in place p in the initial marking as the first arriving tokens) can only
enable the transition up(k). So the notion of enabled transition is modified by
the routing function. A transition can be fired if all its input places contain a
token which is routed to that transition. We denote by (N ,M, u) a routed Petri
net with routing u and by (N ,M, τ, u) a timed and routed Petri net.
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A marking is reachable for a routed Petri net (N ,M, u) if it is reachable for
(N ,M) via a firing sequence compatible with u. The notions of boundedness
and liveness of (N ,M, u) are defined accordingly.

If the Petri net (N ,M) is bounded, so is the routed Petri net (N ,M, u).
If the Petri net (N ,M) is live, (N ,M, u) is not necessarily live, nor deadlock-
free. However, if (N ,M) is a LBFC, the routed net (N ,M, u) cannot have any
deadlock, because choices and synchronizations are separated. Hence, if a routed
free-choice net is not live, we can always define its non-empty live part.

A routing u = (up)p∈P is periodic if up is a periodic function for every p. A
routing u is 0-1 if: ∀p ∈ P, up is a constant function. A 0-1 routing is called a
total allocation in [6].

3 Throughput in Routed Free-Choice Petri Nets

With no loss of generality, all Petri nets considered are assumed to be connected.
Consider a timed Petri net and let σ = σ(1)σ(2) · · · ∈ T N be an infinite

firing sequence. Set σn = σ(1) · · ·σ(n). Consider the timed evolution starting
at instant 0 and associated with σ. The activity A(σ) of σ is the asymptotic
average number of firings per unit of time:

A(σ) = lim inf
n→∞

n

d(n)

where d(n) is the first instant of completion of all the firings from σn.
To make this definition more general and more flexible, it is possible to

“weight” the activity of each transition.
A weight αt ∈ R+ is associated to each transition t, we set α = (αt)t∈T , and

we assume that α �= (0, . . . , 0). The throughput D(σ) of σ (for the weight α) is
defined by:

D(σ) = lim inf
n→∞

∑
t∈T αt(−→σn)t

d(n)
.

If all the weights are equal to one, the throughput is equal to the activity.
On the other hand, if αt = 1, αt′ = 0, t′ �= t, then the throughput measures the
firing rate of transition t.

The above notion of throughput allows one to modify a Petri net without
changing its throughput, for example, by replacing a transition of timing n and
weight α by n transitions of timing 1 and weight α/n.

3.1 Periodic Routings

Consider a timed and routed LBFC (N ,M, τ, u) with a periodic routing and
integer firing times (rational firing times can be treated in a similar way).

The state of the Petri net at time t is a triple (Mt, Rt, Ut) where Mt is the
marking at time t, Rt is the remaining firing time of all the current firings at
time t and Ut is the current routing decision in all the routing places. Observe
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that the number of states is finite and bounded by (k + 1)|P| × F k|T | × L|P|,
where k is a bound on the number of tokens per place, F is a bound on the firing
times of all the transitions and L is a bound on the period of the routing at each
place.

Since the behavior of the net is deterministic, the net jumps from one state
to its unique successor at each time-step.

The state space being finite, there exists a state which is visited twice for
the first time, and the whole behavior becomes periodic from that point on.
This shows that the throughput exists and can be computed along the periodic
behavior of the net. However, this computation may have a very high complexity
(in time and in space) because the state space is potentially huge.

A construction similar to the above one is proposed in [3].

3.2 A Particular Case: Event Graphs

In a live and bounded event graph (G,M), there is no routing place, hence no
routing. In that case, it is useless to sweep the whole state space to compute the
throughput. It is well-known that the firing rate is the same for all transitions
and the throughput is given by:

D =
∑

t∈T αt

ρ(G,M)
, where ρ(G,M) = max

c circuit of G

∑
t∈c τt

∑
p∈c M(p)

. (1)

The throughput can be computed in cubic time using Karp’s algorithm, see for
instance [1]. The constant ρ(G,M) is usually called the cycle time of (G,M) (see
[1, 4, 5] for details).

4 Zero-One Policies

In this section, we consider 0-1 routing policies instead of arbitrary periodic
routings. We show that all the combinatorial difficulties of periodic routings can
be overcome for 0-1 routings.

4.1 Total Allocations and 0-1 Policies

An allocation is a function u from a set of clusters C to T such that: ∀c ∈ C,
u(c) ∈ c. A transition is allocated if it belongs to the image of u. An allocation is
total if it is defined on all clusters. An allocation points to C if for every place p
not belonging to C, there exists a path π from p to a place of C such that every
transition along the path π is allocated.

A firing sequence σ agrees with an allocation u : C → T if it does not contain
any transition t such that [t] ∈ C and t �= u([t]).

Lemma 4.1. [6–Lemma 6.5] Let C be a set of clusters of a strongly connected
free-choice Petri net N and let C̄ be the complementary set of C in the clusters
of N . Then there exists an allocation u defined on C̄ that points to C, and if M
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is a bounded marking and M
σ→ is an infinite sequence that agrees with u, then

some transition of C is fired an infinite number of times in σ.

In this paper, we see total allocations as 0-1 routing policies in the places:
each place routes all its tokens to its unique allocated output transition.

When u is a 0-1 routing, (N , u) is a free-choice Petri net where all the tran-
sitions which are not allocated can be removed. Therefore, exactly one output
transition remains for each place. We obtain a choice-free Petri net. We first
study general choice-free nets before giving a characterization of the choice-free
nets obtained as the live part of a free-choice Petri net with a 0-1 routing.

4.2 Choice-Free Nets

A siphon is a set of places R such that •R ⊆ R•. A trap is a set of places R such
that R• ⊆ •R.

Lemma 4.2. Consider a strongly connected and live choice-free Petri net. It is
an event graph if and only if it is bounded.

A connected live and bounded Petri net is strongly connected. So it follows
from the above lemma, that a connected and live choice-free Petri net is either
unbounded, or bounded in which case it is a strongly connected event graph.

4.3 Live Part of a LBFC with a 0-1 Routing

Consider a LBFC (N ,M) with a 0-1 routing. Let Ñ be the net obtained by
removing all the transitions (together with their input and output arcs) which
are not chosen by the 0-1 routing. This means that the net Ñ may not be
strongly connected anymore (some places may have no inputs). Figure 1 shows
the construction of Ñ on an example.

The Petri net (Ñ ,M) is choice-free and bounded, on the other hand it may
not be live. We are interested in characterizing the live part of (Ñ ,M). This live
part may depend on M . More precisely, let M ′ be a reachable marking of (N ,M),
let (N1,M1) be the live part of (Ñ ,M) and let (N2,M2) be the live part of
(Ñ ,M ′). We may have N1 �= N2, as well as N1 = N2,R(N1,M1) �= R(N2,M2).

a b

1

3

a b

412

3

N Ñ

Fig. 1. The net Ñ is constructed by removing all non-allocated transitions. The 0-1
routing sends all tokens to transition 1 in routing place a and all tokens to transition
3 in routing place b. Transitions 2 and 4 are removed to construct Ñ
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The net Ñ can be decomposed into non-trivial maximal strongly connected
components (mscc). There are two kinds of such components: the final compo-
nents and the non-final components.

Lemma 4.3. The final mscc are T-components of N . The non-final mscc are
event graphs, but not T-components of N . The final mscc may or may not be
live in Ñ , the non-final mscc are not live in Ñ .

Lemma 4.4. Let (G,M) be a live and 1-bounded event graph. Then
- if one token is removed, the event graph is not live anymore,
- if one token is added, the event graph is not 1-bounded anymore.

As a consequence of Lemma 4.3 and Lemma 4.4, we have the following
theorem.

Theorem 4.1. Let (N ,M0) be a LBFC with a 0-1 routing. Let Ñ be the net
obtained from N by removing the arcs and transitions which are not selected by
the routing. The live part of (Ñ ,M0) is a non-empty disjoint union of strongly
connected event graphs (G1,M1), . . . , (Gk,Mk), where each Gi is a T-component
of N . If (N ,M0) is 1-bounded, or if k = 1, then the sets of reachable markings
R(G1,M1), . . . ,R(Gk,Mk), do not depend on the 0-1 routing such that the live
part of (N ,M0) consists of G1, . . . ,Gk.

If G is a T-component of N , then there exists a 0-1 routing such that the live
part of (Ñ ,M0) is precisely (G,M) for some marking M .

4.4 Throughput of 1-Bounded Free-Choice Nets with 0-1 Routings

We now have all the ingredients to prove the main result.

Theorem 4.2. Consider a LBFC (N ,M0) with a 0-1 routing. Assume that the
live part is (G,M), where G is a single T-component corresponding to the T-
invariant JG. Then the throughput does not depend on the 0-1 routing such that
G is the live part, and it is equal to

DG =
αT JG

ρ(G,M)
.

Assume that the live part is (G1,M1), · · · , (Gk,Mk), where Gi is a T-component.
Then the throughput is

D =
k∑

i=1

DGi
=

k∑

i=1

αT JGi

ρ(Gi,Mi)
.

If the free-choice Petri net is 1-bounded, then this throughput does not depend
on the 0-1 routing such that the live part consists of G1, . . . ,Gk.

Proof. The proof easily follows from (1) and Theorem 4.1. Observe that the cycle
time ρ(G,M) of an event graph depends on M only through the token count of
circuits, see (1).
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5 Token-Transition-Invariants

Let (N ,M) be a Petri net. Let σ = σ1 · · ·σk be a firing sequence. We say that
σ′ = σ′

1 · · ·σ′
h , h ≤ k is a subsequence of σ if there exists an increasing function

f : {1, . . . , h} → {1, . . . , k} such that σ′
i = σf(i) for all i ∈ {1, . . . , h}.

Definition 5.1 (compatible firing sequence). Let π = p1t1p2t2 · · · p�t�,
pi ∈ P, ti ∈ T be a path of N and M be a marking that marks p1. Let σ
be an admissible firing sequence of (N ,M). The sequence σ is compatible with
π if the first subsequence of σ in [t1][t2] · · · [t�] is t1t2 · · · t�.

In the above definition, first has the following meaning. Order all subse-
quences of σ according to the point-wise ordering of the increasing functions
used to defined them (f ≤ g is f(i) ≤ g(i) for all i in the domain of f). First
means smallest according to this ordering.

In other words, an admissible firing sequence σ is compatible with a path in
the Petri net if all the transitions along that path are fired and in that order when
σ is fired. This means that the token which was initially in place p1 successively
enters places p2, . . . , p� when σ is fired.

Definition 5.2 (Token-Transition-Invariant). Let c = p1t1p2t2 · · · p�t� be a
circuit of N and M be a marking that marks p1. A vector J ∈ N

T is a Token-
Transition-invariant (or TT-invariant) generated by c and the marking M if it is
a T-invariant and if it is the commutative image of an admissible firing sequence
compatible with c.

A TT-invariant J generated by c and the marking M is minimal if for every
other TT-invariant J ′ generated by c and the marking M , J ′ is not smaller
than J .

A TT-invariant generated by c is minimal if for every other TT-invariant J ′

generated by c and some marking, J ′ is not smaller than J .

In words, a TT-invariant is a T-invariant such that one token has moved
along a circuit and is back to its original place when the corresponding sequence
is fired (hence the name).

In spite of what the definition suggests, TT-invariants generated by c do
not depend on the initial marking: if the commutative image of σ1 · σ2 is a TT-
invariant for c, so is the commutative image of σ2 ·σ1, since it is a firing sequence
from the marking M ′ such that M

σ1→ M ′.
However, unlike general T-invariants, TT-invariants depend on the set of

reachable markings. We will see in the following that they actually mainly depend
on the maximal possible number of tokens in circuit c.

The following Lemma characterizes minimal TT-invariants in event graphs,
where things are easy.

Lemma 5.1. Let c be an elementary circuit of a live and 1-bounded event graph
containing n tokens. The minimal TT-invariant generated by c is(n, . . . , n)∈N

T .
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Proof. Recall that the T-invariants of an event graph are of the form (x, . . . , x),
x ∈ N\{0}, see [6–Prop. 3.16]. Now, let J be a minimal TT-invariant associated
with c = p1t1 · · · , and let σ be a corresponding compatible firing sequence. Since
the Petri net is 1-bounded, tokens along the circuit c cannot overtake each other.
Hence, when the token initially in p1 is back to p1, after the firing of σ, we know
that transition t1 must have fired n times.

Example 5.1. Figure 2 shows the evolution of an event graph containing 2 tokens
in circuit c. We look at the minimal TT-invariant generated by c. Using Lemma
5.1, the minimal TT-invariant is (2, 2, 2, 2, 2, 2, 2, 2, 2). The white token (as well
as the black one) is back to its original place (Figure 2(c)).

The minimal T-invariant is (1, 1, 1, 1, 1, 1, 1, 1, 1). Note that, after a single
firing of every transition (Figure 2(b)), the marking is unchanged , but the white
token has switched its position with the black one. After firing every transition
again (Figure 2(c)), the white token is back in the right place.

(a) (b) (c)

c

Fig. 2. TT-invariant in an event graph

We now characterize the minimal TT-invariants generated by a circuit of a
live and 1-bounded free-choice Petri net. This is a more difficult case.

Let us first give an algorithm to build every minimal TT-invariant (Lemma
5.2 and Proposition 5.1). The following results (Lemma 5.3 and Proposition 5.2)
show that a minimal TT-invariant generated by a circuit c is the sum of at most
n minimal T-invariants, where n is the maximal number of tokens that c may
contain.

Lemma 5.2. Let c be a circuit of N a live and 1-bounded free-choice net, and b
be a transition of c. Recall that Mb is the unique blocking marking associated with
b. For every minimal TT-invariant J , there exists a firing sequence σ compatible
with c such that J = −→σ that can be fired from Mb.

Proposition 5.1. Let c be a circuit of N , a live and 1-bounded free-choice net.
Every minimal TT-invariant generated by c is found by applying Algorithm 1.
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Algorithm 1 : Construction of minimal TT-invariants
Input: N , a live and 1-bounded free-choice net, c = t1 · · · tk, tk+1 = t1 circuit of N .
Output: A minimal TT-invariant generated by c.
σ ← ε;
for all i ∈ {1, · · · , k} do

σi ← a minimal firing sequence from Mti to Mti+1 in N ;
σ ← σ1 . . . σk;
Return −→σ .

In the algorithm, a firing sequence σ : M
σ→ M ′ is a minimal firing sequence

if it does not contain any subsequence σ′ : M
σ′
→ M ′. Such a minimal firing

sequence has no reason to be unique. Hence the algorithm may yield several
different outputs for a given input.

We now show that a minimal TT-invariant generated by an elementary circuit
is the sum of n minimal T-invariants, where n is the maximal number of tokens
in c (it is given by the number of tokens in c under the blocking marking of any
transition of c). Lemma 5.3 is a lemma used to prove Proposition 5.2.

Lemma 5.3. Let c be an elementary circuit of N , a live and 1-bounded free-
choice net and n be the maximal number of tokens in c. There exists a minimal
TT-invariant generated by c that is n times the same minimal T-invariant.

Proposition 5.2. Let c be an elementary circuit of N , a live and 1-bounded
free-choice net and n be the maximal number of tokens in c. Every minimal
TT-invariant generated by c is the sum of n minimal T-invariants.

Example 5.2. Figure 3 illustrates Proposition 5.2: consider the circuit c = 1, 2, 3,
5, 6, 7, 9, 10, 11. The blocking marking of transition 1 is {d, g, k}. To reach the
blocking marking of transition 2, the two possible firing sequences are 1, 9, 10, 11
or 1, 9, 12. To reach the blocking marking of transition 3, 2 is fired, and to reach

1 2 3

4

a b c

d

e

f

g
h

i

k
5

11

10

9

8
7

6

l

12

j

Fig. 3. Example of a free-choice net
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the blocking marking of transition 5, 3 is fired. By symmetry of the net, there
are also two possible minimal firing sequences from M5 to M6, that are 5, 1, 2, 3
or 5, 1, 4 and from M9 to M10, 9, 5, 6, 7 or 9, 5, 8. Every other minimal firing
sequence from a blocking marking to the next on circuit c is made of only one
transition. Then, there are 8 minimal TT-invariants (for three subsequences,
there are two possibilities). For example, 1, 9, 10, 11, 2, 3, 5, 1, 4, 6, 7, 9, 5, 8, 10, 11
is a firing sequence compatible with c whose commutative image is a minimal
TT-invariant, which can be written as I + J , where I and J are minimal T-
invariants, of respective support 1, 2, 3, 5, 6, 7, 9, 10, 11 and 1, 4, 5, 8, 9, 10, 11.

Lemma 5.4. Let C be a circuit in a live and 1-bounded free-choice net and J be
a minimal TT-invariant of C. The circuit is composed of the elementary circuits
c1, . . . , ck. Then there exists k minimal TT-invariants, J1, . . . , Jk respectively
generated by c1, . . . , ck such that J =

∑k
i=1 Ji.

6 Extremal Throughputs

We now consider all possible, arbitrarily complex, routing policies and try to
address the following questions: Can one compute the routing policy which yields
the best or worst throughput? Are the best and worst policies periodic? Are the
best and worst policies 0-1?

6.1 Dominance of Periodic Policies

In this section we show that the best and worst throughputs in LBFC with ra-
tional firing times are achieved by periodic policies, and we provide an algorithm
to construct them. The construction is very close to the one given in Section 3.1
and is basically the one in [3].

Consider a timed LBFC with non-null rational timings (τt)t∈T and with a
vector of weights α = (αt)t∈T , see Section 3. Let x ∈ Q be such that τt =
ktx, kt ∈ N\{0}, for all t ∈ T . Build a new LBFC by replacing each transition
by a path: a transition with timing τt and weight αt is replaced by kt transitions
of timing 1 and weight αt/(ktx). Consider an infinite firing sequence σ for the
original Petri net and the corresponding firing sequence σ′ in the new Petri net.
Then the throughputs, defined as in Section 3, associated with σ and σ′ coincide.
Therefore we can, without loss of generality, consider LBFC with timings all
equal to 1.

Asap Marking Graph of a Free-Choice Net. Consider a timed LBFC
(N ,M, τ) and assume that all the timings are equal to 1: ∀t ∈ T , τt = 1.
Denote by N the incidence matrix. In a given marking, a transition may be
enabled several times. So the transitions that can be fired simultaneously form
a multi-set.
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The asap marking graph is defined as follows:

Q ← {M}; Arc ← ∅; Q̃ ← {M};
while Q̃ �= ∅ do

Pick M ′ ∈ Q̃;
for all maximal multi-set U of transitions that can be fired simultaneously
from M ′ do

M ′′ ← M ′ + N.U ;
if M ′′ /∈ Q then

Q ← Q ∪ {M ′′}; Q̃ ← Q̃ ∪ {M ′′};
Arc ← Arc ∪

{
M ′ → M ′′, with label and weight [U |

∑
t∈U αt]

}
;

Q̃ ← Q̃ \ {M ′};
The above construction stops because the Petri net is bounded. So the asap

marking graph is finite.
All the as soon as possible (asap) evolutions of the Petri net can be read on

this graph, hence its name. In this graph, the weight of a path is the sum of the
weights of the arcs. The average weight of a path is its weight divided by its
length (number of arcs).

Theorem 6.1. Let (N ,M, τ) be a timed LBFC with non-null rational timings.
The minimal and maximal throughputs are obtained for periodic routings.

Proof. Let (Ñ , M̃) be the LBFC obtained from (N ,M) after duplicating the
transitions such that every transition in the new Petri net has timing 1. Consider
the asap marking graph of (Ñ , M̃). Let c be a circuit of the asap graph of
maximum average weight. The maximal throughput can be reached by following
this circuit.

Also, the minimal throughput can be reached by following the circuit of
minimal average weight.

This shows that the corresponding routings are periodic. Indeed the routing
can be deduced from the labels along the circuit of the asap marking graph. In
particular, the period is smaller than the length of the circuit.

Example 6.1. Consider the Petri net of Figure 3. Every transition has timing 1
and weight 1. The asap marking graph is represented in Figure 4.

The minimal average weight of a circuit is 15/9, given by the circuit
{(dek), (afl), (cgl), (chi), (dej), (dgk), (agl), (bhi), (chk)}. This gives the minimal
throughput and the routing to reach it. The maximal average weight is attained
for the circuit {(dek), (agl), (chi)}. And the maximal throughput is 2.

When the graph is built, computing the throughput can be made in cubic
time in the number of nodes of the asap marking graph. But this graph can have
an exponential size in the size of the original Petri net. One reason is that the
number of markings of the net can be exponential in the size of the net. The
other reason is that transitions are duplicated to build the Petri net with timings
1 starting from a Petri net with rational timings. Moreover, this method gives
no information about the structure of the corresponding extremal policies.
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Fig. 4. Asap marking graph corresponding to the Petri net of Figure 3

0 000
τta τtb

pa pb

Fig. 5. One-bounded Petri net for which the optimal routing is not periodic

6.2 Non-rational Timings

For general non-rational timings, the maximal throughput is not always periodic,
even for one-bounded nets, as shown in the following example.

Example 6.2. Look at Figure 5. The value of the firing times are given next to
the transitions on the Figure. We have τta

/τtb
/∈ Q. This model has been studied

in [9]. The optimal routing is Sturmian aperiodic. The best routing consists in
choosing the left (ta) or right transition (tb) depending on whether one token
appears first in pa or in pb. If ta has fired na times and tb nb times, it suffices to
compare naτa and nbτb. The non-periodicity comes from the irrationality of the
ratio of the timings.

The same Petri net can be considered with non-null rational timings approx-
imating the ones in Figure 6.2. In this case, the maximal throughput is achieved
for a Sturmian-like periodic routing policy. In particular, it is not possible to
give an absolute bound for the period.

The above behaviors contrast sharply with the results to be proved in Section
6.3 on the minimal throughput for 1-bounded nets.

For general non-rational timings, we do not know if the minimal throughput
is always attained by periodic policies. In the next section, we show however
that it is the case for the subclass of 1-bounded Petri nets.
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6.3 Minimal Throughput in 1-Bounded Free-Choice Nets

Consider a timed live and 1-bounded free-choice net (N ,M, τ). In this part,
we show that the minimal throughput is obtained for a periodic routing even
for general non-rational timings. Furthermore, we give a precise insight on the
structure of the periodic routing reaching the minimal throughput. Roughly it
corresponds to a critical TT-invariant.

From Theorem 4.2, we can easily deduce the following lemma:

Lemma 6.1. The worst 0-1 routing can be chosen among those that make only
one T-component live.

Critical circuit. Suppose again that the timings are 1. The worst routing can
be read on the asap marking graph by considering an elementary circuit, c =
(M0, · · · ,MT−1), of minimal average weight. The length of c is T , the period of
the evolution.

Let t0 be a live transition of the net appearing in the label between states M0

and M1 of the circuit c. We build a path in the Petri net with final extremity t0
in the following recursive way.

If the path ti, · · · , t1, t0 is built, we choose the transition ti+1 in the label Ui

of the arc between MT−i−1[T ] and MT−i[T ] and such that ti+1 ∈ ••ti.
We stop the construction when we find m ∈ N

∗ and a transition tj such that
tj = tj−mT . Consider the circuit of the Petri net corresponding to the sequence
of transitions tj , tj−1, . . . , tj−mT+1, and denote it by Cc. The length of this circuit
is mT by construction.

Let Ui be the set of transitions whose firing leads from MT−i−1[T ] to MT−i[T ].
(Here Ui is a set and not a multi-set, because the Petri net is 1-bounded.)

Let K be the commutative image of σ = Uj−1 · · ·Uj−mT . By construc-
tion, K is a T-invariant. Also by construction, (tj−1 · · · tj−mT ) is the first sub-
word of σ belonging to [tj−1], . . . , [tj−mT ]. So, K is a TT-invariant generated
by Cc.

Since K is a T-invariant associated with a firing sequence following a minimal
weight circuit in the asap marking graph, we deduce that the worst throughput
D of (N ,M, τ) satisfies:

D =
αT K

mT
.

Since K is a TT-invariant for Cc, there exists Jc a minimal TT-invariant for
Cc such that K ≥ Jc. The circuit Cc may not be elementary. In full generality,
it is composed of, say, k elementary circuits c1, · · · , ck of length �1, · · · , �k, with∑k

i=1 �i = mT . By Lemma 5.4, we have Jc =
∑k

i=1 Ji where Ji is a minimal
TT-invariant of ci. Then,

D =
αT K

mT
≥ αT Jc

mT
=

αT (
∑k

i=1 Ji)
∑k

i=1 �i

=
∑k

i=1 αT Ji
∑k

i=1 �i

≥
k

min
i=1

αT Ji

�i
.
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Now, by definition, D ≤ mink
i=1(α

T Ji)/�i. Therefore, we can find an elemen-
tary circuit c of the Petri net, of length � and of associated minimal TT-invariant
J , such that D = αT J/�. Such a circuit is called a critical circuit of the Petri net.

We are now ready to state the main result of this section. Set R
∗
+ = (0,+∞).

Theorem 6.2. Consider a timed live and 1-bounded free-choice net with general
timings in R

∗
+. Let α be a weight on the transitions. The minimal throughput is

obtained for a periodic routing. For each place, the period of the routing function
is bounded by the maximal number of tokens in the net.

Example 6.3. Consider again the example of Figure 3. Form the corresponding
asap marking graph shown on Figure 4, (1, 2, 3, 5, 6, 7, 9, 10, 11) is the critical cir-
cuit. Since every transition has weight 1, the firing sequences of minimal weight
from the blocking marking of a transition of c to the blocking marking of the
next transition of c are (starting from the blocking marking of transition 1 which
is {d, k, g}): (1, 9, 12); (2); (3); (5, 1, 4); (6); (7); (9, 5, 8); (10); (11). The mini-
mal TT-invariant achieving the minimal throughput is composed of two mini-
mal T-invariant of support 1, 2, 3, 5, 6, 7, 9, 10, 11 and 1, 4, 5, 8, 9, 12. The minimal
throughput is then 15/9 as anounced before. As for the worst routing policy, it
can be obtained directly from the minimal TT-invariant: ua = (2, 4)∞, ue =
(8, 6)∞ and ui = (12, 10)∞.

6.4 Algorithm to Compute a Routing that Minimizes the
Throughput

Consider a timed live and 1-bounded free-choice net (N ,M, τ). Let N be the
incidence matrix. Let Clusters be the set of clusters. Define the matrix K ∈
{0, 1}Clusters×T such that Ka,t = 1 if t belongs to the cluster a and Ka,t = 0
otherwise.

Let S be a subset of T . Let Lightest-T-invariant(S) be the algorithm that
computes a minimal T-invariant of minimal weight that contains the transitions
of S. It is the solution of the following linear programming problem:

Algorithm 2 : Lightest-T-invariant
Input: S ⊆ T
Minimize αT · I
With constraints N · I = 0; K · I ≤ (1, . . . , 1)T ; I ≥ χS .

When the algorithm is called when S is a set of transitions belonging to the
same T-component, the condition K · I ≤ (1, . . . , 1)T ensures that the output is
a set of disjoint minimal T-invariants, with only one containing S.

This algorithm runs in polynomial time since it is a linear program over Q.
Due to the form of the constraints, the solution will always be {0, 1}-valued.

Let us define the functions Blocking-Marking(t), Cycle-time(A), and
Timing(c).
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– Blocking-Marking(t) computes the blocking marking of transition t. This
marking can be computed in time O(|T |2) when the Petri net is an event
graph, and in time O(|T |3) for the general free-choice case, see [8].

– Cycle-time(A) computes the cycle time of a (max,+) matrix A. Here, it
is used for matrices of dimension at most |P|. Then, the time complexity is
O(|P|3) using Karp’s algorithm, see for instance [1].

– Timing(c) computes the sum of the firing times of the transitions along the
circuit. The time complexity is linear.

In the algorithm below, the (max,+) representation of the behavior of live
and 1-bounded free-choice nets is used. For every transition b, Ab is the (max,+)
matrix representing the time behavior of the firing of b (see [7] for more details).
The symbol ⊗ denotes the multiplication of matrices in the (max,+) algebra.
This operation can be done in cubic time in the dimension of the matrices. Here,
it is used for matrices of dimension at most |P|.

Using the previous results, we get the following theorem.

Theorem 6.3. Algorithm 3 finds the minimal throughput of a timed live and
1-bounded free-choice Petri net.

Algorithm 3 : Worst-routing
Input: (N , M, τ) a timed (τ ∈ (R∗

+)T ) 1-bounded LBFC; and α = (αt)t∈T �=
(0, . . . , 0), a weight vector.
for all b ∈ T do

Mb ← Blocking-Marking(b);
for all b, b′ ∈ T such that ∃p, b → p → b′ do

J ←Lightest-T-invariant(b, b′);
σbb′ ← b, t1, · · · , tm minimal firing sequence from Mb to Mb′ with transitions of J ;
Abb′ ← Ab ⊗ At1 ⊗ · · · ⊗ Atm ;
αbb′ ← αb + αt1 + · · · + αtm ;

Throughput ← +∞;
Tmin ← ∅;
for all elementary circuit c = t1 · · · tk of N do

A ← At1t2 ⊗ At2t3 ⊗ · · · ⊗ Atkt1 ;
α ← αt1t2 + · · · + αtkt1 ;
if cycle-time(A) = Timing(c) then

if α/cycle-time(A) <Throughput then
Jmin ← −−−−−−−−−−→σt1t2 . · · · .σtkt1 ;
Throughput← α/Timing(c);

At each iteration in the first loop, the time complexity is O(|T |3), and there
are |T | iterations. Consider now the second loop. There are at most |T |2 iter-
ations in the loop. At each iteration, we need to find a minimal sequence from
Mb to Mb′ in a T-component. This can be done in time O(|T |2). The length of
a minimal sequence is of order O(|T |2), see [8]. Hence the matrix Abb′ can be
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computed in time O(|P|3|T |2). At each iteration of the last loop, the time com-
plexity is O(|P|3|T |)) and there are as many iterations as elementary circuits
in the net. Therefore, the total time complexity is O(C|P|3|T |), where C is the
number of elementary circuits. Since the number of elementary circuits can be
exponential in the number of places (O(2|T |)), the time complexity is exponen-
tial in the worst case. As for the space complexity, it remains polynomial in the
size of the Petri net.

For comparison, consider the method of computation given (for rational tim-
ings) in Section 6.1 and which uses the asap marking graph. The size of the asap
marking graph is exponential in the size of the original Petri net, more precisely
its size is O(2|P|). So the complexity in time is O((2|P|)3) = O(8|P|) and the
space complexity is at least O(2|P|). Observe that these complexities are eval-
uated without taking into account the necessity of transforming the Petri net
with rational timings into an equivalent one with timings equal to 1, see Section
6.1. This transformation makes both time and space complexity of the classical
method even worse.

Finally, remark that our construction also gives some insight on the period
of the worse policy. Since the critical TT-invariant associated with the critical
circuit (with n tokens) is the sum of n T-invariants, this means that the period of
the worse routing policy in each routing place is periodic with a period n ≤ |P|.
This is several order of magnitude smaller than the period that can be deduced
from the classical algorithm which is exponential O(2|P|).

6.5 Bounded Nets

If one considers a live and k-bounded free-choice net with k ≥ 2, then the
previous constructions for 1-bounded nets do not work anymore. If the timings
are rational, the worst throughput is reached for periodic routings (Theorem
6.1), but the period is not bounded by the number of tokens in a circuit, as
shown by the following example.

Example 6.4. Figure 6(a) represents a 2-bounded free-choice net where the pe-
riod of the worst routing is greater that the number of tokens in any circuit.
Furthermore the critical circuit for this routing is not elementary.

All the timings are equal to 1, as well as the weights. The routing in p1 which
gives the minimal throughput is, (t1t4t4t4)∞, and the periodic evolution is given
in Figure 6(b).
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Fig. 6. Free-choice net and its worst evolution
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The throughput of this evolution is 9/5, whereas if only the left (or right)
event graph is live the throughput is 2. The period of the routing function of
place p1 is greater than the number of tokens in the circuits containing this place
(2 tokens), as opposed to what happens in the case of 1-bounded nets. In this
example, by changing the timings and/or increasing the number of transitions,
but keeping the same number of tokens, it is possible to increase the period
of the worst routing function arbitrarily. Therefore, bounding the period of the
worst routing seems difficult, even for 2-bounded nets.
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