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Abstract. The concept of mobile agents imposes a great security risk
for information systems. In this paper we propose object nets as a spec-
ification formalism for multi-agent systems. Since the general formalism
is Turing-powerful not every analysis method that is common for Petri
net can be applied. So, we define the subclass of “ordinary” object nets
that allows for the application of standard P/T-net techniques, i.e. the
computation of boundedness, liveness etc.

1 Introduction

Object Petri nets following the nets-within-nets paradigm are a very powerful
formalism to describe dynamic multi-levelled systems, e.g. mobile agent systems.
It is well known that severe security problems arise in the context of mobile
agents (cf. [5]). So, the use of formal methods to overcome security problems
is necessary. In [10] the authors showed how the formalism of nets-within-nets
can be used to model mobility, especially in the case of mobile agents. Mobile
agents are developed using our architecture Mulan [9]. The Mulan-framework
offers intuitive modelling even of large agent systems.1 What was missing is
the possibility to profit from analysing tools. This paper undertakes an attempt
to build a conceptual background for the transformation of object net systems
to P/T-nets. Several requirements have to be met for this transformation to
succeed. These requirements are the subject of the following sections.

The need for analysis of object nets is paired with the choice of the firing rule
for object nets: There exist two fundamental semantics (i.e. firing rules) for object
nets introduced in [20], called reference and value semantics. The difference of
reference and value semantics is the concept of “location” for net-tokens which
is explicit for value but not for reference semantics, since it is unclear which
reference can be considered as the location of a net-token.

As shown in [10] the concept of mobility cannot be expressed adequately by ref-
erence semantics due to the possibility of side-effects. Instead value semantics has
to be applied. As shown in [12] the concept of locality makes value semantics richer

1 Student projects created agent systems containing more than 200 different reference
nets resulting in tens of thousands of net instances at run-time.
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than reference semantics – for example the reachablity problem becomes undecid-
able while boundedness remains decidable. However, the reference semantics can
be simulated by a (larger) P/T net, so analysis methods can be applied directly.

Value semantics is adequate from a modelling point of view while reference
semantics is adequate from an analytical point of view. In this paper we focus on
a restricted class of object nets, the so called ordinary object nets. For this class
of object nets it can be shown, that value semantics is as expressible as reference
semantics. This is shown by providing a direct embedding and simulation of one
semantics using the other one.

In this paper we study semantical aspects of the nets-within-nets paradigm.2

The paradigm that allows nets as tokens was introduced by Rüdiger Valk in [19]
and extended to the formalism of elementary object net systems in [20, 21] which
allows to model a two-levelled system. The formalism has been extended in [11, 12]
to an arbitrary nesting structure. A similar approach which allows nested Petri net
structures is presented in [15]. For Hypernets [1] net-tokens are restricted to syn-
chronisations of state machines. Reference nets [13] are a specialised nets-within-
nets formalism based on reference semantics. Due to the nested structure of object
nets the formalism is closely related to mobility calculi like the ambient calculus
[4] or to formalism combining mobility calculi and Petri nets like [3].

The paper is structured as follows: Section 2 gives the formal definition of
object-net systems. Firing is defined both for value and for reference semantics.
Section 3 analyses located markings, i.e. markings that describe a unique relation
of tokens and their locations: for each net-token there exists exactly one place
containing it. Section 4 defines the subclass of ordinary object-net systems. It
is shown that for this class of object nets all reachable markings are located.
Using this result it is shown that reference and value semantics can simulate
each other directly. In Section 5 we analyse the processes of ordinary object-net
systems. It turns out that the firing relation, the mapping from a process to
the original object net and the mappings from reference and value semantics are
compatible with each other which results in a three-dimensional cube structure
of embeddings. After having cleared the conceptual background we present a
case study in Section 6 and present some analysis results. Finally, we give an
outlook and conclusion.

2 Object-Net Systems

We define a generalised model of object-net systems, which drops the restriction
of [20] to exactly two levels of nesting: Object-Net Systems (Os) are defined
to give a precise definition of nets-within-nets using nested multi-set rewriting
specifications.

2 As [18] mentioned in the outlook it is a quite natural extension of algebraic Petri
nets [16] to allow tokens to be active which is impossible for algebraic Petri nets. The
canonic way for this extension is to consider nets as active tokens. These tokens are
called net-tokens.
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2.1 Informal Introduction to Object Nets

There exist two fundamental semantics for object nets introduced in [20], called
reference and value semantics. The intuitive meaning of both semantics can be
explained using the example Os given in Fig. 1. The example is known as the
“α-centauri” example. The name is due to the interpretation that the net token
describes a log which is copied and one copy remains on earth while the other one
is sent to α-centauri. It then seems somehow counter-intuitive that for reference
semantics the state change on α-centauri (the upper branch of the system net)
becomes visible immediately on earth (the lower branch).

The arrow from the token on place s1 expresses that the inner structure of the
token is itself a net. The different levels in the object-net system are connected by
channels. Transitions inscribed by corresponding channel expressions like on:ch()
and :ch() must be fired synchronously. If there is more than one possible partner
the choice is non-deterministic. In the Figure each transition pair (t2, t11) and
(t3, t12) must fire synchronously.

For reference semantics (cf. Fig. 2) the place s1 initially contains a reference
to the object-net: M = s1 + s11. Firing of t1 duplicates this reference onto s2

and s3 resulting in M1 = s2 + s3 + s11. This marking enables the transition pair
(t2, t11) but not (t3, t12). The resulting marking is M2 = s4 + s3 + s12. Since the
effect in the object-net is visible in the whole system, the pair (t3, t12) is now
enabled. Firing leads to M3 = s4 + s5 + s13.

s11

t1

t2

t11 t12
s12 s13

:ch2():ch1()

on:ch1()s1

t3
on:ch2()

s6
t4

s5

s4s2

s3

Fig. 1. An Os: The α-centauri example
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Fig. 2. Firing of transition t1 w.r.t. reference semantics



312 M. Köhler and H. Rölke

t1

t2
on:ch1()s1

t3
s5

s6
t4

on:ch2()

s4

t11
s12

:ch1()

s11 s13
t12

:ch2()

t11
s12

:ch1()

s11 s13
t12

:ch2()

s3

s2

Fig. 3. Firing of transition t1 w.r.t. value semantics

For value semantics (cf. Fig. 3) we have the nested multiset M = s1[s11]
as the initial marking which corresponds to the initial marking s1 + s11 w.r.t.
reference semantics. Firing of t1 distributes the marking of the net-token. A
possible distribution is the marking M1 = s2[s11] + s3[0] (where 0 denotes
the empty multiset) – corresponding to s2 + s3 + s11 for reference semantics.
This marking enables the transition pair (t2, t11) but not the pair (t3, t12). The
resulting marking is M2 = s4[s12] + s3[0]. Since the effect in the object net is
only local the pair (t3, t12) is not enabled. So w = t1(t2, t11)(t3, t12) is a possible
firing sequence for reference but not for value semantics.

2.2 Petri Net Notations

A P/T net structure is a tuple N = (P, T,W ), such that: P is a finite set of places,
T is a finite set of transitions, with P ∩T = ∅, and W : ((P ×T )∪ (T ×P )) → N

is the arc-weight function. A marked P/T-net N = (P, T,W,M0) is an P/T net
structure (P, T,W ) together with an initial marking M0 ∈ MS (P ). The term
P/T net is used both for the unmarked and the marked case. The flow relation
is F := {(x, y) | W (x, y) > 0}. Given a net P (N) denotes its places, T (N) its
transitions etc. N is called ordinary iff W (x, y) ≤ 1 for all (x, y). For an ordinary
P/T net the mapping W coincides with the characteristic function of the flow
relation χF : ((P × T ) ∪ (T × P )) → {0, 1}. In the case of ordinary nets the
relation F is also used to denote the arc weight W and vice versa.

A transition t ∈ T of a P/T net N = (P, T,W,M0) is enabled in marking
M iff ∀p ∈ P : M(p) ≥ W (p, t) holds. The successor marking when firing t is
M′(p) = M(p)−W (p, t)+W (t, p). The enablement of t in marking M is denoted
by M t−→. Firing of t is denoted by M t−→ M′.

A P/T net is equivalently characterised as N = (P, T,pre,post,M0) where
the multi-set mappings pre,post : T → MS (P ) are pre(t)(p) := W (p, t) and
post(t)(p) := W (t, p). For notations cf. the appendix.
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2.3 Nets as Tokens

An Object-Net System (Os) OS = (N , d, Θ,M0) consists of a finite set N of
pairwise disjoint P/T nets which includes the black token net N• and the system-
net Nsn. The black token net N• is defined as the object-net with no places and
no transitions: P (N•) = T (N•) = ∅. Let P (OS ) be the union of all components:
P (OS ) :=

⋃
N∈N P (N). Analogously for T (OS ), F (OS ), and W (OS ).

Markings are nested multi-sets. Tokens are described as pairs of the marked
place p and the marking of M its net-token which is denoted as p[M] to em-
phasize the nesting. The place typing d : P (OS ) → N is used to define which
net-tokens are allowed on a place. A black token is the special net-token p[0]
which can be identified with p. The basic tokens are black tokens, higher-order
tokens are generated using net-tokens.

P0(N) := {p | p ∈ P (N) ∧ d(p) = N•}
Pn+1(N) := {p[M] | p ∈ P (N) ∧ M ∈ MS (Pn(d(p)))} (1)

Define P(N) :=
⋃∞

i=0 Pn(N). Each mapping f defined on P can be extended
to a mapping f � on nested markings P by setting f �(p[M]) = f(p)[f �(M)]. In
the following f � is also denoted as f .

A transition t ∈ T (OS ) may be synchronised with transitions of the net-
tokens. The resulting synchronisations are nested transitions, i.e. trees:3

T0(N) := {id}
Tk+1(N) := {t[θN1 , . . . , θNn

] | t ∈ T (N) ∧ θNi
∈

⋃k
j=0 Tj(Ni)}

(2)

Analogously to markings we identify the minimal synchronisation tree t[id ] :=
t[id , . . . , id ] with the transition t itself. Here id is a “pseudo” transition with
pre(id) = post(id) = 0 (see below). So, every node in the tree has the same
degree of branching.

Define T (N) :=
⋃∞

i=0 Tn(N) and T (OS ) := T (N ) :=
⋃

N∈N T (N). A syn-
chronisation structure Θ(OS ) consits of a finite subset of T (N ).

The nesting structure of markings is removed by fl : Mv → Mr with Mr :=
MS (P (OS )) where fl(p[M])) := p + fl(M).

The nesting structure of synchronisations is removed by fl : T (OS ) → T (OS )
where fl(t[θ1, . . . , θn]) := t + fl(θ1) + · · · + fl(θn) and fl(id) = 0.

Let Θ ⊆ T (N) be a set of synchronisations. To avoid cycles the set of synchro-
nisations has to contain each transitions eaxactly once: fl(Θ) = T (OS ) (Note,
that minimal synchronisation trees t[id ] are allowed).

A marking is a multi-set of system-net tokens: M ∈ Mv := MS (P(Nsn)).

Definition 1. An Object-Net System is the tuple OS = (N , d, Θ,M0), where

– N = {N1, . . . Nn} is a set of pairwise disjoint P/T-nets Ni = (Pi, Ti,Wi)
including the black token net N• and the system-net Nsn.

– d : P → N is the place typing.

3 In the graphical representation these trees are formalised by channel inscriptions.
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– Θ ⊆ T (N ) is a finite set of synchronisations with fl(Θ) = T (OS ).
– The initial marking is M0 ∈ MS (P(Nsn)).

We generalise the notion of pre- and post-set for object nets by defining

(N)t := •t ∩ d−1(N) = {p ∈ •t | d(p) = N}
t(N) := t• ∩ d−1(N) = {p ∈ t• | d(p) = N}

Definition 2. For the synchronisation tree t[θ] ∈ Θ where θ = (θN1 , . . . , θNn
)

the firing rule is generated inductively from the firing rule of the subtrees θN

(where the multi-set variables Xp,t,i, X′
p,t,i describe the tokens that are trans-

ported and Yp,t,i, Y′
p,t,i describe the tokens that are used for synchronisation):

∑

p∈•t

W (p,t)∑

i=1

p[Xp,t,i + Yp,t,i]
t[θ]−−→

∑

p∈t•

W (t,p)∑

j=1

p[X′
p,t,j + Y′

p,t,j ]

if ∀N ∈ N :
∑

p∈(N) t

∑W (p,t)
i=1 Xp,t,i =

∑
p∈t(N)

∑W (t,p)
j=1 X′

p,t,j

∧
∑

p∈(N) t

∑W (p,t)
i=1 Yp,t,i = pre(θN )

∧
∑

p∈t(N)

∑W (t,p)
j=1 Y′

p,t,j = post(θN )

For the minimal synchronisations t[id ] this implies Yp,t,i = Y′
p,t,i = 0.

The marking M can be fired by θ ∈ Θ to M′ iff pre(θ) is a subterm of M and
M′ is obtained from M by substituting pre(θ) with post(θ). Firing is denoted
by M θ−→ M′.

This firing relation formalises value semantics. For reference semantics the
“flat” version of OS is needed (for more details cf. [12]).

Definition 3. The underlying P/T net of OS = (N , d, Θ,M0) is defined as:

fl(OS ) := (P (OS ), Θ,prefl,postfl,fl(M0))

where prefl(θ) := pre(fl(θ)) and postfl(θ) := post(fl(θ)).

Reference semantics is obtained by forgetting the nesting structure:

Theorem 1. For an Os OS the mapping fl provides a direct embedding of the
value semantics, i.e. every firing w.r.t. value semantics is possible w.r.t. reference
semantics:

Mv
θ−−−−→

OS
M′

v

fl

⏐
⏐
�

⏐
⏐
�fl

fl(Mv) θ−−−−→
fl(OS)

fl(M′
v)

Proof. Since prefl(θ) := pre(fl(θ)) and postfl(θ) := post(fl(θ)) it is sufficient
to show fl(pre(θ)) = prefl(θ) and fl(post(θ)) = post(fl(θ)). This is shown by
induction over the synchronisation tree.
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– For the minimal synchronisation tree we have (since
∑

p∈•t
Xp,t,i =

∑

p∈t•
(X′

p,t,j)):

fl(pre(t[id ])) = fl(
∑

p∈•t

∑W (p,t))
i=1 p[Xp,t,i])

=
∑

p∈•t

∑W (p,t))
i=1 fl(p[Xp,t,i])

=
∑

p∈•t

∑W (p,t))
i=1 p + fl(Xp,t,i) = pre(fl(t[id ]))

post(t[id ]) =
∑

p∈t•
∑W (t,p))

j=1 p + fl(X′
p,t,j)

=
∑

p∈t•
∑W (t,p))

j=1 fl(p[X′
p,t,j ])

= fl(
∑

p∈t•
∑W (t,p))

j=1 p[X′
p,t,j ]) = fl(post(t))

– By assumption we have fl(
∑

p∈(N) t

∑W (p,t))
i=1 Yp,t,i) = pre(fl(θN )) and also

fl(
∑

p∈t(N)

∑W (t,p))
j=1 Y′

p,t,j) = post(fl(θN )). Induction on θ = t[θ]:

fl(pre(t[θ])) = fl(
∑

p∈•t

∑W (p,t))
i=1 p[Xp,t,i + Yp,t,i])

=
∑

p∈•t

∑W (p,t))
i=1 fl(p[Xp,t,i + Yp,t,i])

=
∑

p∈•t

∑W (p,t))
i=1 p + fl(Xp,t,i) + fl(Yp,t,i)

=
∑

p∈•t

∑W (p,t))
i=1 p + fl(Xp,t,i) +

∑
N∈N pre(fl(θN ))

= pre(fl(t[θ]))

fl(post(t[θ])) =
∑

p∈t•
∑W (t,p))

j=1 p + fl(X′
p,t,j) +

∑
N∈N post(fl(θN ))

=
∑

p∈t•
∑W (t,p))

j=1 p + fl(X′
p,t,j) + fl(Y′

p,t,j)
=

∑
p∈t•

∑W (t,p))
j=1 fl(p[X′

p,t,j + Y′
p,t,j ])

= fl(
∑

p∈t•
∑W (t,p))

j=1 p[X′
p,t,j + Y′

p,t,j ])
= fl(post(t[θ]))

This proves the embedding. ��

The converse (every firing w.r.t. reference semantics is possible w.r.t. value
semantics) of Theorem 1, however, does not hold in the general case as seen for
the α-centauri example.

3 Located Markings

In the following we consider markings where the localisation of tokens coincide
with the type structure induced by the mapping d.

Definition 4. A marking Mr ∈ Mr is located iff for each net N there exists
exactly one place containing N and no place contains the net Nsn:

∀N ∈ N \ {Nsn, N•} :
∑

p∈d−1(N) |Mr(p)| = 1 ∧
∑

p∈d−1(Nsn) |Mr(p)| = 0

A marking Mv ∈ Mv is located iff fl(Mv) is located.
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Therefore for all N ∈ N \ {Nsn, N•} the uniquely defined place for which
|M(p)| = 1 holds is denoted by p(N).

Note, that if Mv is located, then there cannot be any recursive nesting, since
otherwise there is more than one place containing a net token of type N . Thus,
the location of each token is uniquely determined.

Definition 5. The localisation lc(M) is defined recursively starting with the
system net: lc(M) := lcM (M|P (Nsn)) where

lcM (p) :=
{

p[lcM(M|P (Nd(p)))], if d(p) 
= N•
p, otherwise

For events t ∈ T we define lc(t) = t.

Theorem 2. For located markings the mapping lc is inverse to fl.

1. If Mr ∈ Mr is located, then we have fl(lc(Mr)) = Mr.
2. If Mv ∈ Mv is located, then we have lc(fl(Mv)) = Mv.

Proof. 1. Let Mr ∈ Mr. Define the relation RMr
⊆ (N \ {N•})2 by

(N1, N2) ∈ RMr
⇐⇒ ∃p1 ∈ M : p1 ∈ P (N1) ∧ d(p1) = N2

If Mr is located, then the place p1 such that d(p1) = N2 with N2 ∈
N \ {Nsn, N•} is uniquely defined, i.e. it is p1 = p(N2). So, it follows
that RMr

describes a tree with the system net Nsn as the root node (since∑
p∈d−1(Nsn) |Mr(p)| = 0).

It is easy to see from the definition of lc that the marking is nested along
the relation RM , i.e. all markings of the nets N ′ ∈ (N RMr

) on paths from
the root of the tree are located by lcM (M|P (N)):

fl(lcM (M|P (N))) =
∑

N ′∈(N RMr )

M|P (N ′)

For the whole marking it follows that:

fl(lc(M)) = lcM (M|P (Nsn))

= fl
(∑

N ′∈(Nsn RMr )
M|P (N ′)

)

= M|P (Nsn) + M|P (N•) + · · · + M|P (Nn)

= M

Note, that MP (N•) = 0 since P (N•) = ∅.
2. Let Mv ∈ Mr. Define the relation RMv

⊆ (N \ {N•})2 by

(N1, N2) ∈ RMv
⇐⇒ ∃ subterm (p1,M1) of Mv : p1 ∈ P (N1)∧d(p1) = N2

it is easy to see, that if Mv is located, then the relations RMr
and RMv

are
equal, so lc just reconstructs Mv, i.e. lc(fl(Mv)) = Mv.

��
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4 Ordinary Object-Net Systems

As we have seen for the α-centauri example, the converse of Theorem 1 does not
hold in general. It will be shown, that for the case of so called ordinary ONS the
opposite direction can also be proved.

Definition 6. Let OS be an Os. A transitions t is simple iff

∀N ∈ N \ {N•} : |(N)t| = |t(N) | ≤ 1

OS is ordinary iff all its object nets are ordinary, all transitions are simple and
the initial marking M0 is located.

Consider t[θ] ∈ Θ. For ordinary Os all arc weights W (x, y) = 1 iff (x, y) ∈ F .
Additionally, if |(N)t| > 0 there is exactly one place pN ∈ •t such that d(p) = N
and one place p′N ∈ t• such that d(p′) = N . So, the variable Xp,t can be denoted
as Xd(p) (and similar for X′

t,p etc.). Due to this one-to-one correspondence the
representation can be simplified further:

– Value semantics: For the synchronisation tree t[θ] ∈ Tn+1(OS ) the firing rule
is generated from the firing rule of the θN :

∑

p∈•t
p[Xd(p) + pre(θN )]

t[θ]−−→
∑

p∈t•
p[X′

d(p) + post(θN )]

For a minimal synchronisation tree this further simplifies to:

∑

p∈•t
p[Xd(p)]

t[id ]−−−→
∑

p∈t•
p[X′

d(p)]

– Reference semantics: For the synchronisation tree t[θ] ∈ Tn+1(OS ):

∑

p∈•t
p + pre(fl(θd(p)))

fl(t[θ])−−−−→
∑

p∈t•
p + post(fl(θd(p)))

For the minimal synchronisation tree this simplifies to:

∑

p∈•t
p

fl(t[id ])−−−−→
∑

p∈t•
p

Theorem 3. If OS is an ordinary Os, then all reachable markings are located
and all places p with d(p) 
= N• are 1-safe.

Proof. The initial marking is located by definition. If Mr
t−→ M′

r then there
is exactly one location for N (since

∑
p∈d−1(N) |Mr(p)| = 1 for all N ∈ N \

{Nsn, N•}), which is either untouched or relocated, since all t are simple.
If Mr is located, then all places p with d(p) 
= N• are marked with at most

one net-token. Since every reachable marking of a simple Os is located these
places are 1-safe. ��
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Using Theorem 3 we know that all reachable markings are located, we can
conclude from Theorem 2:

∀Mr ∈ R(fl(OS )) : fl(lc(Mr)) = Mr

∀Mv ∈ R(OS ) : lc(fl(Mv)) = Mv

Theorem 4. For ordinary Os OS the mapping lc provides a direct embedding
of the reference semantics. If Mr is located, then:

Mr
θ−−−−→

fl(OS)
M′

r

lc

⏐
⏐
�

⏐
⏐
�lc

lc(Mr)
θ−−−−→

OS
lc(M′

r)

Proof. Induction over the synchronisation tree t[θ].

– If Mr
t[id ]−−−→ M′

r then by monotonicity we can add fl(Xd(p)) with Xd(p) =
lc(Mr |P (d(p))).

Mr +
∑

p∈•t

fl(Xd(p))
t[id ]−−−→ M′

r +
∑

p∈•t

fl(X′
d(p))

Since
∑

p∈•t Xd(p) =
∑

p∈t• X′
d(p) =: X the basic tree is:

= lc(prefl(t + idfl(X)))
= lc(

∑
p∈•t p + fl(Xd(p)))

=
∑

p∈•t p[Xd(p)])
t[id ]−−−→

∑
p∈t• p[X′

d(p)])
= lc(

∑
p∈t• p + fl(X′

d(p)))
= lc(postfl(t + idfl(X)))

– Induction: We add fl(Yd(p)) with Yd(p) = pre(θN ) and fl(Xd(p)) with Xd(p) =
lc(Mr |P (d(p))) − Yd(p). Note, that lc(Mr |P (d(p))) ≥ Yd(p) since θd(p) is acti-
vated. Let Y′

N = post(θN ).

By assumption pre(θN ) θN−−→ post(θN ):

= lc(prefl(t[θN1 , . . . , θNn
] + idfl(X)))

= lc(
∑

p∈•t p + fl(Xd(p)) + fl(Yd(p)))
=

∑
p∈•t p[Xd(p) + Yd(p)])

t[θ]−−→
∑

p∈t• p[X′
d(p) + Y′

d(p)]
= lc(

∑
p∈t• p + fl(X′

d(p)) + fl(Y′
d(p))

= lc(postfl(t[θN1 , . . . , θNn
] + idfl(X)))

This shows the property. ��
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Mv
θ−−−−−→

OS
M′

v

fl

⏐
⏐
�

⏐
⏐
�fl

fl(Mv)
θ−−−−−→

fl(OS)
fl(M′

v)

lc

⏐
⏐
�

⏐
⏐
�lc

lc(fl(Mv))
θ−−−−−→

OS
lc(fl(M′

v)) = M′
v

Mr
θ−−−−−→

fl(OS)
M′

r

lc

⏐
⏐
�

⏐
⏐
�lc

lc(Mr)
θ−−−−−→

OS
lc(M′

r)

fl

⏐
⏐
�

⏐
⏐
�fl

fl(lc(Mr))
θ−−−−−→

fl(OS)
fl(lc(M′

r)) = M′
r

Fig. 4. Embeddings extended to an Simulation

Theorem 5. If OS is a ordinary Os, then reference and value semantics can
simulate each other directly.

Proof. Composition of the two diagrams in Theorem 1 and 4 is shown in Fig. 4.
Both diagrams can be further reduced to the following two simulations:

Mv
θ−−−−→

OS
lc(fl(M′

v)) = M′
v

fl

⏐
⏐
�

	
⏐
⏐lc

fl(Mv) θ−−−−→
fl(OS)

fl(M′
v)

Mr
θ−−−−→

fl(OS)
fl(lc(M′

r)) = M′
r

lc

⏐
⏐
�

	
⏐
⏐fl

lc(Mr)
θ−−−−→

OS
lc(M′

r)

So, the embeddings in Theorem 1 and 4 also imply a direct simulation. ��

5 Processes of Ordinary Object-Net Systems

In [8] we have given a characterisation of those processes of the reference
semantics that can be simulated by the value semantics for the general case.
For ordinary object-net systems we know due to Theorem 5 that there is a
one-to-one correspondence of reference and value semantics. In the following
we will show that this correspondence carries over for processes.

5.1 Basic Definitions

Petri net processes (cf. [6, 2]) describe the behaviour of Petri nets. Processes
are themselves Petri nets from the class of causal nets, where no branching is
allowed for the places. A run of a net N is defined as a causal net R with a pair
of mappings φ = (φP : B → P, φT : E → T ). Extending φP and φT to multi-
sets, the run is associated to the net, by requiring the commutativity expressed
by: φP (•e) = pre(φT (e)) and φP (e•) = post(φT (e)). That is, φ preserves the
localities of transitions.4

4 Alternatively, a process (R, φ) can be constructed from the possible firings, i.e. the
enabling of transitions, of the net N by adding transitions according to the enabling
condition of the net N . The starting point is given by the initial marking.
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Definition 7. Let N = (P, T,W,M0) be a P/T net and R = (B,E, �) a causal
net. Furthermore let φ = (φP : B → P, φT : E → T ) be a pair of mappings.
Then (R,φ) is a process of N if the following conditions hold:

1. Preservation of the flow relation: x � y =⇒ φ(x) F φ(y).
2. Representation of the initial marking M0 by ◦R: φP (◦R) = M0.
3. Compatibility of φ with the arc-weight function:

φP (•e) = pre(φT (e)) and φP (e•) = post(φT (e)).
4. Representability of R as the limit of finite processes.

For a run (R,φ) of a Petri net N the symmetric and reflexive relations li
and co are defined by li := (< ∪ <−1 ∪ idA) and co := ( l̄i ∪ idA). A ken
with respect to li is often called a line, while a ken with respect to co is called
a cut. If C ∈ ken(<) and C ⊆ P then C is called a P -cut of R.

5.2 Processes of Ordinary Object Nets

The definition of of an object net process is based on the net fl(OS ) defined in
Def. 3.

Definition 8. Let OS = (N , d, Θ,M0) be an Os. The pair (R,φ) is a process
of OS iff it is a process of fl(OS ).

Define the set of elements of a P -cut C belonging to a net type N :

BN (C) := C ∩ φ−1(d−1(N)) = {b ∈ C | d(φ(b)) = N}

Analogously to Theorem 3 we obtain that all reachable P -cuts are located:

Lemma 1. Let (R,φ) be a process of an ordinary Os OS. For each P -cuts C
of R there is exactly one element b ∈ C carrying a net-token of type N .

∀N ∈ N : |BN (C)| = 1

The uniquely defined element of BN (C) is denoted by b(N).

Similarly to Def. 5 we define a localisation of P -cuts resulting in a nested
structure. The restructuring also extends to events, where each e is mapped to
an nested event et[ε] where ε is a nested structure of events which mimics the
structure of φ(e) = t[θ].

Definition 9. For a P -cut C of a process R, we define the localisation lc(C) of
C as lc(C) := lcC(BNsn

(C)) where

lcC(b) :=
{

b[lc(Bd(φ(b))(C))], if d(φ(b)) 
= N•
b, otherwise

For events e ∈ E we define lc(e) := fe(φ(e)) where

fe(t[θ]) := et[fe(θ)]
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The process mapping is extended to nested sets by defining φ(b[X]) :=
φ(b)[φ(X)]. Then the localisation commutes with the process map φ.

Theorem 6. Let (R,φ) be a process of of an ordinary Os OS. The process map
φ commutes with lc. For each P -cut C of R we have:

φ(lcC(C)) = lcφ(C)(φ(C))

Proof. Induction base for N•:

φ(lcC(BN•(C)) = φ(BN•(C)) = lcφ(C)(φ(BN•(C))

Induction step:

φ(lcC(B)) = φ
( ∑

b∈B(b, lcC(Bd(φ(b))(C)))
)

=
∑

b∈B φ(b)[φ(lcC(Bd(φ(b))(C))]
=

∑
b∈B φ(b)[lcφ(C)

(
φ(Bd(φ(b))(C))]

=
∑

b∈B φ(b)[lcφ(C)

(
φ(C ∩ φ−1(d−1(N)))]

=
∑

b∈B φ(b)[lcφ(C)

(
φ(C) ∩ d−1(N)]

=
∑

b∈B φ(b)[lcφ(C)(φ(C)|P (N))]
= lcφ(C)(φ(B))

This proves the commutativity. ��

Theorem 7. Let (R,φ) a process of an ordinary Os OS. Then we have for all
P -cuts C and C ′ of R:

C
e−−−−→
R

C ′

φ

⏐
⏐
�

⏐
⏐
�φ

φ(C)
φ(e)−−−−→

fl(OS)
φ(C ′)

lc

⏐
⏐
�

⏐
⏐
�lc

lc(φ(C))
φ(e)−−−−→
OS

lc(φ(C ′))

Proof. By definition R is a process of fl(OS ), which shows the first embedding
via φ. Theorem 4 shows that every step for an ordinary Os can be simulated via
lc which is the second embedding. ��

The map lc associates with each process R a nested process which is an object
net system: “The semantics of an object net is an object net.”

Definition 10. Let (R,φ) with R = (B,E, �) be a process of the Os OS =
(N , d, Θ,M0). Define the located process (lc(R), φR) by the Os

lc(R) = (NR, dR, ΘR,MR)

where NR = {RN | N ∈ N} with
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B(RN ) = B ∩ φ−1(P (N))
E(RN ) = {et | t ∈ fl(φ(e)) ∧ t ∈ T (N)}
F (RN ) = �|(B(RN )×E(RN ))∪(E(RN )×B(RN ))

and dR(b) = d(φ(b)), ΘR(b) = E, and MR(b) = lc(◦R). The process mapping is
defined by φR(b) = φ(b) and φR(et) = φ(e).

Analogously to the previous Theorem we obtain the following embedding
when the application order of lc and φ is switched.

Theorem 8. Let OS = (N , d, Θ,M0) be an ordinary Os and (R,φ) a process
of OS. Then we have for all P -cuts C and C ′ of R:

C
e−−−−→
R

C ′

lc

⏐
⏐
�

⏐
⏐
�lc

lc(C)
lc(e)−−−−→
lc(R)

lc(C ′)

φR

⏐
⏐
�

⏐
⏐
�φR

φR(lc(C))
φR(lc(e))−−−−−−→

OS
φR(lc(C ′))

Proof. Let C
e−→
R

C ′ and φ(e) = t[θ] then by Def. 9 lc(e) = et[ε]. It is easy to

see that by the construction in Def. 10 the event et[ε] is enabled in lc(R) for the

nested cut lc(C): lc(C)
lc(e)−−−→
lc(R)

lc(C ′).

C �φ
φ(C)

�

e

�

φ(e)

C′ �φ
φ(C′)

�
�

�
���

lc

lc(C)

�φ

�φ

�
�

�
���

lc

lc(φ(C))

�

lc(e)

�

lc(φ(e))

�
�

�
���

lc

lc(C′)

�
�

�
���

lc

lc(φ(C′))

Fig. 5. Process embeddings
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Since φR equals φ on places, we have φR(lc(C)) = φ(lc(C)). Using Theorem 6
and 7 we know, that φR(lc(C)) = lc(φ(C)) can be rewritten by φ(e).

Since φR(lc(e)) = φR(fe(φ(e))) = φR(et[ε]) = t[θ] = φ(e) holds, we have

φR(lc(C))
φR(lc(e))−−−−−−→

OS
φR(lc(C ′)) for the object-net system OS . ��

The cube in Figure 5 summarises all the embeddings of Theorem 7 and 8.
The vertical dimension illustrates the firing steps, the dimension from left to
right illustrates the mapping from the process to the object system, the dimen-
sion from the front to the back illustrates the relation of reference and value
semantics.

6 The Household Robot Example, Revisited

In [10] the authors showed how the formalism of nets-within-nets can be used
to model mobility, especially in the case of mobile agents. A case study was
presented that models a mobile household robot. We adapt this case study for
a first approach on how to analyse agent systems. To reach this aim the overall
system architecture is simplified while the ideas are still visible. Going along
with a better tool support for the analysis we will switch back to the original
model.

The household is represented by the system net in Figure 6.5 The household
consists of several rooms (locations): hall, living room, kitchen, next room, and
the front yard (dark places). Each room offers special services to the robot: it can
fetch coffee in the kitchen, serve it in the living room, fetch mail in the front yard,
open and close the door in the hall, and so on (light transitions). The possible
movements from one location to another are displayed as dark transitions. Note
that moving from room to room is not symmetric in this scenario. For example
it is not possible to move directly from the kitchen to the next room. Service
transitions are supplemented with additional information (service state/buffer,
light places) showing for instance if new mail has arrived, coffee is available and
so on. Extraneous actions not accessible for the robot are displayed as thin-lined
transitions: arrival of new mail, new assignments for the robot etc.

The door of the house is used to show another possibility of viewing special
parts of the system: the state of the door (open/closed) is modelled directly.
This system state does not belong to a single service (as for example the state
of the mailbox), but is queried by a couple of service transitions including the
movements into and out of the house.

This model of the household is filled with life by implementing an appropriate
robot agent and defining the desired services for the platforms. The behaviour
modelling for this kind of agents has been introduced in [9]. While the Petri net
model of the household hides some details – namely the transition inscriptions

5 The use of colour greatly supports the differentiation of different types of places,
transitions, or arcs. Unfortunately this is – even in the adapted form of the figures
– not so obvious in a black and white representation.
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Fig. 6. Household System Net

s

in out
s

stop

pro-active

prt:out(s)
prt

prtprt

prt:in(s)

s

s

s

prt

protocols

reactive
[s,p] [s,p] guard false

prt

start
prt:start()

prt

in out

import de.renew.net.NetInstance;
import de.renew.net.Net;
NetInstance prt;
String s,p;

["coffee","serve_coffee"]
["mail","fetch_mail"]

:in(s) :out(s)

action prt=Net.forName(p)
.buildInstance()

prt

action prt=Net.forName(p)
.buildInstance()

prt:stop()

Fig. 7. The robot

e.g. for moving around – the nets for the robot (Fig. 7) and one of its plans
(Fig. 8) are presented in full detail using the syntax of Renew [14].

Figure 7 shows the interface net of the robot implemented as a Mulan agent.
This kind of agents is explained in [9]. The Figure shows a simplified version still
capable of autonomous, pro- or reactive and reconfigurable behaviour. What is
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:stop()

:out("getcoffee")

:start()

:in("getcoffee")
:out("lr")

:in("lr")
:out("servecoffee")

:in("servecoffee")
:out("nr")

:in("nr")

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

:out("kitchen")
:in("kitchen")

Fig. 8. Plan for serving coffee

omitted in this publication is the platform net, the layer between the overall
system (household) and the agent (robot). It is necessary only if one is interested
in a dynamically changing environment. Leaving it out we get an architecture
of three layers: system - agent - behaviour protocol (plan).

Figure 8 presents a behaviour protocol of the robot. This protocol only con-
sists of sequential actions, therefore we call it a plan. Protocols tell the agent
what to do and when to do it. Protocol nets can be generated at run-time, which
can not be shown here. The plan for serving coffee instruments the robot to move
to the kitchen, fetch the coffee, move to the living room, serve the coffee and
move back to the next room. Having done this the plan stops.

We have analysed the household system where the house net has been re-
stricted to the kitchen, the next and the living room, since the yard and the
hall are not relevant in the restricted scenario. The transitions new assignment,
fresh coffee, and coffee drunk have been fused to generate some kind of loop at
the system net level. For this example an analysis with INA [17] (integrated
in the PEP tool [7]) shows that the simulating P/T net is ordinary, extended
simple, bounded, reversible and live. It has no transitions without any pre- or
without any post-place. The system is covered by semi-positive P-invariants and
thus structurally bounded. It is covered by a semi-positive T-invariant contain-
ing each transition once. There are 99 minimal deadlocks. All nonempty traps
are initially marked. The system is state-machine decomposable.

Since the system is bounded we know that the design relies on only finitely
many resources and since it is live we know e.g. that the robot can offer its
service regularly.

7 Conclusion

In this presentation we have introduced the subclass of ordinary object-net sys-
tems. This subclass is of special importance because its structure guarantees
that each marking is located. We have shown that this implies further, that ref-
erence and value semantics can simulate each other directly for this subclass.
The structural simulation is also compatible with the concept of a Petri net pro-
cess – illustrated by the cube in Figure 5. Due to this one-to-one correspondence
a formal analysis based on standard tools is possible. Structural and dynamic
properties were checked for our household/robot example using the tool INA.
Current work is undertaken to investigate extensions of the formalism to allow
for high-level concepts as arc inscriptions, bindings etc.
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9. M. Köhler, D. Moldt, and H. Rölke. Modeling the behaviour of Petri net agents. In
J. M. Colom and M. Koutny, editors, International Conference on Application and
Theory of Petri Nets, volume 2075 of Lecture Notes in Computer Science, pages
224–241. Springer-Verlag, 2001.
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A Notations and Basic Definitions

Let R ⊆ A×B be a relation. A pair (a, b) ∈ R will also be denoted aR b in infix
notation. The identity relation is defined as idA := {(a, a) | a ∈ A}. For a ∈ A
and b ∈ B define the domain of an element b ∈ B by ( R b) := {a | (a, b) ∈ R} and
its co-domain by (aR ) := {b | (a, b) ∈ R}. We generalise the notion of domain
and co-domain to sets C ⊆ A and D ⊆ B by (C R ) := {b | ∃a ∈ C : (a, b) ∈ R}
and ( R D) := {a | ∃b ∈ D : (a, b) ∈ R}.

Let R ⊆ A × A be a symmetric and reflexive relation. The set K ⊆ A is a
clique with respect to R iff all pairs of its elements are in the relation, i.e. for all
x, y ∈ K we have (x, y) ∈ R. A maximal clique is called a ken and the set of all
kens of R is denoted by ken(R).

The definition of Petri nets relies on the notion of multisets. A multiset on
the set D is a mapping A : D → N. Multisets are generalisations of sets in the
sense that every subset of D corresponds to a multiset A with A(x) ≤ 1 for all
x ∈ D. The empty multiset 0 is defined as 0(x) = 0 for all x ∈ D. The cardinality
is |A| :=

∑
x∈D A(x). A multiset A is called finite iff |A| < ∞. The multiset

sum A + B is defined as (A + B)(x) := A(x) + B(x) the difference A − B by
(A − B)(x) := max(A(x) − B(x), 0). Equality A = B is defined element-wise:
∀x ∈ D : A(x) = B(x). Multisets are partially ordered: A ≤ B ⇐⇒ ∀x ∈
D : A(x) ≤ B(x) The strict order A < B holds iff A ≤ B and A 
= B. The
notation is overloaded, being used for sets as well as multisets. The meaning will
be apparent from its use.

Any mapping f : D → D′ can be generalised to a mapping f : MS (D) →
MS (D′) on multisets:

f

(
n∑

i=1

ai

)

=
n∑

i=1

f (ai)

This includes the special case f(0) = 0. These definitions are in accordance with
the set-theoretic notation f(A) = {f(a) | a ∈ A}.

The set of all finite multisets over the set D is denoted MS (D). A multiset A
can be considered as the formal sum A =

∑
x∈D A(x)·x. Finite multisets are the
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freely generated commutative monoid (MS (D),+, 0). If the set D is finite, then
a multiset A ∈ MS (D) can be represented equivalently as a vector A ∈ N

|D|.
N = (P, T, F ) is a Petri net iff the set of places P and the set of transitions

T are disjoint, i.e. P ∩ T = ∅, F ⊆ (P × T ∪ T × P ) is the flow relation. Some
commonly used notations for Petri nets are •y := ( F y) for the preset and
y• := (y F ) for the postset of a net element y. The set of minimal elements of
a net N is denoted ◦N := {x ∈ P ∪ T | •x = ∅}, the set of maximal elements is
N◦ := {x ∈ P ∪ T | x• = ∅}.

A finitely branching Petri net N = (B,E, �) is an causal net iff the transitive
closure �

+ of the flow is acyclic and |•b| ≤ 1 and |b•| ≤ 1 holds for all b ∈ B. For
a causal net N = (B,E, �) we define the order < on the net elements (B ∪ E)
by < := �

+.
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