
Can I Execute My Scenario in Your Net?

Gabriel Juhás, Robert Lorenz, and Jörg Desel

Lehrstuhl für Angewandte Informatik,
Katholische Universität Eichstätt, 85071 Eichstätt, Germany

{gabriel.juhas, robert.lorenz, joerg.desel}@ku-eichstaett.de

Abstract. In this paper we present a polynomial algorithm to decide whether a
scenario (given as a Labelled Partial Order) is executable in a given place/transition
Petri net while preserving at least the given amount of concurrency (adding no
causality). In the positive case the algorithm computes a process net that respects
the concurrency formulated by the scenario. We moreover present a polynomial
algorithm to decide whether the amount of concurrency given by a Labelled Par-
tial Order is maximal, i.e. whether the Labelled Partial Order precisely matches
a process net w.r.t. causality and concurrency of the events, if this process net
represents a minimal causality of events among all process nets.

1 Introduction

Specifications of distributed systems are often formulated in terms of scenarios. In other
words, it is often part of the specification that some scenarios should be executable by
the system. Given the system, a natural question is whether a scenario can be executed.
In this paper we consider Petri net models instead of systems, and we restrict our con-
sideration to place/transition Petri nets. Transforming the above question to this model,
we ask whether a given scenario represents a possible execution of a given Petri net. If
the answer is positive for all specified scenarios then the Petri net model can be used as
a design specification of the system to be implemented. We have not been precise w.r.t.
scenarios and executions yet. In general, there are different ways to represent single
executions of Petri nets. The most prominent concepts are occurrence sequences, i.e.,
sequences of transition names that can occur consecutively, and process nets ([4, 5]),
i.e., Petri nets representing transition occurrences by events (transitions of process nets)
with explicit pre- and post-conditions representing token occurrences of the original
net (places of process nets). Playing the token game, it is very easy to check whether
a given sequence of transition names is in fact an occurrence sequence of a given net
with initial marking. For process nets, we can easily verify the defining conditions of a
process net, which reads for marked place/transition Petri nets as follows:

– The underlying net has no cycles, hence the transitive closure of the relation given
by arcs is a partial order,

– conditions are not branched,
– no event has an empty pre-set or an empty post-set,
– events are labelled by transitions and conditions by places,

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 289–308, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

290 G. Juhás, R. Lorenz, and J. Desel

22

2

a b

c

a b

c c

a b

c c

Fig. 1. A p/t-net (left figure) with two of its process nets

– the set of conditions with empty pre-set corresponds to the initial marking (if place
p has m0(p) initial tokens then m0(p) conditions of this set are labelled by p),

– the pre- and post-sets of events respect the pre- and post-sets of the corresponding
transitions (if a transition t consumes k tokens from a place p then each event
labelled by t has k pre-conditions labelled by p, and similarly for post-conditions).

Clearly, deciding whether an occurrence sequence can be executed in a place/transition
net as well as deciding whether an acyclic labelled net is a process net of a place/transition
net can be done in linear time (w.r.t. the size of the occurrence sequence / process net)
if the size of the original net is assumed to be constant. For motivation purpose, con-
sider the following example. In Figure 1 a place/transition net is shown. One possible
occurrence sequence is a b c c. Figure 1 also shows two process nets.

Occurrence sequences lack any information about independence and causality. So
it is impossible to specify that events should occur concurrently by an occurrence se-
quence. Therefore, as soon as concurrency of events has to be specified, occurrence
sequences cannot be used for specification of scenarios. Process nets are also not very
suitable for specification purposes for two reasons. First, conditions are labelled by
names of places of the model specified. So it is not possible to specify that two events
have to occur in some order but it is rather also necessary to state which place is re-
sponsible for establishing this order. So the specification includes already details of an
implementation. The second disadvantage is that a process net determines the precise
causality between events. Hence it is not possible to specify a scenario with two events
that may either occur (causally) ordered or concurrently. One way to overcome these
problems is to specify scenarios in terms of Labelled Partial Orders of events, where
the labels refer to the transitions of the specified model. These LPOs are called pomsets
(partially ordered multisets) in [9], emphasizing their close relation to partially ordered
sets (we have multisets here because the same transition can occur more than once in
a pomset, formally represented by two distinct events labelled by the same transition
name). LPOs are called partial words in [6], emphasizing their close relation to words
or sequences; the total order of elements in a sequence is replaced by a partial order.
Actually, pomsets and partial words do not distinguish isomorphic LPOs, because the
order of transition occurrences only depends on the labels. So LPOs are somehow in-
between occurrence sequences and process nets.

Can I Execute My Scenario in Your Net? 291

a b

c c

a b

c c

a b

c c

a b

c c

Fig. 2. Four labelled partial orders. All except the most right one are executions of the net in
Figure 1. The third one (from the left) is the only strict execution of this net. The most left one
refers to both process nets shown in Figure 1

An LPO represents a scenario that can (or cannot) be executed by a marked Petri
net. The order defined between events of a so-called executable LPO is interpreted
as follows: If two events e1 and e2, labelled by transitions t1 and t2 respectively, are
ordered (e1 < e2) then either t1 occurs causally before t2 or both occur concurrently. If
e1 and e2 are not ordered, then concurrent executions of t1 and t2 is demanded. Another
interpretation of the order between events defines strictly executable LPOs: If e1 and e2

are ordered (e1 < e2) then t1 is demanded to occur causally before t2. If e1 and e2 are
not ordered, then concurrent executions of t1 and t2 is demanded.

It is immediate to see that occurrence sequences are special cases of LPOs: A se-
quence t1 t2 . . . tn can be viewed as a partially ordered set of events e1 < e2 < · · · < en

where ei is labelled by ti for 1 � i � n. Process nets can be translated to LPOs by re-
moving all conditions and keeping the partial order for the events. We will call such
LPOs runs. Formally, an LPO is executable by a given marked place/transition net if it
includes (is more sequentialized than) a run of the net. An LPO is strictly executable, if
it equals a minimal run (w.r.t. to set inclusion).

Figure 2 shows four LPOs. The first three represent executions of the net in Figure 1.
The third one (from the left) is the only strict execution (it is the run given by the first
process given in Figure 1). The fourth one is not an execution of this net.

The aim of this paper is to provide an efficient algorithm for deciding whether a given
LPO is executable by a given place/transition net. We will provide such an algorithm
and prove that its runtime is O(n4|P |), where n is the number of events of the LPO
and |P | is the number of places of the net. In the positive case, the algorithm computes
a run included in the LPO, and thus an underlying process net. Moreover, we provide a
(polynomial) characterization which tells us whether the computed run equals the LPO.

The surprising message of this paper might not be the existence of a polynomial
algorithm but conversely the fact that this is not a trivial problem. In fact, for elementary
Petri nets or 1-safe place/transition nets there exists an immediate algorithm to decide
the problem because a unique corresponding process net can be constructed from an
LPO – if it exists. The crucial point for place/transition nets is that in general there
is not a unique process net corresponding to a given LPO (i.e. an LPO can include
different runs). For example, the first LPO given in Figure 2 refers to both process nets
of Figure 1.

Astrid Kiehn [8] and Walter Vogler [11] showed that an LPO can be executed if and
only if for each cut of the LPO the marking reached by firing all transitions correspond-
ing to events smaller than the cut enables the multiset of transitions given by the cut.

292 G. Juhás, R. Lorenz, and J. Desel

Unfortunately, this result does not lead to an efficient algorithm because the number of
cuts grows exponentially with the size of the LPO in general. This result seems to be
not very surprising. However, its proof in [8] is quite complicated, and the shorter proof
in [10, 11] employs a version of the nontrivial Marriage Theorem known from Graph
Theory.

The construction of the algorithm for testing executability and the proof of our result
is based on Flow Theory [2]. We will transform a part of our construction to the problem
of finding a maximal flow in a flow network associated to the LPO. This maximal flow
problem was extensively studied for decades. In [7] an algorithm is presented running
in cubic time, and there are several improvements since then (see [3] for an overview).
We obtain our complexity result by repeated transformations to flow networks and com-
putations of the maximal flow.

The structure of the remainder of this paper is as follows. In section 2 we provide
standard definitions of place/transition nets, occurrence sequences, process nets and
LPOs. In Section 3 we establish the so-called flow property of an LPO as a necessary
and sufficient condition for its executability. Section 4 is the core of the paper. By ap-
plying a maximum flow algorithm we decide whether a given LPO satisfies the flow
property. Section 5 introduces the strong flow property which characterizes LPOs cor-
responding exactly to a run of a process net and briefly presents a polynomial test of
strict executability of LPOs.

2 Place/Transition Nets

We use N to denote the nonnegative integers. Given a function f from A to B and a
subset C of A we write f |C to denote the restriction of f to the set C. Given a finite
set A, the symbol |A| denotes the cardinality of A. The set of all multi-sets over a set
A is denoted by N

A. Given a binary relation R ⊆ A × A over a set A, the symbol R+

denotes the transitive closure of R.

2.1 Place/Transition Net Definitions

Definition 1 (Net).
A net is a triple (P, T, F), where P is a finite set of places, T is a finite set of transitions,
satisfying P ∩ T = ∅, and F ⊆ (P ∪ T) × (T ∪ P) is a flow relation.

Let (P, T, F) be a net and x ∈ P ∪ T be an element. The preset •x is the set
{y ∈ P∪T | (y, x) ∈ F}, and the post-set x• is the set {y ∈ P∪T | (x, y) ∈ F}. Given
a set X ⊆ P ∪ T , this notation is extended by •X =

⋃
x∈X •x and X• =

⋃
x∈X x•.

For technical reasons, we consider only nets in which every transition has a nonempty
pre-set and a nonempty post-set.

Definition 2 (Place/transition net).
A place/transition net (shortly p/t-net) N is a quadruple (P, T, F,W), where (P, T, F)
is a net and W : F → N

+ is a weight function.

We extend the weight function W to pairs of net elements (x, y) ∈ (P×T)∪(T×P)
satisfying (x, y) �∈ F by W ((x, y)) = 0.

Can I Execute My Scenario in Your Net? 293

A marking of a net N = (P, T, F,W) is a function m : P → N, i.e. a multi-set
over P .

Definition 3 (Occurrence rule).
Let N = (P, T, F,W) be a p/t-net. A transition t ∈ T is enabled to occur in a marking
m of N iff m(p) ≥ W ((p, t)) for every place p ∈ •t. If a transition t is enabled to
occur in a marking m, then its occurrence leads to the new marking m′ defined by
m′(p) = m(p) − W ((p, t)) + W ((t, p)) for every p ∈ P .

Definition 4 (Marked p/t-net).
A marked p/t-net is a pair (N,m0), where N is a p/t-net and m0 is a marking of N
called initial marking.

2.2 Labelled Partial Orders

In this section we recall the definition of semantics of p/t-nets based on labelled partial
orders, also known as partial words [6] or pomsets [9]. For proofs of the presented
results see e.g. [10].

Definition 5 (Directed graph, (Labelled) partial order).
A directed graph is a pair (V,→), where V is a finite set of nodes and →⊆ V × V is
a binary relation over V called the set of arcs. As usual, given a binary relation → we
write a → b to denote (a, b) ∈→.

A partial order is a directed graph po = (V,<), where < is an irreflexive and
transitive binary relation on V .

For a set S ⊆ V and a node v ∈ V \ S we write v < S, if v < s for a node s ∈ S.
Two nodes v, v′ of a partial order (V,<) are called independent if v �< v′ and

v′ �< v. By co ⊆ V × V we denote the set of all pairs of independent nodes of V . A
co-set in a partial order (V,<) is a subset S ⊆ V fulfilling: ∀x, y ∈ S : x co y. Clearly
the relation co is symmetric and reflexive. A cut is a maximal co-set.

Given partial orders po1 = (V,<1) and po2 = (V,<2), we say that po2 is a se-
quentialization of po1 if <1⊆<2.

A labelled partial order is a triple lpo = (V,<, l), where (V,<) is a partial order,
and l is a labelling function on V . If X is a set of labels of lpo, i.e. l : V → X , then
for a cut S ⊆ V , we define the multi-set µ(S) ⊆ N

X by µ(S)(x) = |{v ∈ V | v ∈
S ∧ l(v) = x}|.

We use the above notation defined for partial orders also for labelled partial orders.

Definition 6 (Enabledness of LPOs).
A labelled partial order lpo = (V,<, l) with l : V → T is called enabled to occur in
a marking m if the following statement holds: For every cut S of < and every p ∈ P :
m(p) +

∑
v∈V ∧v<S(W ((l(v), p)) − W ((p, l(v)))) ≥ ∑

v∈S W ((p, l(v))). Its occur-
rence leads to the marking m′(p) given by m′(p) = m(p) +

∑
v∈V (W ((l(v), p)) −

W ((p, l(v)))).
A labelled partial order lpo = (V,<, l) enabled in m is said to be minimal iff there

exists no labelled partial order lpo′ = (V,<′, l) enabled in m with <′⊂<.

294 G. Juhás, R. Lorenz, and J. Desel

Proposition 1. If a labelled partial order is enabled in m and leads to m′, then every
sequentialization is enabled in m and leads to m′, too.

2.3 Processes, Runs and Executability of LPOs

Definition 7 (Occurrence net).
An occurrence net is a net O = (B,E,G) such that | • b|, |b • | � 1 for every b ∈
B (places are unbranched) and O is acyclic, i.e. the transitive closure G+ of G is a
partial order. Places of an occurrence net are called conditions and transitions of an
occurrence net are called events.

The set of conditions of an occurrence net O = (B,E,G) which are minimal
(maximal) according to G+ is denoted by Min(O) (Max(O)). Clearly, Min(O) and
Max(O) are cuts w.r.t. G+ (recall that events have nonempty pre- and post-sets by
assumption).

Definition 8 (Process).
Let (N,m0) be a marked p/t-net, N = (P, T, F,W). A process of (N,m0) is a pair
K = (O, ρ), where O = (B,E,G) is an occurrence net and ρ : B ∪ E → P ∪ T is a
labelling function, satisfying

(i) ρ(B) ⊆ P and ρ(E) ⊆ T .
(ii) ∀e ∈ E, ∀p ∈ P : |{b ∈ •e | ρ(b) = p}| = W ((p, ρ(e))) and

∀e ∈ E, ∀p ∈ P : |{b ∈ e• | ρ(b) = p}| = W ((ρ(e), p)).
(iii) ∀p ∈ P : |{b ∈ Min(O) | ρ(b) = p}| = m0(p).

Definition 9 (Run).
Let K = (O, ρ) be a process of a marked p/t-net (N,m0). The labelled partial order
lpoK = (E,G+|E×E , ρ|E) is called run of (N,m0) representing K.

A run lpo = (E,<, l) of (N,m0) is said to be minimal iff there exists no other run
lpo′ = (E,<′, l) of (N,m0) with <′⊂<.

Definition 10 (Executability of LPOs). A labelled partial order lpo = (V,≺, l) is
called executable in a marked p/t-net (N,m0) if there exists a run (V,<, l) of (N,m0)
with <⊆≺.

A labelled partial order lpo = (V,≺, l) is called strictly executable in a marked
p/t-net (N,m0) if it is a minimal run of (N,m0).

Directly from the definition of processes we obtain:

Proposition 2. Every run of (N,m0) is enabled in m0.

From proposition 1 and proposition 2 follows:

Proposition 3. If a labelled partial order is executable in (N,m0), then it is also en-
abled in m0.

The important result completing the relationship between enabled and executable
labelled partial orders was proven in [8, 10].

Theorem 1. If a labelled partial order is enabled in m0 in a p/t-net N , then it is exe-
cutable in (N,m0).

Can I Execute My Scenario in Your Net? 295

3 Flow Property

As described in the introduction, the definition of enabledness of LPOs is inherently
exponential, since an LPO can have exponentially many cuts in the number of nodes.
That means, the definition is not appropriate to develop a test of executability.

Instead, we introduce the so called flow property of labelled partial orders w.r.t.
a marked p/t-net (N,m0). In this section we show: A labelled partial order fulfills the
flow property w.r.t (N,m0) if and only if it is executable in (N,m0). In the next section
we will give a polynomial test of fulfilling the flow property for a labelled partial order.
In the positive case, this test will compute a run included in this labelled partial order.

We fix a marked p/t-net (N,m0) and a place p of N . Given a labelled partial order
lpo = (V,<, l) with l(V) = T we assign non-negative integers to its edges through a
so called flow function. The aim is to find a flow function assigning values x(v, v′) to
edges (v, v′) in such a way that there is a process with exactly x(v, v′) post-conditions
of v labelled by p which are also pre-conditions of v′. Thus, such a flow function of lpo
abstracts from individuality of conditions of a process and encodes the flow relation of
this process by natural numbers. Clearly, finding such a flow function for every place
means that lpo includes the run of this process.

In order to simplify the formal definition of the flow property, let us define an exten-
sion of lpo = (V,<, l) by adding an initial node which is smaller than all nodes from
V and which is labelled by a new label.

Definition 11 (0-extension of a labelled partial order). Let lpo = (V,<, l) be a la-
belled partial order. Then a labelled partial order lpo0 = (V 0, <0, l0), where V 0 =
(V ∪ {v0}), v0 /∈ V , <0=< ∪({v0} × V), l0(v0) /∈ l(V) and l0|V = l, is called
0-extension of lpo.

Assigning natural numbers to the arcs of a 0-extension of a labelled partial order
we define a so called flow function of this labelled partial order (with v0 as its unique
smallest element).

Definition 12 (Flow function of a labelled partial order). Let lpo = (V,<, l) be
a labelled partial order and lpo0 = (V 0, <0, l0) be a 0-extension of lpo. A function
x :<0→ N is called flow function of lpo. For v ∈ V , we denote

–
∑

v′<0v x((v′, v)) the ingoing flow of v w.r.t. x, and
–

∑
v<0v′ x((v, v′)) the outgoing flow of v w.r.t. x.

Let lpo = (V,<, l) be a run representing a process of (N,m0). For every place
p define the canonical flow function of the run w.r.t. p, by counting for every v < v′

the number of post-conditions of v labelled by p which are pre-conditions of v′ in the
process. The outgoing flow of the source event v0 represents the the number of minimal
conditions labelled by p which are used by further events.

Definition 13 (Canonical flow function of a run). Let K = (O, ρ) be a process of
(N,m0) with O = (B, V,G) and let lpo = (V,<, l) be the run representing K. Let
lpo0 = (V 0, <0, l0) be a 0-extension of lpo. Define v0• = Min(O) for the unique

296 G. Juhás, R. Lorenz, and J. Desel

smallest element v0 of (V 0, <0). We define for every place p ∈ P the flow function
xp :<0→ N0 of lpo as follows:

xp(v, v′) = |{b ∈ B | ρ(b) = p ∧ b ∈ v • ∩ • v′}|.
By definition, this canonical flow function respects the weight function and the ini-

tial marking of (N,m0) in the following sense:

(A) The ingoing flow of an event v equals the number of tokens consumed from place
p by the occurrence of transition l(v).

(B) The outgoing flow of an event v (i.e. the number of post-conditions of v labelled
by p which are used as pre-conditions of other events) is less than or equal to the
number of tokens which are produced by the occurrence of transition l(v) in place
p. In particular, the outgoing flow of the source event v0 is less or equal to the
number of tokens in place p of the initial marking m0.

In general, we say that an arbitrary labelled partial order, whose labels are transitions
of (N,m0), fulfils the flow property w.r.t. (N,m0), if for every place there exists a flow
function which fulfils the properties (A) and (B).

Definition 14 (Flow property). Let lpo = (V,<, l) be a labelled partial order with
l(V) = T and let lpo0 = (V 0, <0, l0) be a 0-extension of lpo. Denote W ((l(v0), p)) =
m0(p) for each place p. We say that lpo fulfils the flow property w.r.t. (N,m0) if the
following statement holds: For every place p ∈ P there exists a flow xp :<0→ N such
that

(A) For every v′ ∈ V :
∑

v<0v′ xp(v, v′) = W ((p, l(v′))).
(B) For every v ∈ V 0:

∑
v<0v′ xp(v, v′) � W ((l(v), p)).

The ingoing flow of a node v w.r.t. xp is also called (A)-sum of xp w.r.t. v and the
outgoing flow of a node v w.r.t. xp is also called (B)-sum of xp w.r.t. v.

Given a run lpo of (N,m0), it follows directly from the definitions of processes and
runs that for every p ∈ P the canonical flow function xp of lpo fulfils the statements
(A) and (B):

Lemma 1. Every run of (N,m0) fulfils the flow property w.r.t. (N,m0).

By the definition of the flow property, given a labelled partial order lpo = (V,<, l)
fulfilling (A) and (B) w.r.t. a place p and a flow function xp and a labelled partial order
lpo′ = (V,<′, l) with <⊂<′ we have: lpo′ fulfils (A) and (B) w.r.t. to the place p and
the flow function x′

p given by x′
p|< = xp and x′

p|<′\< = 0. Therefore:

Lemma 2. Every labelled partial order executable in (N,m0) fulfils the flow property
w.r.t. (N,m0).

The following lemma states the converse:

Lemma 3. Let lpo = (V,≺, l) be a labelled partial order which fulfils the flow property
w.r.t. (N,m0). Then lpo is executable in (N,m0), i.e. there exists a run (V,<, l) of
(N,m0) such that <⊆≺.

Can I Execute My Scenario in Your Net? 297

Proof. From the definition of the flow property, for every place p ∈ P there exists
a function xp which fulfils (A) and (B). We will fix these functions and use them to
construct a process K = (O, ρ) of (N,m0) with O = (B, V,G) and ρ|V = l, satisfying
<= G+|V ×V ⊆≺. According to the definition of runs, this will conclude the proof.

For convenience, denote V = {v1, . . . , v|V |} such that vi ≺ vj implies i < j. First
define the set of conditions and the labelling of conditions. For every event v ∈ V 0 we
define the set of post-conditions of v labelled by p ∈ P :

Bv
p = {p1

v, . . . pW ((l(v),p))
v }.

Thus, the number of these post-conditions equals the value W ((l(v), p)). Especially,
the number of post-conditions of v0 labelled by p ∈ P equals m0(p). Denote Bp =
∪v∈V 0Bv

p the set of all conditions labelled by p. Define the labelling of conditions
by ρ(b) = p for b ∈ Bp. Finally, the set of all conditions of the process is given by
B = ∪p∈P Bp.

It remains to define the flow relation G. It is the union of all ingoing and outgoing
arcs of all events v ∈ V . An event v ∈ V has an outgoing arc to each of its post-
conditions (observe that v0 �∈ V). Thus, the set of outgoing arcs of an event v ∈ V
labelled by p ∈ P is

Gv•
p = {v} × Bv

p .

The ingoing arcs are defined w.r.t. the flow functions. If xp(v, vm) > 0, then we connect
exactly xp(v, vm) post-conditions of v labelled by p with vm. In order to avoid branch-

ing of conditions, we connect the post-conditions p1
v, . . . , p

xp(v,vm)
v with the event vm

which has the smallest index m from all events vm with xp(v, vm) > 0, and so on.
Formally, define the set of ingoing arcs from conditions labelled by p ∈ P to an event
vm ∈ V by

G•vm
p = {(pi

v, vm) | v ∈ V0, xp(v, vm) > 0,
∑

j<m

xp(v, vj) < i �
∑

j�m

xp(v, vj)}.

Because xp fulfils (B), i.e. the number of post-conditions of an event v ∈ V 0 is not
less than the outgoing flow of v, by this construction any event vm ∈ V is connected
with exactly xp(v, vm) post-conditions of v labelled by p whenever xp(v, vm) > 0.
Because of this and because xp also fulfils (A), by this construction every vm ∈ V
has exactly W ((p, l(vm))) pre-conditions labelled by p ∈ P . Finally denote Gp =
∪v∈V (G•v

p ∪ Gv•
p) for every p ∈ P and G = ∪p∈P Gp.

By construction, the conditions are unbranched and the defined net is acyclic, i.e.
O = (B, V,G) is an occurrence net. From the previous reasoning K = (O, ρ) is a
process of (N,m0).

It remains to show that <= G+|V ×V ⊆≺. Denote R = {(v, v′) ∈ V × V |
v • ∩ • v′ �= ∅}. Observe that G+|V ×V = R+ and (by construction of G) we have
(v, v′) ∈ R =⇒ (∃p ∈ P : xp(v, v′) > 0). Because xp(v, v′) > 0 implies v ≺ v′ and
≺ is transitive, this gives <= G+|V ×V ⊆≺. ��

298 G. Juhás, R. Lorenz, and J. Desel

4 Testing the Flow Property

In this section we give a polynomial algorithm to test whether a labelled partial order
lpo = (V,<, l) with l(V) = T fulfils the flow property w.r.t. (N,m0). In the case that
lpo fulfils the flow property, the algorithm constructs flow functions for all places.

4.1 The Algorithm

We describe the algorithm for a fixed place p. Let lpo0 = (V 0, <0, l0) be a 0-extension
of lpo. Throughout this section denote V 0 = {v0, v1, . . . , vn} with vi < vj ⇒ i < j.
The algorithm starts with a flow function x0 fulfilling part (A) of the flow property. Such
x0 always exists, e.g. set x0(v0, v

′) = W ((p, l(v′))) for each v′ ∈ V and x0(v, v′) = 0
otherwise. In general this flow function will not fulfil part (B) of the flow property. We
denote max0 the smallest index for which x0 does not fulfil property (B):

–
∑

vmax0<0v′ x0(vmax0 , v
′) > W ((l(vmax0), p)), and

– ∀j < max0:
∑

vj<0v′ x0(vj , v
′) � W ((l(vj), p)).

Thus, the aim is to modify x0, such that the (B)-sum of x0 w.r.t. the index max0

is reduced as much as necessary to fulfil (B) w.r.t. max0, while preserving property
(A) for all indexes and property (B) for all indexes smaller than max0. In Subsection
4.4 we will describe in detail a procedure which modifies x0 in such a way while min-
imizing the (B)-sum w.r.t. max0 in some sense. In the following we will refer to this
procedure as the main procedure of the algorithm. Repeating the main procedure, we
get the algorithm:

1. Set i = 0 and compute a flow function xi fulfilling (A).
2. If xi does not fulfil (B):

• Compute the smallest index maxi for which xi does not fulfil (B).
• Repeat:

∗ Apply the main procedure to modify xi into a flow function xi+1 (in such a
way that xi+1 still fulfils (A) for all indexes, still fulfils (B) for all indexes
smaller than maxi, and the (B)-sum of xi+1 w.r.t. maxi is smaller than
(or equal to) the (B)-sum of xi w.r.t. maxi).

∗ If xi+1 does not fulfil (B), compute the smallest index maxi+1 for which
xi+1 does not fulfil (B).

∗ Set i = i + 1.
until xi fulfils (B) or maxi = maxi−1.

The algorithm terminates, if either xi fulfils property (B) or maxi = maxi−1. In
the first case xi is a flow function, for which lpo fulfils the flow property. In the second
case we will prove in Subsection 4.5 that lpo is not enabled w.r.t. (N,m0).

The algorithm has to be applied for every place p ∈ P . Since maxi � n, the main
procedure is repeated at most n times. The main procedure itself requires at most O(n3)
time as shown in the Subsection 4.4. Altogether we get that the test of executability
takes O(n4|P |) time.

Can I Execute My Scenario in Your Net? 299

index > maxiindex < maxi

xi(e)>0

xi(e)>0

xi(e)>0

index > maxiindex < maxi

-1

-1

-1

+1

+1

+1

(B)-sum(v)
not changed

(A)-sum(w)
not changed

w

v

w

v

xi x‘

Fig. 3. The left part shows an example of a flow decreasing sequence of the first kind with k =
3. The right part shows the modifying operation to get a flow function x′ from xi satisfying
x′(vmaxi , w

1) < xi(vmaxi , w
1), property (A) for all indexes and property (B) for all indexes

smaller than maxi

4.2 Flow Decreasing Sequences

We start with a brief motivation of the main procedure for modifying xi: Consider the
following two possibilities of reducing the (B)-sum of xi w.r.t. maxi while respecting
property (A) for all indexes and property (B) for all indexes smaller than maxi.

The first possibility is to move positive values xi(vmaxi
, v′) onto edges (vj , vl) with

j > maxi (see Figure 3): Suppose a sequence of nodes v0 = vmaxi
, w1, v1, . . . , wk, vk

such that

– wj �= wm and vj �= vm for j �= m,
– x(vj , wj+1) > 0 and vj < wj ,
– For each 0 < j < k there is an index m < maxi with vj = vm,
– For j = k there is an index m > maxi with vk = vm.

Such a sequence allows to modify xi into a new flow function x′ defined as follows:

x′(vj , wj) = xi(vj , wj) + 1,
x′(vj , wj+1) = xi(vj , wj+1) − 1.

Obviously x′ satisfies x′(vmaxi
, w1) < xi(vmaxi

, w1), property (A) for all indexes
and property (B) for all indexes smaller than maxi. This modification can be applied
for each such sequence as long as x′(vj , wj+1) > 0 for all j, thus reducing the (B)-sum
of xi w.r.t. maxi. As a consequence x′(vk, wk) > xi(vk, wk), i.e. the (B)-sum w.r.t.
vk is increased. Nevertheless property (B) remains satisfied for all indexes smaller than
maxi.

The second possibility is to move positive values xi(vmaxi
, v′) onto edges (vj , vl)

with j < maxi and
∑

vj<v′ xi(vj , v
′) < W ((l(vj), p)) (see Figure 4): Suppose a

sequence of nodes v0 = vmaxi
, w1, v1, . . . , wk, vk such that

300 G. Juhás, R. Lorenz, and J. Desel

index > maxiindex < maxi

xi(e)>0

xi(e)>0

index > maxiindex < maxi

-1

-1

+1

+1
(B)-sum(v)
< post(l(v))(p0)

v v (B)-sum(v)
≤ post(l(v))(p0)

xi x‘

Fig. 4. The left part shows an example of a flow decreasing sequence of the second kind with
k = 2. The right part shows the modifying operation to get a flow function x′ from xi satisfying
x′(vmaxi , w

1) < xi(vmaxi , w
1), property (A) for all indexes and property (B) for all indexes

smaller than maxi

– wj �= wm and vj �= vm for j �= m,
– x(vj , wj+1) > 0 and vj < wj ,
– For each 0 < j � k there is an index m < maxi with vj = vm ,
–

∑
vk<v′ xi(vk, v′) < W ((l(vk), p)).

Such a sequence allows to modify xi into a new flow function x′ defined as follows:

x′(vj , wj) = xi(vj , wj) + 1,
x′(vj , wj+1) = xi(vj , wj+1) − 1.

Obviously x′ satisfies x′(vmaxi
, w1) < xi(vmaxi

, w1), property (A) for all indexes
and property (B) for all indexes smaller than maxi. This modification can be applied
for each such sequence as long as x′(vj , wj+1) > 0 for all j and

∑
vk<v′ x′(vk, v′) <

W ((l(vk), p)), thus reducing the (B)-sum of xi w.r.t. maxi. As a consequence x′(vk,
wk) > xi(vk, wk), i.e. the (B)-sum w.r.t. vk is increased. Nevertheless property (B)
remains satisfied for all indexes smaller than maxi.

Such sequences (of the first or second kind) will be called flow decreasing sequences
w.r.t. xi). We want reduce the (B)-sum of the modified flow w.r.t. maxi by flow de-
creasing sequences in a maximal way. This can be done by transforming this problem
for (V,<, l) w.r.t. the flow function xi into a maximum flow problem for a suitable flow
network. The maximum flow problem is intensively studied since four decades and sev-
eral algorithms running in cubic time in the number of nodes ([7]) and faster (see e.g.
[3] for an overview) were developed.

4.3 The Associated Flow Network

We briefly introduce the necessary notations:

Can I Execute My Scenario in Your Net? 301

Definition 15 (Flow network). A flow network is a directed graph (V ′,→) together
with a capacity function c assigning nonnegative integers to edges in E→ = {(v, v′) |
v → v′ ∨ v′ → v}, satisfying: there is a node s ∈ V , called source, with no incoming
edges w.r.t. →, there is a node t, called sink, with no outgoing edges w.r.t. →, and
c(v, v′) = 0 for v �→ v′.

A flow f in (V ′,→, c) is a function assigning integers to edges in E→ in such a way
that

– f does not exceed c: f(v, v′) � c(v, v′).
– f(v, v′) = −f(v′, v).
– For each node v except source and sink the flow into (resp. out of) v equals 0:∑

(v′,v)∈E→ f(v′, v) = 0.

The value |f | of a flow f is defined as the outgoing flow of the source (or equivalently
the ingoing flow of the sink)

∑
s→v′ f(s, v′). The maximal flow is the flow with maximal

value among all flows.
Given a flow f , the residual capacity cr w.r.t. f of (v, v′) ∈ E→ is defined by

cr(v, v′) = c(v, v′) − f(v, v′) if v → v′ and cr(v, v′) = f(v′, v) if v �→ v′. The
residual network of a flow f consists of all edges e ∈ E→ with cr(e) > 0 together
with the residual capacity. A flow augmenting path w.r.t. a flow f of a flow network is a
simple path from source to sink in the residual network of f .

One of the first algorithms solving the maximum flow problem was the flow aug-
menting path method by Ford and Fulkerson ([2]). They proved the following theorem
giving a characterization of the maximum flow:

Theorem 2. Let f be a flow in a flow network. If there is no flow augmenting path w.r.t.
f , then f is maximal.

The flow network G(xi) = (V (xi),→, c) associated to lpo = (V,<, l) and xi

is defined in such a way that the flow decreasing sequences in (V,<) (w.r.t. xi) will
correspond to flow augmenting paths in (V (xi),→, c) (w.r.t. to the zero flow). The
possibility of reducing the (B)-sum w.r.t. maxi through a flow decreasing sequence
by a certain amount shall exactly correspond to a flow of the same amount through an
associated augmenting path from source to sink. Therefore the capacity restricting the
flow on edges (vj , wj+1) corresponds to the value of the flow function xi(vj , wj+1).
Since a node vm with m < maxi can serve as a node vj in a flow decreasing sequence
and as a node wj in the same or another flow decreasing sequence, we split each node
v ∈ V into two nodes in the flow network: (v, out), playing the role of a node vj , and
(v, in), playing the role of a node wj . Formally, we define V (xi) = (V × {in, out})∪
{t}) with a node t �∈ V , which will serve as the sink. The node (vmaxi

, out) will
have no incoming edges and serve as the source of the flow network. We will use a
constant M as an edge capacity which can not be exceeded by the value of the maximum
flow of the flow network (see Figure 5)). Since the value of the maximal flow can
never exceed the sum of capacities of the edges outgoing of the source, we set M =∑

vmaxi
→v′ xi(vmaxi

, v′).

(a) For l > maxi and xi(vmaxi
, vl) > 0: (vmaxi

, out) → (vl, in) and
c((vmaxi

, out), (vl, in)) = xi(vmaxi
, vl).

302 G. Juhás, R. Lorenz, and J. Desel

index > maxiindex < maxi

xi(e)>0

xi(e)>0

xi(e)>0

LPO Flow Network

xi(e)>0
xi(e)>0

xi(e)>0

index > maxiindex < maxi

xi(e)>0

xi(e)

xi(e)

xi(e)
xi(e)

xi(e)

t

m
m

m

m

m

m

m

m

m

m(B)-sum(v)
< post(l(v))(p0)

v

post(l(v))(p0)
- (B)-sum(v)

(v,out)

(v,in)

Fig. 5. The left part shows a part of a labelled partial order where it is indicated on which edges
the flow function xi has positive values. For clearness only the skeleton is regarded. The right part
shows the corresponding part of the associated flow network. The ”out”-nodes are filled whereas
the ”in”-nodes are not filled. Each edge carry its capacity

(b) For j < maxi and xi(vj , vl) > 0: (vj , out) → (vl, in) and
c((vj , out), (vl, in)) = xi(vj , vl)

(c) For j < maxi and vj < vl: (vl, in) → (vj , out) and
c((vl, in), (vj , out)) = M .

(d) For l > maxi and vj < vl for some vj with j > maxi: (vl, in) → t and
c((vl, in), t) = M

(e) For j < maxi and
∑

vj<v′ xi(vj , v
′) < W ((l(vj), p)): (vj , out) → t and

c((vj , out), t) = W ((l(vj), p)) − ∑
vj<v′ xi(vj , v

′).

The following lemma states that for each flow f we can modify xi into a flow
function xf fulfilling property (A) for all indexes and property (B) for all indexes
smaller than maxi with its (B)-sum w.r.t. maxi reduced by |f |.
Lemma 4. Let f be a flow in G(xi) = (V (xi),→, c). Then the flow function xf , de-
fined by modifying xi in the following way, fulfils (A) for all indexes and (B) for all
indexes smaller than maxi:

(a) For l > maxi and xi(vmaxi
, vl) > 0:

xf (vmaxi
, vl) = xi(vmaxi

, vl) − f((vmaxi
, out), (vl, in)).

(b) For j < maxi and xi(vj , vl) > 0:
xf (vj , vl) = xi(vj , vl) − f((vj , out), (vl, in)).

(c) For j < maxi, vj < vl and xi(vj , vl) = 0:
xf (vj , vl) = xi(vj , vl) + f((vl, in), (vj , out))

Can I Execute My Scenario in Your Net? 303

(d) For l > maxi such that vj < vl for some vj with j > maxi:
Let J be the maximal index with vJ < vl and define xf (vJ , vl) = xi(vJ , vl) +
f((vl, in), t).

Proof. Observe first that by construction all values of xf are non-negative:
ad (a): f((vmaxi

, out), (vl, in)) � c((vmaxi
, out), (vl, in)) = xi(vmaxi

, vl).
ad (b): f((vj , out), (vl, in)) � c((vj , out), (vl, in)) = xi(vj , vl).
ad (c): f((vl, in), (vj , out)) > 0 since c((vj , out), (vl, in)) = 0.
ad (d): f((vl, in), t) > 0 since c(t, (vl, in)) = 0.

We first show that xf fulfils part (A) of the flow property. For this we claim that the
(A)-sums of xi and xf are equal w.r.t. each node vl. For convenience assume f(ν, µ) =
0 for (ν, µ) �∈ E→. The argumentation is based on the observation, that by definition
for a node vl with (t, (vl, in)) �∈ E→:

∑

vj<vl

f((vj , out), (vl, in)) =
∑

(ν,(vl,in))∈E→

f(ν, (vl, in)) = 0.

The last equality follows by the definition of flows. In this case:
∑

vj<vl

xf (vj , vl) =
∑

vj<vl

(xi(vj , vl) − f((vj , out), (vl, in)))

=
∑

vj<vl

xi(vj , vl) −
∑

vj<vl

f((vj , out), (vl, in))

=
∑

vj<vl

xi(vj , vl).

In case (t, (vl, in)) ∈ E→ we similarly get the same result.
Finally we show that xf fulfils part (B) of the flow property for all indexes j <

maxi. If (t, (vj , out)) �∈ E→, we deduce as above that the (B)-sums of xi and xf are
equal w.r.t. vj . In the case (t, (vj , out)) ∈ E→ we get:

∑

vj<vl

f((vj , out), (vl, in)) =

⎛

⎝
∑

((vj ,out),µ)∈E→

f((vj , out), µ)

⎞

⎠ − f((vj , out), t)

= −f((vj , out), t).

As above we deduce
∑

vj<vl

xf (vj , vl) =
∑

vj<vl

xi(vj , vl) −
∑

vj<vl

f((vj , out), (vl, in))

=
∑

vj<vl

xi(vj , vl) + f((vj , out), t)

�
∑

vj<vl

xi(vj , vl) + c((vj , out), t) = W ((l(vj), p)).

��

304 G. Juhás, R. Lorenz, and J. Desel

4.4 The Main Procedure

By Lemma 4, for each flow f in the associated flow network we can decrease the (B)-
sum for the index maxi by |f |, while (A) for all indexes and (B) for all indexes smaller
then maxi remain satisfied. Thus, the main procedure is defined as follows:

– Input: Flow function xi.
– Compute associated flow network w.r.t. xi.
– Compute maximal flow f in this flow network.
– Compute xf .
– Output: Flow function xi+1 = xf .

Computing the maximal flow f depends on the applied maximum flow algorithm.
As already mentioned, there are maximum flow algorithms taking cubic time and faster.
The other steps take at most quadratic time. Altogether the main procedure takes at most
cubic time.

Let us mention that the main procedure could be optimized by terminating the max-
imum flow algorithm as soon as

∑
vmaxi

<v′ xi(vmaxi
, v′) − |f | � W ((l(vmaxi

), p)).

4.5 Termination of the Algorithm

If the algorithm terminates because xi fulfils (B), then lpo fulfils the flow property for
the place p.

It remains to prove that if the algorithm terminates because maxi = maxi−1, then
lpo is not enabled w.r.t. (N,m0). From proposition 3 this implies that lpo is not exe-
cutable in (N,m0).

Theorem 3. Let f be the maximal flow of the associated flow network w.r.t. xi. Assume
moreover that xf does not fulfil (B) for the index maxi. Then there is a cut C, such
that lpo is not enabled w.r.t. C:

m0(p) +
∑

v<C,v∈V

W ((l(v), p)) −
∑

v<C

W ((p, l(v))) −
∑

v∈C

W ((p, l(v))) < 0.

The proof is based on the following lemma which states that for each flow f and
each flow decreasing sequence w.r.t. xf there is a flow augmenting path w.r.t. f in the
flow network associated to xi.

Lemma 5. Let f be a flow in the flow network G(xi) = (V (xi),→, c) and let v0 =
vmaxi

, w1, v1, . . . , wk, vk be a flow deceasing sequence w.r.t. xf . Then

– If the flow decreasing sequence is of the first kind,
then (v0, out) = (vmaxi

, out), (w1, in), (v1, out), . . . , (wk, in), t is a flow aug-
menting path w.r.t. f .

– If the flow decreasing sequence is of the second kind,
then (v0, out) = (vmaxi

, out), (w1, in), (v1, out), . . . , (wk, in), (vk, out), t is a
flow augmenting path w.r.t. f .

Can I Execute My Scenario in Your Net? 305

Proof. Let vmaxi
, w1, v1, . . . , wk, vk be a flow decreasing sequence of the first kind.

We have to show that (vmaxi
, out), (w1, in), (v1, out), . . . , (wk, in), t is a path in the

residual network (V (xi),→r, cr) of f . We have

– cr((wj , in), (vj , out)) = c((wj , in), (vj , out)) − f((wj , in), (vj , out)) = M −
f((wj , in), (vj , out)) > 0 since (wj , in) → (vj , out).

– cr((vj , out), (wj+1, in)) = c((vj , out), (wj+1, in)) − f((vj , out), (wj+1, in)) =
xi((vj , out), (wj+1, in)) − f((vj , out), (wj+1, in)) = xf (vj , wj+1) > 0.

– cr((wk, in), t) = c((wk, in), t) − f((wk, in), t) = M − f((wk, in), t) > 0.

Let now vmaxi
, w1, v1, . . . , wk, vk be a flow decreasing sequence of the second

kind. We show that (vmaxi
, out), (w1, in), (v1, out), . . . , (wk, in), (vk, out), t is a path

in the residual network of f .
To show cr((wj , in), (vj , out)), cr((vj , out), (wj+1, in)) > 0 works as above.

Moreover, we get analogously as in the proof of lemma 4:
cr((vk, out), t) = c((vk, out), t)−f((vk, out), t) = W ((l(vk), p))−∑

vk<v′ xi(vk, v′)
−f((vk, out), t) = W ((l(vk), p)) − ∑

vk<v′ xf (vk, v′) > 0. ��
From lemma 5 and theorem 2 we get immediately that for the maximal flow f there

is no flow decreasing sequence w.r.t. xf .

Lemma 6. Let f be the maximal flow of the network G(xi) = (V (xi),→, c) associated
to xi. Assume further xf does not fulfil property (B) for the index maxi.

Define W as the set consisting of vmaxi
and all events v ∈ V 0 such that there exists

a sequence v0 = vmaxi
, w1, v1, . . . , wk, vk = v with

(i) wj �= wm and vj �= vm for j �= m,
(ii) xf (vj , wj+1) > 0 and vj <0 wj .

Define C as the set of all w ∈ V with w �∈ W such that there exists v ∈ W with
xf (v, w) > 0. Then it holds:

(a) If vj ∈ W then j � maxi.
(b) v <0 C ⇔ v ∈ W .
(c) C is a co-set.
(d) C ′ = {w ∈ V | w /∈ W ∧ (v <0 w ⇒ v ∈ W)} is a cut and C ⊆ C ′.
(e) For every vj ∈ W with j �= maxi we have

∑
vj<0v′ xf (vj , v

′) = W ((l(vj), p)).

Proof. ad (a): Assume vj ∈ W with j > maxi. There is a sequence v0 = vmaxi
, w1, v1

, . . . , wk, vk = vj fulfilling (i) and (ii). Take the smallest index m such that there is
u > maxi with vm = vu. By definition v0 = vmaxi

, w1, v1, . . . , wm, vm is a flow
decreasing sequence of the first kind. This contradicts the assumption (since by Lemma
5 there is no flow decreasing sequence w.r.t. xf).

ad (b): (=⇒) Let v <0 C. If v = vmaxi
, then v ∈ W by definition of W . Let

v �= vmaxi
: v <0 C implies that there is w ∈ C with v <0 w. By definition of C

there exists v′ ∈ W with xf (v′, w) > 0. If v = v′, we get v ∈ W . Let v �= v′.
If v′ = vmaxi

, then the sequence v′, w, v fulfils (i) and (ii) and therefore v ∈ W .
Otherwise by definition of W there is a sequence v0, w1, v1, . . . , wk, vk = v′ fulfilling

306 G. Juhás, R. Lorenz, and J. Desel

(i) and (ii). If v = vj for some j, then v ∈ W . Let v �= vj for all j. If wj �= w for
all j, then also the sequence v0, w1, v1, . . . , wk, v′, w, v fulfils (i) and (ii), i.e. v ∈ W .
If wj = w for some j, let m be the smallest index with wm = w. Then the sequence
v0, w1, v1, . . . , wm = w, v fulfils (i) and (ii), i.e. v ∈ W .

(⇐=) Let v ∈ W . If v = vmaxi
then we have: Because xf does not fulfil (B) for

the index maxi, there exists a node vj ∈ V with j > maxi such that xf (v, vj) > 0
and in particular v <0 vj . According to (a) and the definition of C we have vj ∈
C and v <0 C (in particular C is nonempty). If v �= vmaxi

then there is a se-
quence v0, w1, v1, . . . , wk, vk = v fulfilling (i) and (ii). Since vk−1 ∈ W , we get
xf (vk−1, wk) > 0. If wk �∈ W , this implies wk ∈ C. From v = vk < wk we obtain
v <0 C. If w = wk ∈ W , there is a sequence v0, w1, v1, . . . , wl, vl = w fulfilling (i)
and (ii). From v <0 w and w <0 wl we obtain v <0 wl. Again if wl �∈ W , we are
done, else repeat this procedure. Obviously, this procedure terminates according to the
the fact that V is finite and for every v ∈ W there is a w ∈ V satisfying v <0 w, i.e. W
does not contain maximal elements w.r.t. partial order <0.

ad (c): Assume two events w,w′ ∈ C with w < w′. From (b) we obtain w ∈ W ,
which is a contradiction to w ∈ C.

ad (d): From (b) and (c) we get that W is a downward closed. From definition of
W we have that it does not contain maximal elements. It is a well known fact that then
the set C ′ is a cut. From (b) we also get C ⊂ C ′.

ad (e): Assume vj ∈ W with j �= maxi and
∑

vj<0v′ xf (vj , v
′) �= W ((l(vj), p)).

From (a) we get j < maxi. Since xf fulfils (B) for all indexes smaller than maxi,
this implies

∑
vj<0v′ xf (vj , v

′) < W ((l(vj), p)). Let v0, w1, v1, . . . , wk, vk = vj be
a sequence fulfilling (i) and (ii). By the above consideration this sequence is a flow
decreasing sequence of the second kind. This is a contradiction to the assumption. ��

Lemma 7. Let f be the maximal flow of the associated flow network G(xi) w.r.t. xi

and assume xf does not fulfil (B) for the index maxi. Then C ′ is a cut satisfying

m0(p) +
∑

v<C′,v∈V

W ((l(v), p)) −
∑

v<C′
W ((p, l(v))) −

∑

v∈C′
W ((p, l(v))) < 0.

Proof. We first prove the inequality for the co-set C. Since xf fulfils (A) we can replace
W ((p, l(v))) by

∑
v′<0v xf (v′, v) for each v <0 C and v ∈ C. Because xf fulfils

statement (b) of the last lemma we can replace W ((l(v), p)) by
∑

v<0v′ xf (v, v′) for
each v <0 C, v �= vmaxi

. Moreover m0(p) equals
∑

v0<0v′ xf (v0, v
′). Finally we can

use W ((l(vmaxi
), p)) <

∑
vmaxi

<0v′ xf (vmaxi
, v′).

Altogether it is enough to show that

∑

v<0C

∑

v<v′
xf (v, v′) −

∑

v<0C

∑

v′<0v

xf (v′, v) −
∑

v∈C

∑

v′<0v

xf (v′, v) = 0.

We claim that in this sum each value xf (v, v′) equals either 0 or is counted once
positively and once negatively. The second alternative is obviously fulfiled if v′ < C

Can I Execute My Scenario in Your Net? 307

or v′ ∈ C. Observe now that for v < C and xf (v, v′) > 0 we get by the definition
of W and C that v′ <0 C or v′ ∈ C. That means if xf (v, v′) does not fulfil the first
alternative, it fulfils the second alternative.

Observe v <0 C ⇔ v <0 C ′. That means, replacing C by C ′ in the above sum
could only change the value of the third sum, namely by values xf (v′, v) with v ∈
C ′ \ C. These values are equal to 0 by the definition of C. ��

5 Strict Executability

In this section we briefly outline a polynomial test for the strict executability of an
LPO. The flow property is a necessary and sufficient condition of the executability of
a labelled partial order. We extend the flow property to get a necessary and sufficient
condition for an LPO to be exactly a run of a marked p/t-net.

Given a partial order (V,<), let �⊆< be the skeleton of <, i.e. the smallest subset
of < which fulfils: �+=<.

Definition 16 (Strong flow property). A labelled partial order (V,<, l) fulfils the
strong flow property w.r.t. (N,m0) if there exists a family X = {xp | p ∈ P} of
flows fulfilling the flow property which satisfies: the skeleton � of < is a subset of the
relation QX = {(v, v′) ∈ V × V | ∃p ∈ P : xp(v, v′) > 0}.

One can easily check that the canonical flow of a run fulfils the strong flow property.
Observe that the flow functions of a labelled partial order which fulfil the flow property
used for construction of the process in the proof of lemma 3 are the canonical flow
functions of the underlying run of the constructed process. Thus, we obtain:

Theorem 4. A labelled partial order fulfils the strong flow property w.r.t. (N,m0) if
and only if it is a run of (N,m0).

By Definition 10, the executability of an LPO is a necessary condition for its strict
executability. Now, take an LPO lpo = (V,<, l) which is executable in a marked p/t net
(N,m0), i.e. which fulfils the flow property w.r.t. (N,m0). Denote X = {xp | p ∈ P}
the family of flows fulfilling the flow property computed by the algorithm presented in
the previous section. The following algorithm decides whether lpo is strictly executable
w.r.t. (N,m0), i.e. whether it is a minimal run of (N,m0). If the answer is positive,
then X is the family of canonical flows of the underlying minimal run.

– Compute skeleton � of the partial order (V,<);
– if ��⊆ QX then return ”lpo is not strictly executable”;
– else for each edge e ∈�: test whether (V,< \{e}, l) is executable; if yes, return

”lpo is not strictly executable”;
– return ”lpo is strictly executable”.

Due to lack of space, we omit a detailed proof of the correctness of the algorithm
and just give some intuition: Observe that after removing a skeleton edge from a partial
order < one still gets a partial order. Moreover, any proper subset of a partial order <,

308 G. Juhás, R. Lorenz, and J. Desel

which is itself a partial order, is a subset of a partial order obtained from < by removing
a skeleton edge. Thus, if the algorithm returns ”lpo is not strictly executable”, then
a run was computed which is a proper subset of lpo, i.e. lpo cannot equal a minimal
run. If the algorithm returns ”lpo is strictly executable”, then lpo fulfils the strong flow
property and therefore it is a run, and all LPOs which are proper subsets of lpo are not
executable, i.e. do not include a run. That means lpo does not properly include any run
and therefore it is a minimal run. Obviously the algorithm runs in polynomial time.

6 Conclusion

We have presented a polynomial algorithm for testing whether an LPO is executable in
a place/transition net while preserving at least the given amount of concurrency, or in
other words, adding no causality (i.e. whether it is a sequentialization of a run). Further,
we have formulated a polynomial test deciding whether an LPO is strictly executable,
i.e. whether the given amount of concurrency is maximal, or complementary, whether
the amount of causality is minimal (i.e. whether the LPO equals a minimal run). It is
a question of further research to determine efficiently whether an LPO is executable
preserving exactly the given amount of concurrency and causality, i.e. whether it equals
a (not necessarily minimal) run. Another interesting question is generalization of so
called ”legal firing sequence” problem, namely to determine whether an LPO can be
executed while preserving at least the given amount of causality (adding no concur-
rency). Finally, one could combine both approaches into a scenario based specification
prescribing minimal/maxiamal level of causality and concurrency.

References

1. J. Desel and W.Reisig. Place/Transition Petri Nets. In Lectures on Petri nets I: Basic Models,
LNCS 1491, pp. 123–174,1998.

2. L.R. Ford, Jr. and D.R. Fulkerson. Maximal Flow Through a Network. Canadian Journal of
Mathematics 8, pp. 399–404, 1955.

3. A. Goldberg and S. Rao. Beyond the Flow Decomposition Barrier. Journal of the ACM 45/5,
pp. 783–797, 1998.

4. U. Goltz and W. Reisig. The Non-Sequential Behaviour of Petri Nets. Information and
Control, 57(2-3), pp. 125-147, 1983.

5. U. Goltz and W. Reisig: Processes of Place/Transition Nets. - Proc. of ICALP’83, LNCS
154, pp. 264-277, 1983.

6. J. Grabowski. On Partial Languages. Fundamenta Informaticae IV.2, pp. 428–498, 1981.
7. A.V. Karzanov. Determining the Maximal Flow in a Network by the Method of Preflows.

Soviet Math. Doc. 15, pp. 434–437, 1974.
8. A. Kiehn. On the Interrelationship between Synchronized and Non-Synchronized Behavior

of Petri Nets. Journal Inf. Process. Cybern. EIK 24, pp. 3 – 18, 1988.
9. V. Pratt. Modelling Concurrency with Partial Orders. Int. Journal of Parallel Programming

15, pp. 33–71, 1986.
10. W. Vogler. Modular Construction and Partial Order Semantics of Petri Nets. LNCS 625,

1992.
11. W. Vogler. Partial words versus processes: a short comparison, Advances in Petri Nets,

LNCS 609, Springer 1992, pp. 292-303.

	Introduction
	Place/Transition Nets
	Place/Transition Net Definitions
	Labelled Partial Orders
	Processes, Runs and Executability of LPOs

	Flow Property
	Testing the Flow Property
	The Algorithm
	Flow Decreasing Sequences
	The Associated Flow Network
	The Main Procedure
	Termination of the Algorithm

	Strict Executability
	Conclusion
	References

