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Abstract. This paper deals with the structure theory of Petri nets.
We define the class of P/T systems namely K-systems for which the
equivalence between controlled-siphon property (cs property), deadlock
freeness, and liveness holds. Using the new structural notions of ordered
transitions and root places, we revisit the non liveness characterization
of P/T systems satisfying the cs property and we define by syntactical
manner new and more expressive subclasses of K-systems where the in-
terplay between conflict and synchronization is relaxed.
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1 Introduction

Place / Transition (P/T) systems are a mathematical tool well suited for the
modelling and analyzing systems exhibiting behaviours such as concurrency, con-
flict and causal dependency among events. The use of structural methods for the
analysis of such systems presents two major advantages with respect to other ap-
proaches: the state explosion problem inherent to concurrent systems is avoided,
and the investigation of the relationship between the behaviour and the structure
(the graph theoretic and linear algebraic objects and properties associated with
the net and initial marking) usually leads to a deep understanding of the system.
Here we deal with liveness of a marking, i.e. , the fact that every transition can
be enabled again and again. It is well known that this behavioural property is as
important as formally hard to treat. Although some structural techniques can be
applied to general nets, the most satisfactory results are obtained when the inter-
play between conflicts and synchronization is limited. An important theoretical
result is the controlled siphon property[3]. Indeed this property is a condition
which is necessary for liveness and sufficient for deadlock-freeness. The aim of
this work is to define and recognize structurally a class of P/T systems, as large
as possible, for which the equivalence between liveness and deadlock freeness
holds. In order to reach such a goal, a deeper understanding of the causes of the
non equivalence between liveness and deadlock-freeness is required.

This paper is organized as follows. In section 2, we recall the basic concepts and
notations ofP/Tsystems. In section3,wefirstdefinea class ofP/Tsystems, namely
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K-systems, for which the equivalence between controlled-siphon property (cs prop-
erty), deadlock freeness, and liveness holds. In section 4, we revisit the structural
conditions for the non liveness under the cs property hypothesis. In section 5,we de-
finebyasyntacticalmannerseveralnewsubclassesofK-systemswherethe interplay
between conflict and synchronization is relaxed. Such subclasses are characterized
using the new structural notions of ordered transitions and root places. In section
6, we define two other subclasses of K-systems based on T-invariants. We conclude
in section 5 with a summary of our results and a discussion of an open question.

2 Basic Definitions and Notations

This section contains the basic definitions and notations of Petri nets’ theory
[11] which will be needed in the rest of the paper.

2.1 Place/Transition Nets

Definition 1. A P/T net is a weighted bipartite digraph N = 〈P, T, F, V 〉 where:

– P �= ∅ is a finite set of node places;
– T �= ∅ is a finite set of node transitions;
– F ⊆ (P × T ) ∪ (T × P ) is the flow relation;
– V : F → IN+ is the weight function (valuation).

Definition 2. Let N = 〈P, T, F, V 〉 be a P/T net.
The preset of a node x ∈ (P ∪T ) is defined as •x = {y ∈ (P ∪T )s.t.(y, x) ∈ F},
The postset of a node x ∈ (P ∪T ) is defined as x• = {y ∈ (P ∪T )s.t.(x, y) ∈ F},
The preset (resp. postset) of a set of nodes is the union of the preset (resp.
postset) of its elements.
The sub-net induced by a sub-set of places P ′ ⊆ P is the net N ′ = 〈P ′, T ′, F ′, V ′〉
defined as follows:

– T ′ = •P ′ ∪ P ′•,
– F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)),
– V is the restriction of V on F ′.

The sub-net induced by a sub-set of transitions T ′ ⊆ T is defined analogously.

Definition 3. Let N = 〈P, T, F, V 〉 be a P/T net.

– A shared place p (| p• |≥ 2) is said to be homogenous iff: ∀t, t′ ∈ p•, V (p, t) =
V (p, t′).

– A place p ∈ P is said to be non-blocking iff: p• �= ∅ ⇒ Mint∈•p{V (t, p)} ≥
Mint∈p•{V (p, t)}.

– If all shared places of P are homogenous, then the valuation V is said to be
homogenous.

The valuation V of a P/T net N can be extended to the application W from
(P × T ) ∪ (T × P ) → IN defined by:
∀u ∈ (P × T ) ∪ (T × P ), W (u) = V (u) if u ∈ F and W (u) = 0 otherwise.
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Definition 4. The matrix C indexed by P×T and defined by C(p, t) = W (t, p)−
W (p, t) is called the incidence matrix of the net.
An integer vector f �= 0 indexed by P (f ∈ ZP ) is a P-invariant iff f t.C = 0t.
An integer vector g �= 0 indexed by T (g ∈ ZT ) is a T-invariant iff C.g = 0.
‖f‖ = {p ∈ P/f(p) �= 0} (resp. ‖g‖ = {t ∈ t/g(t) �= 0}) is called the support of
f (resp. of g).
We denote by ‖f‖+ = {p ∈ P/f(p) > 0} and by ‖f‖− = {p ∈ P/f(p) < 0}.
N is said to be conservative iff there exists a P-invariant f such that ‖f‖ =
‖f‖+ = P .

2.2 Place/Transition Systems

Definition 5. A marking M of a P/T net N = 〈P, T, F, V 〉 is a mapping
M : P → IN where M(p) denotes the number of tokens contained in place p.
The pair 〈N,M0〉 is called a P/T system with M0 as initial marking.
A transition t ∈ T is said to be enabled under M , in symbols M t−→, iff ∀p ∈ •t:
M(p) ≥ V (p, t). If M t−→, the transition t may occur, resulting in a new marking
M ′, in symbols M t−→M ′, with: M ′(p) = M(p) − W (p, t) + W (t, p), ∀p ∈ P .
The set of all reachable markings, in symbols R(M0), is the smallest set such
that M0 ∈ R(M0) and ∀M ∈ R(M0), t ∈ T , M t−→M ′ ⇒ M ′ ∈ R(M0).
If M0

t1−→M1
t2−→ . . . Mn−1

tn−→, then σ = t1t2 . . . tn is called an occurrence se-
quence.

In the following, we recall the definition of some basic behavioural properties.

Definition 6. Let 〈N,M0〉 be a P/T system.
A transition t ∈ T is said to be dead for a marking M ∈ R(M0) iff ∃/ M∗ ∈ R(M)
s.t. M∗ t−→.
A marking M ∈ R(M0) is said to be a dead marking iff ∀t ∈ T, t is dead for M .
〈N,M0〉 is weakly live (or deadlock-free) for M0 iff ∀M ∈ R(M0), ∃t ∈ T such
that M t−→ (〈N,M0〉 has no dead marking).
A transition t ∈ T is said to be live for M0 iff ∀M ∈ R(M0), ∃M ′ ∈ R(M) such
that M ′ t−→ (t is not live iff ∃M ′ ∈ R(M0) for which t is dead).
〈N,M0〉 is live for M0 iff ∀t ∈ T , t is live for M0.
A place p ∈ P is said to be marked for M ∈ R(M0) iff M(p) ≥ Mint∈p•{V (p, t)}.
A place p ∈ P is said to be bounded for M0 iff ∃k ∈ IN s.t. ∀M ∈ R(M0),
M(p) ≤ k. 〈N,M0〉 is bounded iff ∀p ∈ P , p is bounded for M0.
If N is conservative then 〈N,M0〉 is bounded for any initial marking M0.

2.3 Controlled Siphon Property

A key concept of structure theory is the siphon.

Definition 7. Let 〈N,M0〉 be a P/T system.
A nonempty set S ⊆ P is called a siphon iff •S ⊆ S•. Let S be a siphon, S is
called minimal iff it contains no other siphon as a proper subset.
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In the following, we assume that all P/T nets have homogeneous valuation, and
V (p) denotes V (p, t) for a any t ∈ p•.

Definition 8. A siphon S of a P/T system N = 〈P, T, F, V 〉 is said to be con-
trolled iff:
S is marked at any reachable marking i.e. ∀M ∈ R(M0), ∃p ∈ S s.t. p is marked.

Definition 9. A P/T system 〈N,M0〉 is said to be satisfying the controlled-
siphon property (cs-property) iff each minimal siphon of 〈N,M0〉 is controlled.

In order to check the cs-property, two main structural conditions (sufficient but
not necessary) permitting to determine whether a given siphon is controlled are
developed in [3, 9]. These conditions are recalled below.

Proposition 1. Let 〈N,M0〉 be a P/T system and S a siphon of 〈N,M0〉. If
one of the two following conditions holds, then S is controlled:

1 ∃R ⊆ S such that R• ⊆ •R, R is marked at M0 and places of R are non-
blocking (siphon S is said to be containing a trap R).

2 ∃ a P-invariant f ∈ ZP such that S ⊆ ‖f‖ and ∀p ∈ (‖f‖− ∩ S), V (p) = 1,
‖f‖+ ⊆ S and

∑
p∈P [f(p).M0(p)] >

∑
p∈S [f(p).(V (p) − 1)].

A siphon controlled by the first (resp. second) mechanism is said to be trap-
controlled (resp. invariant controlled).
Now, we recall two well-known basic relations between liveness and the cs-
property [3]. The first states that the cs-property is a sufficient deadlock-freeness
condition, the second states that the cs-property is a necessary liveness condi-
tion.
Proposition 2. Let 〈N,M0〉 be a P/T system. The following property holds:
〈N,M0〉 satisfies the cs-property ⇒ 〈N,M0〉 is weakly live (deadlock-free).

Proposition 3. Let 〈N,M0〉 be a P/T system. The following property holds:
〈N,M0〉 is live ⇒ 〈N,M0〉 satisfies the cs-property.

Hence, for P/T systems where the cs-property is a sufficient liveness condition,
there is an equivalence between liveness and deadlock freeness. In the follow-
ing section, we define such systems and propose basic notions helping for their
recognition.

3 K-Systems

In this section, we first introduce a new class of P/T systems, namely K-systems,
for which the equivalence between liveness and deadlock freeness holds. Before,
let us establish some new concepts and properties related to the causality rela-
tionship among dead transitions.

Definition 10. Let 〈N,M0〉 be a P/T system. A reachable marking M∗ ∈
R(M0) is said to be stable iff ∀t ∈ T , t is either live ore dead for M∗. Hence,
T is is partitioned into two subsets TD(M∗) and TL(M∗) , and for which all
transitions of TL(M∗) are live and all transitions of TD(M∗) are dead.
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Proposition 4. Let 〈N,M0〉 be a weakly live but not live P/T system.
There exists a reachable stable marking M∗ for which TD �= ∅ and TL �= ∅.

Proof. trivial, otherwise the net is live (T = TL) or not weakly live (T = TD).

Remark : This partition is not necessarily unique but there exists at least one.
It is important to note that TD is maximal in the sense that all transitions that
do not belong to TD, will never become dead.

Definition 11. Let N = 〈P, T, F, V 〉 be a P/T net, r ∈ P , t ∈ r•. r is said to
a be a root place for t iff r• ⊆ p•, ∀p ∈ •t.

An important feature of root places is highlighted in the following proposition.

Proposition 5. Let N = 〈P, T, F, V 〉 be a P/T net, r ∈ P , t ∈ r•. If r is a root
place for t then ∀t′ ∈ r•, •t ⊆ •t′.

Proof. Let t be a transition having r as a root place and let t′ be a transition in
r•. Now, let p be a place in •t and let as show that p ∈ •t′:
Since r is a root place for t and p ∈ •t then we have r• ⊆ p• and hence t′ ∈ r•

implies that t′ ∈ p•, equivalently p ∈ •t′.

Given a transition t, Root(t)N denotes the set of its root places in N . When the
net is clear from the context, this set is simply denoted by Root(t).

Definition 12. Let t be a transition of T . If Root(t) �= ∅, t is said to be an
ordered transition iff ∀p, q ∈ •t,p• ⊆ q• or q• ⊆ p•.

Remark : An ordered transition has necessarily a root but one transition admit-
ting a root is not necessarily ordered. P/T Systems where all transitions are
ordered are called ordered systems. Consider the Figure 1, one can check that
Root(t1) = {a}, Root(t2) = {b}, Root(t3) = {e} and Root(t4) = {d}. Transitions
t1, t3, t4 are ordered but not t2.

Proposition 6. Let 〈N,M0〉 be a not live P/T system.
Let r be a root of a transition t: t ∈ TD ⇒ r• ∩ TL = ∅ (i.e. r• ⊆ TD).

Proof. As •t ⊂ •t′ for every t′ of r•: t, dead for M , can never be enabled, a
fortiori t′ can not be enabled.

Fig. 1. Illustration: a not ordered transition
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Also, we can state the following : if all input transitions of a place are dead, then
all its output transitions are dead.

Proposition 7. Let 〈N,M0〉 be a not live P/T system.
Let p be a place of P : •p ∩ TL = ∅ ⇒ p• ∩ TL = ∅.

Proof. Suppose that the proposition is not true. In this case, there exists a place
p with all input transitions in TD (•p∩TL = ∅) and at least one output transition
tv in TL (p• ∩ TD �= ∅). Since tv is live, after a finite number of firings, place p
becomes non marked because all its input transitions are dead. So tv becomes
dead. This contradicts that t ∈ TL (and maximality of TD).

Proposition 8. Let 〈N,M0〉 be a not live P/T system.
Let p be a bounded place of P : p• ∩ TL = ∅ ⇒ •p ∩ TL = ∅.

Definition 13. Let 〈N,M0〉 be a P/T system. 〈N,M0〉 is a K-system iff for all
stable markings M∗, TD(M∗) = T or TL = T . The above property is called the
K-property.

Remark:
According to the previous definition, one can say that the K-systems contain
all the live systems and a subclass of not deadlock-free systems. One can then
deduce the following theorem.

Theorem 1. Let 〈N,M0〉 be a P/T system. 〈N,M0〉 is a K-system. Then the
three following assertions are equivalent:

– (1) 〈N,M0〉 is deadlock free,
– (2) 〈N,M0〉 satisfies the cs-property,
– (3) 〈N,M0〉 is live.

Proof. ⇒ Note first that we immediately have (3) ⇒ (2) ⇒ (1) using proposition
2 and 3. The proof is then reduced to show that deadlock freeness is a sufficient
liveness condition for K-systems. Assume that the K-system 〈N,M0〉 is not live
then by definition it is not deadlock free (since TD(M∗) = T for each stable
marking M∗).
⇐ The converse consists to prove the following implication:
((1) ⇒ (3)) ⇒ 〈N,M0〉 is a K-system
Assume that 〈N,M0〉 is not a K-system. Then, by definition, there exists a stable
marking m∗ for which TD �= ∅ and TL �= ∅. Hence, 〈N,M0〉 is deadlock free but
not live, which contradicts ((1) ⇒ (3)).

The Definition13 of K-systems is a behavioural one. In the following part of
this paper, we deal with the problem of recognizing, in a structural manner, the
membership of a given P/T system in the class of K-systems.
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4 Structural Non-liveness Characterization

In this section, we highlight some intrinsical properties of systems satisfying the
cs-property but not live. Our idea is to characterize a ”topological construct”
making possible the simultaneous existence of dead and live transitions for such
systems.

Lemma 1. Let 〈N,M0〉 be a P/T system satisfying the cs-property but not live.
Let M∗ be a reachable stable marking. There exists t∗ ∈ TD such that:
∀p ∈ •t∗ such that •p ∩ TL = ∅, M(p) = M∗(p) ≥ V (p, t∗) ∀M ∈ R(M∗).

Proof. Suppose that ∀t ∈ TD, there exists pt ∈ •t with •p∩TL = ∅ and M∗(pt) <
V (pt, t

∗). Let S = {pt, t ∈ TD}. By construction, •S ⊆ TD and TD ⊆ S• (for all
pt ∈ S, •pt∩TL = ∅). So S is a siphon. Since ∀pt ∈ S, M∗(pt) < V (pt, t), S is non
marked for M∗ (M∗ ∈ R(M∗)) and hence the cs-property hypothesis is denied.
Using now the proposition 7, (if a place p has no live input transition then all
output transitions of p are dead), one can deduce that the marking of such places
does not change for all reachable markings from M∗.

Theorem 2. Let 〈N,M0〉 be a P/T system satisfying the cs-property but not
live. Let M∗ be a reachable stable marking.
There exists a non ordered transition t∗ ∈ TD and ∀M ∈ R(M∗), ∃p ∈ •t∗ s.t.
M(p) < V (p, t∗).

Proof. Let t∗ be a transition satisfying the previous lemma 1. Let us denote by
LP (t∗) the subset of shared places included in •t∗ and defined as follows:
LP (t∗) = {p ∈ •(t∗) s.t. •p ∩ TL �= ∅ and p• ∩ TL �= ∅}.
We first prove that LP (t∗) �= ∅ (Lp(t∗) ⊆ •t∗). Suppose that LP = ∅: any input
place of t∗ having a live input transition (there exists at least one otherwise
t∗ will be enabled at M∗ using proposition 7). As the other input places of t∗

are such that their pre-conditions on t∗ are satisfied at M∗ and remain satisfied
(proposition 7), we can reach a marking M from M∗ such that t∗ would be
enabled at M . This contradicts that t∗ is dead for M∗. Moreover, t∗ is not
ordered otherwise LP (t∗) = {p1, . . . , pm} (| LP |= m) can be linearly ordered.
Without loss of generality we may assume that p1

• ⊆ · · · ⊆ pm
•. Then there

exists a marking M ′ reachable from M∗ for which a transition t ∈ p1
• ∩ TL and

t∗ are enabled (homogenous valuation). This contradicts that t∗ is dead for M∗.
Since LP (t∗) (⊂ •t∗) has no root place we deduce that t∗ is not ordered.
Finally, ∀M ∈ R(M∗), LP (t∗) contains a non marked place otherwise t∗ would
be not dead for M∗.

From the previous theorem (theorem 2) one can derive easily the following result.

Theorem 3. Let 〈N,M0〉 be an ordered P/T system. The two following state-
ments are equivalent:

– (1) 〈N,M0〉 satisfies the cs-property,
– (2) 〈N,M0〉 is live.
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This last result permits us to highlight the structural and behavioural unity
between subclasses of ordered P/T systems i.e. (not necessarily bounded) asym-
metric choice systems [3] (AC), Join Free (JF) systems, Equal Conflict (EC)
systems[13], and Extended Free Choice (EFC) nets. Let us recall that, for theses
subclasses, except AC nets, the cs-property is reduced to the well-known Com-
moner’s property [2], [1], [5], [6] and the liveness monotonicity [3]) holds.

In the following, we show how to exploit this material in order to recognize
structurally other subclasses of K-systems, with non ordered transition, for which
the equivalence between deadlock-freeness and liveness hold. Such structural
extensions are based on the two following concepts: the notion of root places as
a relaxation of the strong property of ordered transitions and the covering of
non ordered transitions by invariants.

5 Dead-Closed Systems

From our better understanding of requirements which are at the heart of non
equivalence between deadlock-freeness and liveness, we shall define new sub-
classes of K-systems for which membership problem is always reduced to exam-
ining the net without requiring any exploration of the behaviour.
Let t be a transition of a P/T system, we denote by D(t) the set of transitions
defined as follows: D(t) = {t′ ∈ T s.t. t ∈ TD ⇒ t′ ∈ TD}
This set is called the dead closure of the transition t. In fact, D(t) contains all
transitions that are dead once t is assumed to be dead.
In the following, we show how one can compute structurally a subset DSub(t) of
D(t) for any transition t.
Given a transition t0, we set DSub(t0) = {t0} and enlarge it using the three
following structural rules related to propositions 6, 7, and 8 respectively:

R1. Let p be a root place of t, t ∈ DSub(t0) ⇒ p• ⊆ DSub(t0)
R2. Let p be a place of P , •p ⊆ DSub(t0) ⇒ p• ⊆ DSub(t0)
R3. Let p be a bounded place of P , p• ⊆ DSub(t0) ⇒ •p ⊆ DSub(t0).

Formally, DSub(t0) is defined as the smallest subset of T containing t0 and ful-
filling rules Ri (i = 1 . . . 3). When the computed subsets DSub(t) are all equal
to T , we deduce that the system is a K-system.

Definition 14. Let 〈N,M0〉 be a P/T system. 〈N,M0〉 is said to be a dead-
closed system if for every transition t of N : DSub(t) = T .

The algorithm5 [4] computes the subset DSub(t) for a given transition t. Its
complexity is similar to classical graph traversal algorithms. An overall worst-
case complexity bound is Ø(| P | × | T |).
Theorem 4. Let 〈N,M0〉 be a dead-closed system. Then 〈N,M0〉 is a K-system.

Proof. The proof is obvious since the computed set DSub(t) for every transition
t is a subset of D(t).
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Fig. 2. An example of K system

Using theorem 1 one can deduce the following result.

Corollary 1. Let 〈N,M0〉 be a dead-closed system. The three following state-
ments are equivalent:

– (1) 〈N,M0〉 is deadlock free,
– (2) 〈N,M0〉 satisfies the cs-property,
– (3) 〈N,M0〉 is live.

Consider the net of Figure2, note first that it is a conservative net. One can
check, by applying the algorithm computing D(t), that it is a dead-closed system.
It contains the four following minimal siphons: S1 = {a, b, d}, S2 = {e, c, f},
S3 = {e, b, d} and S4 = {a, f, d}. For any initial marking (e.g. M0 = a+b+e+f)
satisfying the four following conditions: a+b+d > 0, e+c+f > 0, e+b+d−f > 0
and a + f + d − e > 0, this net satisfies the cs-property and hence is live.

5.1 Root Systems

Here, we define a subclass of dead-closed systems called Root Systems exploiting
in particular the causality relationships among output transitions of root places.
Before, we define a class of P/T nets where each transition admits a root place,
such nets are called Root nets.

Definition 15. Let N = 〈P, T, F, V 〉 be a P/T net. N is a root net iff ∀t ∈ T ,
∃ a place r ∈ P which is a root for t.

Every transition t of N has (at least) a root place, but it is not necessarily or-
dered. Thus, ordered nets are strictly included in root nets.
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Algorithm 5.1 Computing DSub(t)
1: Input: a transition t; // t is assumed to be dead
2: Output: DSub(t), a set of transitions; // D(t)
3: Variable Dtmarked: a set of transitions//
4: Begin
5: DSub(t) ← {t};
6: Dtmarked ← ∅
7: for (Dtmarked ← ∅; (DSub(t) \ Dtmarked) �= ∅;Dtmarked ← Dtmarked ∪ {t})

do
8: get t from DSub(t) \ Dtmarked;
9: if r is root place then

10: DSub(t) ← DSub(t) ∪ r•; //application of R1

11: for each (p ∈ t•) do
12: if (•p ⊆ DSub(t)) then
13: DSub(t) ← DSub(t) ∪ p•; //application of R2

14: end if
15: end for
16: for for each (p ∈ •t) such that (p is bounded) do
17: if p• ⊆ DSub(t) then
18: DSub(t) ← DSub(t) ∪ •p;// application of R3

19: end if
20: end for
21: end if
22: end for
23: End

The class of Root nets is extremely large, we have to add some structural con-
straints in order to recognize structurally their membership in the class of dead-
closed systems.
Given a root net N , we first define a particular subnet called Root component
based on the set of the root places of N . The Root component is slightly differ-
ent from the subnet induced by the root places: It contains all root places and
adjacent transitions. But, a (root) place p admits an output transition t in the
root subnet if and only if p is a root place for t.

Definition 16. Let N = 〈P, T, F, V 〉 be a root net and RootN be the set of its
root places.
The Root component of N is the net N ′∗ = 〈RootN , T ∗, F ∗, V ∗〉 defined as
follows:

– T ∗ = RootN
• = T ,

– F ∗ ⊆ (F ∩ ((RootN ×T ∗)∪ (T ∗ ×RootN ))), s.t. (p, t) ∈ F ∗ iff (p, t) ∈ F and
p is a root place for t, and (t, p) ∈ F ∗ iff (t, p) ∈ F

– V ′ is the restriction of V on F ∗.

Definition 17. Let 〈N,M0〉 be P/T system.
〈N,M0〉 is called a Root System iff N is a root net and its root component N∗

is conservative and strongly connected.
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Theorem 5. Let 〈N,M0〉 be a Root-system.
〈N,M0〉 is a dead-closed system.

Proof. Note first that the subnet N∗ contains all transitions of N (N is weakly
ordered). Let us show that D(t) = T for all transition t ∈ T in N∗. Let t and t′

be two transitions and suppose that t is dead. Since N∗ is strongly connected,
there exists a path Pt′→t = t′r1t1 . . . tnrnt leading from t′ to t s.t. all the places ri

(i ∈ {1 . . . }) are root places. Let us reason by recurrence on the length | Pt′→t |
of Pt′→t.

– | Pt′→t |= 1: Obvious
– Suppose that the proposition is true for each path Pt′→t with | Pt′→t |= n.
– Let Pt′→t be a n + 1-length path leading from t′ to t.

Using proposition 6 (or rule R1), one can deduce that all output transitions
of rn are dead. Now, since r is a bounded place, we use proposition 8 (or R3)
to deduce that all its input transition are dead and fortiori the transition
tn (the last transition before t in the path) is dead. Now the path Pt′→tn

satisfies the recurrence hypothesis. Consequently, one can deduce that t′ is
dead as soon as tn is dead.

The following corollary is a direct consequence of theorem 5, theorem 4 and
theorem 1 respectively.

Corollary 2. Let 〈N,M0〉 be a Root-system. The three following assertions are
equivalent:

– (1) 〈N,M0〉 is deadlock free,
– (2) 〈N,M0〉 satisfies the cs-property,
– (3) 〈N,M0〉 is live.

Example: The K-system (dead-closed) of figure 2 is not a Root system. Indeed,
its root component N∗ (Figure 3) is not strongly connected.

Fig. 3. An example of non Root but K system
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Fig. 4. An example of Root system

However, the non ordered system 〈N,M0〉 of Figure4 (t1 is not ordered and
p11, p12 are not root places) is a Root system. In fact, the corresponding root
component is conservative and strongly connected.

Let us analyze structurally the corresponding net N . One can check that N
admits the eight following minimal siphons: S1 = {p5, p6}, S2 = {p3, p4}, S3 =
{p1, p2}, S4 = {p5, p10, p4, p9}, S5 = {p5, p10, p7, p2, p8, p9}, S6 = {p12, p2, p4},
S7 = {p3, p7, p2, p8} and S8 = {p5, p11, p9}. These siphons are invariant-controlled
for any initial marking satisfying the following conditions: p5+p6 > 0, p3+p4 > 0,
p1+p2 > 0, p5+p10+p4+p9 > 0, p5+p10+p7+p2+p8+p9 > 0, p12+p2+p4 > 0,
p3 + p7 + p2 + p8 > 0 and p11 + 2.p9 + 2.p5 − p3 − p7 > 0}. Such conditions hold
for the chosen initial marking M0 = p1 + p3 + p5 + p12. Consequently, 〈N,M0〉
satisfies the cs-property i.e. live (according to theorem 5).

Obviously, the structure of N∗ is a sufficient but not a necessary condition to
ensure the K-property (and its membership in the class of K-systems). However,
by adding structure to the subnet induced by the Root places (considered as
modules) one can provide methods for synthesis of live K-systems.

In the following section, we first prove that the class of dead-closed systems is
closed by a particular synchronization through asynchronous buffers. Then, this
result will be used to extend the subclass of dead-closed systems structurally
analyzable.

5.2 SDCS: Synchronized Dead-Closed Systems

In this section we prove that the class of dead-closed systems admits an inter-
esting feature: it is closed by a particular synchronization through asynchronous
buffers. The obtained class is a modular subclass of P/T nets called Synchronized
dead-closed Systems (SDCS). By modular we emphasize that their definition is
oriented to a bottom-up modelling methodology or structured view: individual
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agents, or modules, in the system are identified and modelled independently by
means of live (i.e. cs-property) dead-closed systems (for example root systems),
and the global model is obtained by synchronizing these modules through a set of
places, the buffers. Such building process was already be used to define the class
of Deterministically Synchronized Sequential Processes (DSSP) (see [10], [7] [12]
for successive generalization) where elementary modules are simply live and safe
state machines and where the interplay between conflict and synchronization is
limited compared to dead-closed systems.

Definition 18. A P/T system 〈N,M0〉, with N = 〈P, T, F, V 〉, is a Synchro-
nized dead-closed System (or simply an SDCS) if and only if P is the disjoint
union P1, . . . , Pn and B, T is the disjoint union T1, . . . , Tn, and the following
holds:

– (1) For every i ∈ {1, . . . , n}, let Ni = 〈Pi, Ti, F�((Pi×Ti)∪(Ti×Pi)),
V�((Pi×Ti)∪(Ti×Pi))〉. Then 〈Ni,m0�Pi

〉 is a live dead-closed system.
– (2) For every i, j ∈ {1, . . . , n}, if i �= j then V�((Pi×Ti)∪(Ti×Pi)) =0.
– (3) For each module Ni, i ∈ {1, . . . , n}:

• (a) ∃ (a buffer) b ∈ B s.t. b• ⊆ Ti (a private output buffer),
• (b) ∀b ∈ B, b preserves the sets of root places of Ni (i.e., ∀t ∈ Ti,

Root(t)Ni
⊆ Root(t)N ).

– (4) Let B′ ⊆ B denotes the set of the output private buffers of N , then
there exists a subset B′′ ⊆ B′ such that the subnet induced by the dead-
closed systems (Ni, i ∈ {1, . . . , n}) and the buffers of B′′ is conservative and
strongly connected.

Actually, we synchronize dead-closed system in such a way that we preserve
the K-property (i.e. the equivalence between deadlock-freeness and liveness).
Contrary to the DSSP modules, competition between those of an SDCS sys-
tem is allowed, as long as the sets of root places of modules are preserved by
composition(3.b) (but not necessarily the set of equal conflicts). After composi-
tion, a buffer can be a root place in the composed net but it cannot take the place
of another one. Moreover, no restriction is imposed on the connection nature of
the buffers. This allows modules to compete for resources. A second feature of
SDCS class which enlarge the description power of DSSP is the fact that a given
buffer does not have to be a output (destination) private as long as it exists such
a buffer for each module (3.a).

Hence, one can easily prove that the class of SDCS represents a strict gener-
alization of conservative and strongly connected DSSP systems. Moreover, when
we compose dead-closed systems, or even root systems, the obtained system
remains dead-closed.

Figure 5 illustrates an example of SDCS system. This system is composed of
two modules, N1 and N2 (enclosed by the dashed lines) communicating through
three buffers b1, b2 and b3. Each module is represented by a Root system (N1
is not a state machine). Also, each buffer is not restrained to respect internal
modules conflict as long as it preserves their root places. For instance, the buffer
b1 doesn’t respect the conflict between transitions t1 and t3 of N1 (V (b1, t1) = 1
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but V (b1, t3) = 0) but it preserves the root place p1 of t1. This system is not
a Root-system since its root component N∗, induced here by N1, N2 and the
buffers b2 and b3, (the buffer b1 is not a root place), is strongly connected but not
conservative (the buffer b3 is not structurally bounded). However, this system
is an SDCS since, with notations of definition 18 (4), the subset B′′ = {b1, b2}
allows the condition (4) of to be satisfied.

The following theorem states that the class of SDCS is a subclass of dead-
closed Systems. This means that when we synchronize several dead-closed sys-
tems as described in definition18 we obtain a dead-closed system.

Theorem 6. Let 〈N,M0〉 be an SDCS system. Then 〈N,M0〉 is a dead-closed
system.

Proof. Let t and t′ be two transitions of N and suppose that t is dead. Let Nn

and N1 be the modules containing t and t′ respectively. Since the subnet induced
by modules and output private buffers is strongly connected, there exists an
(elementary) path PN1→Nn

= N1b1 . . . bn−1Nn leading from N1 to Nn and each
bi (i ∈ {1, . . . , n − 1}) is a buffer having Ni+1 as output private. Let us reason
by induction on the number of modules Ni (i ∈ {1, . . . , n}) involved in the path,
Let us note | PNi

| such a number.

– | PNi
|= 0: i.e. t and t′ belong to the same module N1. Since N1 is a dead-

closed system, one can use Theorem 4 (N1 is also a K-system) to deduce
that t′ is dead.

Fig. 5. An example of SKS system
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– Suppose that the proposition is true for each path PN1→Nn
involving less

than n modules.
– Let PN1→Nn

be a path leading from N1 to Nn and passing through n mod-
ules.
Consider bn−1, the output private buffer of the module Nn. Using Theorem
5 one can deduce that all transitions in Nn are dead. Now, since bn−1 is a
bounded place, we use proposition 8 to deduce that all its input transitions
are dead and fortiori those of the module Nn−1 (the module that appears
before Nn in the path) are dead. The subpath leading from N1 to Nn−1
involves n − 1 modules and hence satisfies the recurrence hypothesis. Con-
sequently, one can deduce that t′ is dead as soon as an input transition of
bn−1 (belonging to Nn−1) is dead.

Corollary 3. Let 〈N,M0〉 be an synchronized dead-closed system.
The three following assertions are equivalent:

– (1) 〈N,M0〉 is deadlock free,
– (2) 〈N,M0〉 satisfies the cs-property,
– (3) 〈N,M0〉 is live.

The previous corollary is a direct consequence of theorem 6, theorem4 and
theorem1 respectively.

The main practical advantage of the definition of the SDCS class systems is
that the equivalence between deadlock freeness and liveness can be preserved
when we properly synchronize several dead-closed systems. A larger subclass
based on the root nets structure can be obtained by applying the basic building
process of the SDCS in a recursive way, i.e. modules can be Root systems, SDCS
(or simply synchronized root systems) or more complex systems defined in this
way. We are then able to revisit and extend the building process of the class
of modular systems called multi-level deterministically synchronized processes
(DS)*SP systems proposed in [8] which generalizes DSSP. Such a result will
permit to enlarge the subclass of K-systems, structurally recognizable, for which
the cs-property is a sufficient liveness condition. One can follow the same building
process of (DS)*SP by taking live root systems as elementary modules (instead
of safe and live state machines). We synchronize these root systems leading to
an (root-based system) SDCS which is not necessarily a Root system. Then, one
can take several (root-based system based) SDCS and synchronize them in a
the same way. The resulting net, that is dead-closed system, can be considered
as an agent in a further interconnection with other agents, etc. Doing so, a
multi-level synchronization structure is built: the obtained system is composed
of several agents that are coupled through buffers; these agents may also be
a set of synchronized agents, etc. This naturally corresponds to systems with
different levels of coupling: low level agents are tightly coupled to form an agent
in a higher level, which is coupled with other agents, and so on. The class of
systems thus obtained is covered by dead-closed systems, but largely generalizes
strongly connected and conservative (DS)*SP (for which the deadlock freeness
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is a sufficient liveness condition [8]). From this view, the system of Figure5
can be viewed as ”multilevel” SDCS where the module N1 is composed of two
submodules (Root systems) communicating through three buffers b11, b12 and
b13 (which is not output private but it preserves the set of the root places).

6 Other Subclasses Based on T-Invariants

Finally, we define two other subclasses of live K-systems, exploiting the fact that
in every infinite occurrence sequence there must be a repetition of markings
under boundedness hypothesis. We denote by Tno the subset of non ordered
transitions. Nets of the first class are bounded and satisfy the following structural
condition : the support of each T-invariant contains all non-ordered transitions.
This class includes the one T-invariants nets from which (ordinary) bounded
nets covered by T-invariants can be approximated as proved in [9].

Theorem 7. Let 〈N,M0〉 be a P/T system such that:

(i) N is conservative
(ii) ∀ T-invariant j: Tno ⊆ ‖j‖.

〈N,M0〉 is live if and only if 〈N,M0〉 satisfies the controlled-siphon property.

Proof. Assume that 〈N,M0〉 satisfies the cs-property but is not live. According to
theorem 2, TD �= ∅ and TL �= ∅. Consider the subnet induced by TL. This subnet
is live and bounded for M∗. There exists necessarily an occurrence sequence for
which count-vector is a T-invariant j and Tno �⊂ ‖j‖. This contradicts condition
(ii).

Now, we define a last subclass of non-ordered systems (systems having a non
ordered transition) where the previous structural condition (ii) is refined as
follows: for any non-ordered transition t, we can not get a T-invariant on the
subnet induced by T \ D(t).

Theorem 8. Let 〈N,M0〉 be a non-ordered system satisfying the two following
conditions:

(i) N is conservative
(ii) ∀ T-invariant j and ∀t ∈ Tno: (‖j‖ ∩ D(t)) �= ∅

〈N,M0〉 is live if and only if 〈N,M0〉 satisfies the controlled-siphon property.

Proof. Let 〈N,M0〉 be satisfying the cs-property but not live. Consider the sub-
net induced by TL. This subnet is live and bounded. Hence, there exists a
T-invariant j corresponding to an occurrence sequence in the subnet and do
not cover neither the (not ordered) transition t∗ nor any transition in D(t∗)
((‖j‖ ∩ D(t∗)) = ∅). This contradicts condition (ii).

Remark: Note that the non ordered system (t3 is not ordered) of Figure 2 can
also be recognized structurally as a K-system since conditions (i) and (ii) of
Theorem 8 (D(t3) = T ) are satisfied.
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7 Conclusion

The aim of this paper was to deepen into the structure theory on P/T sys-
tems,namely K-systems, for which the equivalence between controlled-siphon
property, deadlock freeness, and liveness holds. Using the new structural con-
cepts of ordered transitions and root places, we present a refined characterization
of the non-liveness condition under cs property hypothesis. Such result permits
us to revisit from a new perspective some well known results and to structurally
characterize new and more expressive subclasses of K-systems. This work poses
a challenging question: What are the structural mechanisms ensuring a siphon
to be controlled other than based on trap or p-invariant concept? The interest
of a positive answer is a broader decision power of controlled siphon property
in particular for systems where the purely algebraic methods such rank theorem
[5] are important.
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