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Abstract. High-Level net models following the paradigm “nets as to-
kens” have been studied already in the literature with several interesting
applications. In this paper we propose the new paradigm “nets and rules
as tokens”, where in addition to nets as tokens also rules as tokens are
considered. The rules can be used to change the net structure. This leads
to the new concept of high-level net and rule systems, which allows to in-
tegrate the token game with rule-based transformations of P/T-systems.
The new concept is based on algebraic high-level nets and on the main
ideas of graph transformation systems. We introduce the new concept
with the case study “House of Philosophers”, a dynamic extension of
the well-known dining philosophers. In the main part we present a basic
theory for rule-based transformations of P/T-systems and for high-level
nets with nets and rules as tokens leading to the concept of high-level
net and rule systems.

Keywords: High-level net models, algebraic high-level nets, nets and
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1 Introduction

The paradigm “nets as tokens” has been introduced by Valk in order to allow nets
as tokens, called object nets, within a net, called a system net (see [Val98, Val01]).
This paradigm has been very useful to model interesting applications in the
area of workflow, agent-oriented approaches or open system networks. Especially
his concept of elementary object systems [Val01] has been used to model the
case study of the hurried philosophers proposed in [Sil01]. In elementary object
systems object nets can move through a system net and interact with both
the system net and with other object nets. This allows to change the marking
of the object net, but not their net structure. According to the requirements
of the hurried philosophers in [Sil01] the philosophers have the capability to
introduce a new guest at the table, which - in the case of low level Petri nets -
certainly changes the net structure of the token net representing the philosophers
at the table. We use the notion of token net instead of object net in order to
avoid confusion with features of object-oriented modeling. Instead our intention
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is to consider the change of the net structure as rule-based transformation of
Petri nets in the sense of graph transformation systems [Ehr79, Roz97]. In order
to integrate the token game of Petri nets with rule-based transformations, we
propose in this paper the new paradigm “nets and rules as tokens” leading to
the concept of high-level net and rule systems.

In Section 2 we show how this new concept can be used to model the main
requirements of the hurried philosophers [Sil01]. Of course, this concept has
interesting applications in all areas where dynamic changes of the net structure
have to be considered while the system is still running. This applies especially
to flexible workflow systems (see [Aal02]) and medical information systems (see
[Hof00]).

In Section 3 we introduce the basic theory for rule-based transformations
of P/T-systems. This theory is inspired by graph transformation systems
[Ehr79, Roz97], which have been generalized already to net transformations sys-
tems in [EHK91, EP04], including high-level and low-level nets. The theory in
these papers is based on pushouts in the corresponding categories according to
the double-pushout approach of graph transformations in [Ehr79]. In order to
improve the intuition of our concepts for the Petri net community we give in
this paper an explicit approach of rule-based transformations for P/T-systems,
which is new and extends the theory of P/T-net transformations taking into
account also initial markings, and avoids categorical terminology like pushouts.
Moreover, the interaction of the token game and transformation of nets - as
considered in this paper - has not been studied up to now.

In Section 4 we introduce high-level nets with nets and rules as tokens leading
to our new concept of high-level net and rule (HLNR) systems motivated above.
This new concept is based on algebraic high-level (AHL) nets [PER95] using the
terminology of [EHP02]. In order to model nets and rules as tokens we present
a specific signature together with a corresponding algebra with specific sorts for
P/T-systems and rules. Moreover, there are operations corresponding to firing
of a transition and applying a rule to a P/T-system respectively. Since AHL-
nets are based on classical algebraic specifications (see [EM85]) we are able to
give a set theoretic definition of domains and operations. In order to obtain
also an algebraic specification we need algebraic higher-order specifications as
presented in HasCasl [Hets, SM02], which allows to specify function types with
set-theoretic notions of semantics using intensional algebras.

In Section 5 we discuss specification and implementation aspects for our ap-
proach. More precisely, we discuss how the concept of algebraic higher-order
(AHO) nets based on HasCasl, which has been already introduced in [HM03],
can be used to specify the algebra of HLNR-systems. Since tools for HasCasl
already have been implemented [Mos05, Hets] this is an important step towards
implementation and tool support for HLNR-systems. Unfortunately, this is not
possible using CPN tools [RWL03] for Coloured Petri (CP) Nets [Jen92]. Ac-
tually, CP-Nets are based on an extension of the functional language Standard
ML [MTH97]. As Standard ML does not allow functional equivalence testing, it
is not suitable for our purpose where we need a form of functional equivalence.
The conclusion in Section 6 includes proposals for future work.
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2 Case Study: House of Philosophers

In order to illustrate the concepts described in Section 3 and Section 4 we will
present a small system inspired by the case study “the Hurried Philosophers”
of C. Sibertin-Blanc proposed in [Sil01] which is a refinement of the well-known
classical “Dining Philosophers”.

Requirements. In our case study “House of Philosophers” presented below
we essentially consider the following requirements:
1. There are three different locations in the house where the philosophers can

stay: the library, the entrance-hall, and the restaurant;
2. In the restaurant there are different tables where one or more philosophers

can be placed to have dinner;
3. Each philosopher can eat at a table only when he has both forks, i.e. the

philosophers at each table follow the rules of the classical “Dining Philoso-
phers”;

4. The philosophers in the entrance-hall have the following additional capabil-
ities:
(a) They are able to invite another philosopher in the entrance-hall to enter

the restaurant and to take place at one of the tables;
(b) They are able to ask a philosopher at one of the tables with at least two

philosophers to leave the table and to enter the entrance-hall.

System Level. In Fig. 1 we present the system level of our version of the case
study. The system level is given by a high-level net and rule system, short HLNR-
system, which will be explained in Section 4. The marking of the HLNR-system
shows the distribution of the philosophers at different places in the house and
the firing behavior of the HLNR-system describes the mobility of the philoso-
phers. There are three different locations in the house where the philosophers
can stay: the library, the entrance-hall, and the restaurant. Each location is rep-
resented by its own place in the HLNR-system in Fig. 1. Initially there are two
philosophers at the library, one philosopher at the entrance-hall, and four ad-
ditional philosophers are at table 1 resp. table 2 (see Fig. 5 and Fig. 6) in the
restaurant.

Philosophers may move around, which means they might leave and enter the
library and they might leave and enter the tables in the restaurant. The mobility
aspect of the philosophers is modeled by transitions termed enter and leave
library as well as enter and leave restaurant in our HLNR-system in Fig. 1. While
the philosophers are moving around, the static structure of the philosophers is
changed by rule-based transformations. E.g. a philosopher enters the restaurant
and arrives at a table. Then the structure and the seating arrangement of the
philosophers have to be changed. For this reason, we have tokens of type Rules,
rule1, . . ., rule4, which are used as resources. Because the philosophers have
their own internal behavior, there are two transitions, start/stop reading and
start/stop activities, to realize the change of the behavior.
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Fig. 1. High-level net and rule system of “House of Philosophers”

thinking1 reading1

Fig. 2. Token net phi1 of philosopher 1 Fig. 3. Token net phi ′1 of philosopher 1

thinking1 reading1
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L1

thinking reading

R1I1

thinkingthinking

Fig. 4. Token rule of rule rule1

Token Level. The token level consists of two different types of tokens: P/T-
systems and rules. They are represented as tokens in the places typed System and
Rules of the HLNR-system in Fig. 1. The tokens on system places are modeled
by P/T-systems, i.e. Petri nets with an initial marking. In Fig. 2 the net phi1 of
the philosopher 1 is depicted, which - in the state thinking - is used as a token
on the place Library in Fig. 1. To start reading, we use the transition start/stop
reading of the HLNR-system in Fig. 1. First the variable n is assigned to the net
phi1 of the philosopher 1 and the variable t to a transition t0 ∈ T0 where T0 is a
given vocabulary of transitions. The condition enabled(n,t)=tt means that under
this assignment t0 is an enabled transition in the net of phi1. The evaluation
of the term fire(n, t) computes the follower marking of the net (i.e. token
reading1) and we obtain the new net phi ′1 of the philosopher 1 depicted in Fig. 3.

Mobility of Philosophers by Application of Rules. We assume that the
philosopher 1 wants to leave the library, i.e. the transition leave library in the
HLNR-system in Fig. 1 must fire. For this purpose we have to give an assignment
for the variables n, r and m in the net inscriptions of the transition. They are
assigned to the net phi1 (see Fig. 2), the rule rule1 (see Fig. 4), and a match
morphism m1 : L′ → G between P/T-systems. The first condition cod m=n
requires G = phi1 and the second condition applicable(r,m)=tt makes sure that
rule rule1 is applicable to phi1, especially L′ = L1, s.t. the evaluation of the term
transform(r,m) leads to the new net phi ′′1 isomorphic to R1 of rule1 in Fig. 4. As
result of this firing step phi1 is removed from place Library and phi ′′1 is added
on place Entrance-Hall. In general, a rule r = (L i1←− I

i2−→ R) is given by three
P/T- systems called left-hand side, interface, and right-hand side respectively.

In a further step the philosopher 1 is invited by the philosopher 3 to en-
ter the restaurant in order to take place as a new guest at the table 1. The
philosopher 3 accompanies philosopher 1 but returns to the entrance-hall. The
token net phi3 of philosopher 3 is isomorphic to R1 of rule1 in Fig. 4 where
thinking in R1 is replaced by thinking3. Currently the philosophers 4 and 5 are
at the table 1 (see Fig. 5). Both philosophers may start eating, but apparently
compete for their shared forks, where left fork4=right fork5 and left fork5=right
fork4. Analogously table 2 has the same net structure as table 1 but different
philosophers are sitting at table 2 (see Fig. 6). To introduce the philosopher 1
at the table 1 the seating arrangement at table 1 has to be changed. In our case
the new guest takes place between philosopher 4 and 5. Formally, we apply rule
rule2 = (L2

i1←− I2
i2−→ R2), which is depicted in the upper row of Fig. 7 and

used as token on place Rule2. We have to give an assignment v for the variables
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thinking4

eating4

eating5

thinking5

left
fork4

left
fork5

Fig. 5. Token net table1 of
philosopher 4 and 5 at table 1

Fig. 6. Token net table2 of
philosopher 6 and 7 at table 2

thinking6

eating6

eating7

thinking7

left
fork6

left
fork7

of the transition enter restaurant, i.e. variables n1, n2, n3, r, and m. The assign-
ment v is defined by v(n1) = table1, v(n2) = phi′′1 , v(n3) = phi3, v(r) = rule2,
and v(m) = g (see match morphism g : L2 → G in Fig. 7). Then we compute the
disjoint union of the P/T-system phi ′′1 and the P/T-system table1 as denoted by
the net inscription n1 coproduct n2 in the firing condition of the transition enter
restaurant. The result is the disjoint union of both nets shown as P/T-system G
in Fig. 7.

In our case the match g maps thinkingj and eatingj in L2 to thinking4 and
eating4 in G of Fig. 7. The condition cod m = n1 coproduct n2 makes sure that
the codomain of g is equal to G. The second condition applicable(r,m)=tt checks
if rule2 is applicable with match g to G (see “gluing condition” (Def. 4) and
“applicability” (Def. 5) in Section 3). In the direct transformation shown in Fig.
7 we delete in a first step g(L2 \I2) from G leading to P/T-system C. Note, that
a positive check of the “gluing condition’ makes sure that C is a well-defined
P/T-system (see Prop. 2 in Section 3). In a second step we glue together the
P/T-systems C and R2 along I2 leading to P/T-system H in Fig. 7. H shows
the new version of table 1 given by the net table ′

1 of table 1, where philosophers
1, 4, and 5 are sitting at the table, all of them in state thinking. The effect of
firing the transition enter restaurant in Fig. 1 with assignments of variables as
discussed above is the removal of P/T-systems phi ′′1 from place Entrance Hall
and table1 from place Restaurant and adding P/T-System table ′

1 to the place
Restaurant.

Philosophers in the entrance-hall have the capability to ask one of the philoso-
phers in the restaurant to leave; this is realized in our system by the transition
leave restaurant in Fig. 1. We use the rule rule3 defined as inverse of rule2 in
Fig. 7, i.e. rule3 = (R2

i2←− I2
i1−→ L2), which is present as a token on place

Rule3. This rule is applied with inverse direct transformation to that depicted
in Fig. 7. Finally, the rule rule4 is the inverse of rule rule1 (see Fig. 4), enabling
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Fig. 7. Direct Transformation

the philosopher to enter the library by firing of the transition enter library in
Fig. 1. We have to guarantee that after the application of rule3 the philosopher
who is leaving the restaurant goes into the entrance-hall. In our case one philoso-
pher is asked by philosopher 3 in the entrance-hall to leave the table. Formally
this is denoted by the firing condition isomorphic(n2, n3) = tt which ensures
that the net of the philosophers denoted by n2 is isomorphic to the net phi3 of
philosopher 3 denoted by n3.

The execution of philosopher activities at different tables, i.e. the firing of
the transition start/stop activities in Fig. 1, is analogously defined as the firing
of the transition start/stop reading described above.

Validation of Requirements. Our case study “House of Philosophers”
satisfies the requirements presented in the beginning of this section.

1. The three different locations in the house are represented by places Library,
Entrance-Hall, and Restaurant in Fig. 1;

2. In the initial state we have the two tables table1 with philosophers 4 and 5
and table2 with philosophers 6 and 7 on place Restaurant. In a later state
also philosopher 1 is sitting at table1 as shown by net H of Fig. 7;

3. If there are n ≥ 2 philosophers sitting at each table, the table with n philoso-
phers is presented by the classical “Dining Philosophers” net;

4. The capability of a philosopher in the entrance-hall to invite another
philosopher to enter (leave) the restaurant is given by firing of the transition
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enter restaurant (leave restaurant) in Fig. 1. The applicability of the rule
rule3 ensures that a philosopher only leaves a table with at least two
philossphers.

Related Work. In [ADC01] there are several other solutions for the case study
“the Hurried Philosophers” modeled by different kinds of (high-level) net classes.
Most of these approaches integrate object-oriented modeling and Petri nets,
including e.g. inheritance, encapsulation, and dynamic binding, etc. In this paper
we do not need features of object-oriented modeling. But it is an interesting
aspect to extend our approach by integration of these features.

In the solution of the case study using elementary object systems [Val01], each
philosopher has his own place and the exchange of forks between the philoso-
phers is realized by an interaction relation. By contrast in our case each table
is modeled by its own P/T-system and describes the states and the seating ar-
rangement of present philosophers. Moreover we use rule-based transformations
to change the structure of P/T-systems, especially the states and the seating
arrangement. In the sense of object-oriented modeling it might be considered to
split up the table with philosophers into a net table with only the table prop-
erties and nets for each philosopher at the table. In fact our approach allows to
model such self-contained components but this would lead to a much more com-
plex model. The advantage of our approach compared with elementary object
systems is a more flexible modeling technique. While the HLNR-system in Fig.
1 is fixed we can add further philosophers and philosophers at tables by adding
further tokens of type System to our model. Analogously we can add further
token rules to realize other kinds of transformations.

Note, that elementary object systems [Val01] allow a simple notion of nets
as tokens, such that most principles of elementary net theory are respected and
extended. Here on the one hand the system-object interaction relation consists
of transitions in the system net and transitions in the object net which have to
be fired in parallel, and on the other hand the object-object interaction relation
guards the parallel firing of transitions in different object nets. By contrast, we
are using different formal frameworks for the token level and the system level.
In order to integrate interaction relations into our concept of HLNR-system
we can extend the signature and the algebra of the algebraic high-level net
by appropriate operations and formulate the dependencies between transitions
in the firing conditions of the HLNR-system. In this way we can show that
elementary object systems can be translated into semantically equivalent HLNR-
systems extended by interaction relations.

The idea of controlled modification of token nets is discussed in the context of
linear logic Petri nets [Far99] and feature structure nets [Wie01]. The difference
to our approach is that in those approaches, the modification is not carried out
by rule tokens, but by transition guards. We are not restricted to define a specific
token rule for each transition, but we are able to give a (multi-)set of token rules
as resources bound to each transition, which realize the local replacement of
subnets.
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3 Rule-Based Transformation of P/T-Systems

In this section we present rule-based transformations of nets following the
double-pushout (DPO) approach of graph transformations in the sense of
[Ehr79, Roz97]. As net formalism we use P/T-systems following the notation
of “Petri nets are Monoids” in [MM90]. In this notation a P/T-system is
given by PN = (P, T, pre, post,M0) with pre- and post domain functions
pre, post : T → P⊕ and initial marking M0 ∈ P⊕, where P⊕ is the free com-
mutative monoid over the set P of places with binary operation ⊕. Note that
M0 can also be considered as function M0 : P → N with finite support and the
monoid notation M0 = 2p1 ⊕ 3p2 means that we have two tokens on place p1

and three tokens on p2. A transition t ∈ T is M -enabled for a marking M ∈ P⊕

if we have pre(t) ≤ M and in this case the follower marking M ′ is given by
M ′ = M � pre(t) ⊕ post(t). Note that the inverse � of ⊕ is only defined in
M1 � M2 if we have M2 ≤ M1.

In order to define rules and transformations of P/T-systems we have to in-
troduce P/T-morphisms which are suitable for our purpose.

Definition 1 (P/T-Morphisms).
Given P/T-systems PNi = (Pi, Ti, prei, posti,M

0
i ) for i = 1, 2, a P/T-morphism

f : PN1 → PN2 is given by f = (fP , fT ) with functions fP : P1 → P2 and
fT : T1 → T2 satisfying

(1) f⊕
P ◦ pre1 = pre2 ◦ fT and f⊕

P ◦ post1 = post2 ◦ fT

(2) f⊕
P (M0

1|p) ≤ M0
2|fP (p) for p ∈ P1

Note that the extension f⊕
P : P⊕

1 → P⊕
2 of fP : P1 → P2 is defined by

f⊕
P (

∑n
i=1 ki · pi) =

∑n
i=1 ki · fP (pi) and the restriction M0

1|p by M0
1|p = M0

1 (p) · p
where M0

1 is considered as function M0
1 : P → N. (1) means that f is compatible

with pre- and post domain and (2) that the initial marking of N1 at place p is
smaller or equal to that of N2 at fP (p). Moreover the P/T-morphism f is called
strict if f⊕

P (M0
1|p) = M0

2|fP (p) and fP , fT are injective (3).

The category defined by P/T-systems and P/T-morphisms is denoted by
PTSys where the composition of P/T-morphisms is defined componentwise for
places and transitions. Examples of P/T-morphisms are given in Fig. 7.

The next step in order to define transformations of P/T-systems is to define
the gluing of P/T-systems in analogy to concatenation in the string case.

Definition 2 (Gluing of P/T-Systems).
Given P/T-systems PNi = (Pi, Ti, prei, posti,M

0
i ) for i = 0, 1, 2 with strict

inclusion inc : PN0 → PN1 and P/T-morphism f : PN0 → PN2. Then the
gluing PN3 of PN1 and PN2 via (PN0, f), written PN3 = PN1 +(PN0,f) PN2,
is defined by the following diagram (1), called “gluing diagram”, with

1. ∀p ∈ P1 = P0 
 (P1 \ P0) : f ′
P (p) = if p ∈ P0 then fP (p) else p

∀t ∈ T1 = T0 
 (T1 \ T0) : f ′
T (t) = if t ∈ T0 then fT (t) else t
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2. PN3 = (P3, T3, pre3, post3,M
0
3 ) with

- P3 = P2 
 (P1 \ P0), T3 = T2 
 (T1 \ T0),
- pre3(t) = if t ∈ T2 then pre2(t)

else f ′⊕
P (pre1(t)),

- post3(t) = if t ∈ T2 then post2(t)
else f ′⊕

P (post1(t)) and
- M0

3 = M0
2 ⊕ (M0

1 � M0
0 ).

PN0

f

��

inc ��

(1)

PN1

f ′

��
PN2

inc′
�� PN3

Remark 1. The disjoint union in the definition of P3 and T3 takes care of the
problem that there may be places or transitions in PN2, which are - by chance -
identical to elements in P1 \P0 or T1 \T0, but only elements in PN0 and f(PN0)
should be identified. In this case the elements of P1 \ P0 and T1 \ T0 should be
renamed before applying the construction above.

Proposition 1 (Gluing of P/T-Systems).
The gluing PN3 = PN1 +(PN0,f) PN2 is a well-defined P/T-system such that
f ′ : PN1 → PN3 is a P/T-morphism, inc′ : PN2 → PN3 is a strict inclusion
and the gluing diagram (1) commutes, i.e. f ′ ◦ inc = inc′ ◦ f .

Proof. 1. PN3 is a well-defined P/T-system, because pre3, post3 : T3 → P⊕
3

are well-defined functions. Now f ′ = (f ′
P , f ′

T ) : PN1 → PN3 is a P/T-
morphism, because we have pre3 ◦ f ′

T = f ′⊕
P ◦ pre1 (and similar for post) by

case distinction:

Case 1. For t ∈ T0 we have pre3(f ′
T (t)) = pre3(fT (t)) = pre2(fT (t)) =

f⊕
P (pre0(t)) = f ′⊕

P (pre0(t)) = f ′⊕
P (pre1(t)).

Case 2. For t ∈ T1 \ T0 we have pre3(f ′
T (t)) = pre3(t) = f ′⊕

P (pre1(t)).

We have marking compatibility of f ′ by:

Case 1. For p ∈ P0 we have
f ′⊕

P (M0
1|p) = f⊕

P (M0
0|p) ≤ M0

2|fP (p) ≤ M0
3|fP (p) = M0

3|f ′
P (p).

Case 2. For p ∈ P1 \ P0 we have
f ′⊕

P (M0
1|p) = f ′⊕

P ((M0
1 � M0

0 )|p) = (M0
1 � M0

0 )|p ≤ M0
3|f ′

P (p) .

2. inc′ : PN2 → PN3 is a P/T-system inclusion by construction. The marking
M0

3 is well-defined because M0
0 ≤ M0

1 and M0
0|p = M0

1|p for p ∈ P0 by
strict inclusion inc : PN0 → PN1. Moreover inc′ is strict, because we have
M0

1 � M0
0 ∈ (P1 \ P0)⊕ which implies for p ∈ P2 M0

2|p = M0
3|p.

3. f ′ ◦ inc = inc′ ◦ f by construction
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Remark 2. The gluing diagram (1) is a pushout diagram in the category PTSys.
This implies that the transformation of P/T-systems defined below is in the
spirit of the double-pushout approach for graph transformations and high-level
replacement systems (see [Ehr79, EHK91]).

Two examples of gluing and gluing diagrams are given in Fig. 7, where
G = L2 +I2 C and H = R2 +I2 C in the left hand and the right hand glu-
ing diagram respectively. Our next goal is to define rules, application of rules
and transformations of P/T-systems.

Definition 3 (Rule of P/T-Systems). A rule r = (L i1←− I
i2−→ R) of P/T-

systems consists of P/T-systems L, I, and R, called left-hand side, interface,
and right-hand side of r respectively, and two strict P/T-morphisms I

i1−→ L

and I
i2−→ R which are inclusions.

Remark 3. The application of a rule r to a P/T-system G is given by a P/T-
morphism L

m−→ G, called match. Now a direct transformation G
r=⇒ H via r

can be constructed in two steps. In a first step we construct the context C given
by (G−m(L))∪m ◦ i1(I) and P/T-morphisms I

c−→ C

and C
c1−→ G, where c1 is a strict inclusion. This means

we remove the match m(L) from G and preserve the
interface m◦i1(I). In order to make sure that C becomes
a subsystem of G we have to require a “gluing condition”
(see Def. 4). This makes sure that C is a P/T-system

L

m

��
(1)

I
i1�� i2 ��

c

��
(2)

R

n

��
G Cc1

��
c2

�� H

and we have m ◦ i1 = c1 ◦ c in the “context diagram” (1). In the second step
we construct H as gluing of C and R along I, this means we obtain the gluing
diagram (2) from I

c−→ C and I
i2−→ R.

Now we define the gluing condition and the context construction.

Definition 4 (Gluing Condition).
Given a strict inclusion morphism i1 : I → L and a P/T-morphism m : L → G
the gluing points GP , dangling points DP and the identification points IP of L
are defined by

GP = PI ∪ TI

DP = {p ∈ PL|∃t ∈ (TG \ mT (TL)) : mP (p) ∈ preG(t) ⊕ postG(t)}
IP = {p ∈ PL|∃p′ ∈ PL : p �= p′ ∧ mP (p) = mP (p′)}

∪ {t ∈ TL|∃t′ ∈ TL : t �= t′ ∧ mT (t) = mT (t′)}
where p ∈ PL =

∑n
i=1 ki ·pi means p = pi and ki �= 0 for some i. Then the gluing

condition is satisfied if all dangling and identifications points are gluing points,
i.e DP ∪ IP ⊆ GP .

Proposition 2 (Context P/T-System). Given a strict inclusion i1 : I → L
and a P/T-morphism m : L → G then the following context P/T-system C is
well-defined and leads to the following commutative diagram (1), called “context
diagram”, if the gluing condition DP ∪ IP ⊆ GP is satisfied.
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C = (PC , TC , preC , postC ,M0
C) is defined by

PC = (PG \ mP (PL)) ∪ mP (PI),
TC = (TG \ mT (TL)) ∪ mT (TI),
preC = preG|C , postC = preG|C and
M0

C = M0
G|C .

I

c

��

i1 ��

(1)

L

m

��
C c1

�� G

The morphisms in (1) are defined by c : I → C to be the restriction of m : L → G
to I, and c1 : C → G to be a strict inclusion.

Proof. The P/T-system C and preC , postC : TC → P⊕
C with preC = preG|C and

postC = preG|C are well-defined if DP ∪ IP ⊆ GP . For t ∈ TC we have to show
preC(t) ∈ P⊕

C (and similar for postC(t)).

Case 1. For t ∈ TG \mT (TL) we have preC(t) = preG(t) =
∑n

i=1 ki ·pi. Assume
pi �∈ PC for some i ≤ n. Then pi ∈ mP (PL) \ mP (PI) with pi ∈ preG(t). Hence
there is p′i ∈ PL \ PI with mP (p′i) = pi. This implies p′i ∈ DP and p′i �∈ GP and
contradicts the gluing condition DP ∪ IP ⊆ GP .

Case 2. For t ∈ mT (TI) we have t′ ∈ TI with t = mT (t′). This implies preC(t) =
preG(t) = preG(mT (t′)) = m⊕

P (preL(t′)) = m⊕
P (preI(t′)) ∈ m⊕

P (P⊕
I ) =

(mP (PI))⊕ ⊆ P⊕
C .

Moreover c : I → C satisfies the marking condition (2) in Def. 1, because this
is true for m : L → G and c is restriction of m. Finally c1 : C → G is a strict
inclusion by construction. This leads to the commutative diagram (1) in PTSys.

Remark 4. Note that we have not used the “identification condition” ID ⊆ GP ,
which is part of the gluing condition. But this is needed to show that the context
diagram (1) is - up to isomorphism - also a gluing diagram and hence a pushout
diagram in the category PTSys. This means that C is constructed in such a
way that G becomes the gluing of L and C via I, i.e. G ∼= L +I C.

An example of a context diagram is the left diagram in Fig. 7, where C
is the context P/T-system for i2 : I2 → L2 and g : L2 → G. Now a direct
transformation is given by the combination of a context diagram and a gluing
diagram.

Definition 5 (Applicability of Rules and Transformation).
A rule r = (L i1←− I

i2−→ R) is called applicable at match L′ m−→ G if L = L′

and the gluing condition is satisfied for i1 and m. In this case we obtain a
context P/T-system C with context diagram (1) and a gluing diagram (2) with
H = C +I R leading to a direct transformation G

r=⇒ H
consisting of the following diagrams (1) and (2). A (rule-
based) transformation G

∗=⇒ H is a sequence of direct
transformations G = G0

r1=⇒ G1
r2=⇒ . . .

rn=⇒ Gn = H
with G = H for n = 0. An example for a direct transfor-
mation is given in Fig. 7.

L

m

��
(1)

I
i1�� i2 ��

c

��
(2)

R

n

��
G Cc1

��
c2

�� H
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Remark 5. As pointed out in Remark 2 and Remark 4 already the context di-
agram (1) and the gluing diagram (2) are pushout diagrams in the category
PTSys. Hence a direct transformation G

r=⇒ H is given by the two pushouts
(1) and (2), also called double pushout (DPO). In the DPO-approach of graph
transformations (see [Ehr79]), high-level replacement systems [EHK91] and Petri
net transformations [EP04] a direct transformation is defined by a DPO-diagram.
For P/T-systems our definition is equivalent up to isomorphism to the existence
of a DPO in the category PTSys.

4 High-Level Nets with Nets and Rules as Tokens

In this section we review the definition of algebraic high-level (AHL) nets in
the notation of [EHP02] and [EM85] for algebraic specifications. Moreover we
present a specific HLNR-System-SIG signature and algebra. Both are essential
for our new notion of high-level net and rule (HLNR) systems in order to model
high-level nets with nets and rules as tokens.

Definition 6 (Algebraic High-Level Net). An algebraic high-level (AHL)
net AN = (SP, PAN , TAN , preAN , postAN , condAN , typeAN , A) consists of

– an algebraic specification SP = (Σ,E;X) with signature Σ = (S,OP ), equa-
tions E, and additional variables X;

– a set of places PAN and a set of transitions TAN ;
– pre- and post conditions preAN , postAN : TAN → (TΣ(X) ⊗ PAN )⊕;
– firing conditions condAN : TAN → Pfin(Eqns(Σ;X));
– a type of places typeAN : PAN → S and
– a (Σ,E)-algebra A

where the signature Σ = (S,OP ) consists of sorts S and operation symbols
OP , TΣ(X) is the set of terms with variables over X, (TΣ(X) ⊗ PAN ) =
{(term, p)|term ∈ TΣ(X)typeAN (p), p ∈ PAN} and Eqns(Σ;X) are all equations
over the signature Σ with variables X.

Definition 7 (Firing Behavior of AHL-Nets). A marking of an AHL-
Net AN is given by MAN ∈ CP⊕ where CP = (A ⊗ PAN ) = {(a, p)|a ∈
AtypeAN (p), p ∈ PAN}.

The set of variables V ar(t) ⊆ X of a transition t ∈ TAN are the variables of
the net inscriptions in preAN (t), postAN (t) and condAN (t). Let v : V ar(t) → A
be a variable assignment with term evaluation v� : TΣ(V ar(t)) → A, then
(t, v) is a consistent transition assignment iff condAN (t) is validated in A un-
der v. The set CT of consistent transition assignments is defined by CT =
{(t, v)|(t, v) consistent transition assignment}.

A transition t ∈ TAN is enabled in MAN under v iff (t, v) ∈
CT and preA(t, v) ≤ MAN , where preA : CT → CP⊕ defined by preA(t, v) =
v̂(pre(t)) ∈ (A ⊗ PAN )⊕ and v̂ : (TΣ(V ar(t)) ⊗ PAN )⊕ → (A ⊗ PAN )⊕ is the
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obvious extension of v� to terms and places (similar postA : CT → CP⊕). Then
the follower marking is computed by M ′

AN = MAN � preA(t, v) ⊕ postA(t, v).
The marking graph MG of AN consists of all markings M ∈ CP⊕ as nodes

and all MAN
(t,v)−→ M ′

AN as edges where M ′
AN is the follower marking of MAN

provided that t is enabled in MAN under v with (t, v) ∈ CT . For an initial
marking INIT of AN the reachability graph RG is the subgraph of MG reachable
from INIT .

In order to allow P/T-systems and rules as tokens of an AHL-net AN we
provide a specific specification SP and SP-algebra A based on the construction
in the previous section. In fact, it is sufficient to consider as specific SP a sig-
nature, called HLNR-System-SIG, together with a suitable HLNR-System-
SIG-algebra A, where HLNR-System refers to high-level net and rule systems.

Definition 8 (HLNR-System-SIG Signature and Algebra).
Given vocabularies T0 and P0, the signature HLNR-System-SIG is given by
HLNR-System-SIG =
sorts: Transitions, P laces,Bool, System,Mor,Rules
opns: tt, ff:→ Bool

enabled : System × Transitions → Bool
fire : System × Transitions → System
applicable : Rules × Mor → Bool
transform : Rules × Mor → System
coproduct : System × System → System
isomorphic : System × System → Bool
cod : Mor → System

and the HLNR-System-SIG-algebra A for P/T-systems and rules as tokens is
given by

– ATransitions = T0, APlaces = P0, ABool = {true, false},
– ASystem the set of all P/T-systems over T0 and P0, i.e.

ASystem = {PN |PN = (P, T, pre, post,M) P/T-system, P ⊆ P0, T ⊆ T0}
∪ {undef},

– AMor the set of all P/T-morphisms for ASystem, i.e.
AMor = {f |f : PN → PN ′ P/T-morphism with PN,PN ′ ∈ ASystem},

– ARules the set of all rules of P/T-systems, i.e.
ARules = {r|r = (L i1←− I

i2−→ R) rule of P/T-systems with
strict inclusions i1, i2},

– ttA = true, ffA = false,

– enabledA : ASystem ×T0 → {true, false} for PN = (P, T, pre, post,M) with

enabledA(PN, t) =

{
true if t ∈ T, pre(t) ≤ M

false else

– fireA : ASystem × T0 → ASystem for PN = (P, T, pre, post,M) with
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fireA(PN, t) =

⎧
⎪⎨

⎪⎩

(P, T, pre, post,M � pre(t) ⊕ post(t))
if enabledA(PN, t) = tt

undef else

– applicableA : ARules × AMor → {true, false} with

applicableA(r,m) =

{
true if r is applicable at match m

false else

– transformA : ARules × AMor → ASystem with

transformA(r,m) =

{
H if applicableA(r,m)
undef else

where for L
m−→ G and applicableA(r,m) = true we have a direct transfor-

mation G
r=⇒ H,

– coproductA : ASystem × ASystem → ASystem the disjoint union (i.e. the two
P/T-systems are combined without interaction) with

coproductA(PN1, PN2) = if (PN1 = undef ∨ PN2 = undef) then undef
else ((P1 
 P2), (T1 
 T2), pre3, post3,M1 ⊕ M2)

where pre3, post3 : (T1 
 T2) → (P1 
 P2)⊕ are defined by
pre3(t) = if t ∈ T1 then pre1(t) else pre2(t)
post3(t) = if t ∈ T1 then post1(t) else post2(t)

– isomorphicA : ASystem × ASystem → {true, false} with

isomorphicA(PN1, PN2) =

{
true if PN1

∼= PN2

false else

where PN1
∼= PN2 means that there is a strict P/T-morphism f = (fP , fT ) :

PN1 → PN2 s.t. fP , fT are bijective functions,
– codA : AMor → ASystem with codA (f : PN1 → PN2) = PN2.

Definition 9 (High-Level Net and Rule Systems).
Given the signature HLNR-System-SIG and the HLNR-System-SIG-algebra
A as above, a high-level net and rule system HLNR = (AN, INIT ) consists of
an AHL-net AN (see Def. 6) with SP = (HLNR-System-SIG;X) where X are
variables over HLNR-System-SIG, and initial marking INIT of AN such that

1. all places p ∈ PAN are either
- system places i.e. p ∈ PSys = {p ∈ PAN |typeAN (p) = System} or
- rule places i.e. p ∈ PRules = {p ∈ PAN |typeAN (p) = Rules},

2. all rule places p ∈ PRules are contextual, i.e. for all transitions t ∈ TAN

connected with p there exists a variable r ∈ X such that preAN (t)|p =
postAN (t)|p = r, i.e. in the net structure of AN the connection between
p and t is given by a double arrow labeled with the variable r.
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n transformation

m :Mor
cod m = n
applicable(r, m) = tt

n

transform(r, g)fire(n, t)

token game

enabled(n, t) =tt

t :Transitions

(HLNR-System-SIG,A)

p1 : System

r

p2 : Rules

Fig. 8. Basic high-level net and rule system

Remark 6. Our notion of HLNR-systems has static rules. This means that the
tokens representing our rules do not move and remain unchanged on the rule
places (see Section 6 for extensions). According to our paradigm “nets and rules
as tokens” we only allow system and rule places, but no places which are typed
by other sorts of HLNR-System-SIG. A HLNR-system with only one system
place and one rule place is called basic HLNR-system.

Example 1 (Basic HLNR-System). A basic HLNR-system with system place p1

and rule place p2 is shown in Fig. 8 where the empty initial marking can be
replaced by suitable P/T-systems resp. rules on these places.

Example 2 (House of Philosophers). In Section 2 we have given a detailed discus-
sion of the HLNR-system “House of Philosophers” as given in Fig. 1 with system
places Library, Entrance-Hall, and Restaurant and rule places Rule1, . . . , Rule4.

The behavior of a HLNR-system HLNR = (AN, INIT ) is given by the
reachability graph in the sense of AHL-nets (see Def. 7), but it can be represented
more explicitly as follows:

Proposition 3 (Reachability Graph of High-Level Net and Rule Sys-
tem). The reachability graph RG of a HLNR-system HLNR = (AN, INIT )
can be characterized as follows:

1. Each node of RG is represented by a system family F ∈ (ASystem × PSys)⊕

i.e. F =
∑n

i=1(PNi, pi) with PNi ∈ ASystem and pi ∈ PSys;

2. Each edge of RG is represented by F
(tAN ,v)−→ F ′, where (tAN , v) ∈ CTAN is

a consistent transition assignment.

A system family F =
∑n

i=1(PNi, pi) is well-formed if PNi �= undef for
all i = 1, . . . , n. If the system family of INIT is well-formed and all
(tAN , v) ∈ CTAN of RG are strongly consistent, i.e. all terms of sort System
in preAN (tAN ), postAN (tAN ) and condAN (tAN ) are evaluated under v� to
defined elements PN �= undef , then we have:
3. The reachability graph RG is well-formed, i.e. the system families of all nodes

of RG are well-formed.

Proof. Each node of RG is given by a marking MAN ∈ (A⊗PAN )⊕, i.e. MAN =∑n
i=1(ai, pi) with pi ∈ PAN and ai ∈ Atype(p). Since we have PAN = PSys ∪
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PRules and all rule places are contextual the restriction MRules of MAN to all
pi ∈ PRules is the same for all markings and represents the token rules on
the rule places in the initial marking INIT . This means that each MAN is
uniquely represented by the restriction MSys of MAN to all pi ∈ PSys, w.l.o.g.
MSys =

∑n′

i=1(ai, pi) with n′ ≤ n and pi ∈ PSys, ai ∈ ASystem(i = 1, . . . , n′).
This means MSys ∈ (ASystem×PSys)⊕. Hence each MAN of RG is represented by

the system family MSys and each edge MAN
(tAN ,v)−→ M ′

AN by MSys
(tAN ,v)−→ M ′

Sys.

If INITSys is well-formed then for each MSys
(tAN ,v)−→ M ′

Sys with well-formed
MSys strong consistency of (tAN , v) implies that also M ′

Sys is well-formed. This
implies that the reachability graph RG is well-formed.

Remark 7. Strong consistency of (tAN , v) ∈ CTAN can be achieved for a
HLNR-system HLNR by including equations of the form enabled(n, t) = tt
or applicable(r,m) = tt into condAN (tAN ) as shown in Fig. 1 and Fig. 8.

An interesting special case of HLNR-systems are basic HLNR-systems as
presented in Fig. 8 of Example 1. Let us assume that the initial marking is given
by a P/T-system PN on place p1 and a set RULES of token rules on place
p2. Then (PN,RULES) can be considered as reconfigurable P/T-system in the
following sense: on the one hand we can apply the token game and on the other
hand rule-based transformations of the net structure of PN . Moreover these
activities can be interleaved. This allows to model changes of the net structure
while the system is running. This is most important for changes on the fly of
large systems, where it is important to keep the system running, while changes of
the structure of the system have to be applied. It would be especially important
to analyze under which conditions the token game activities are independent
of the transformations. This problem is closely related to local Church-Rosser
properties for graph resp. net transformations, which are valid in the case of
parallel independence of transformations (see [Ehr79, EP04]).

5 Specification and Implementation Aspects

In the previous section we have presented an explicit version of HLNR-systems
based on AHL-nets. The main idea was to present a set theoretical version
of the HLNR-System-SIG-algebra A which defines our concept of “nets and
rules as tokens”. For various reasons it is also interesting to present an algebraic
specification of this algebra. Unfortunately first-order algebraic specifications in
the sense of [EM85] or Casl [CAS94] are not suitable for this purpose. Actually
we need higher-order features which are provided by HasCasl [SM02], a higher-
order extension of the common algebraic specification language Casl.

HasCasl-specifications combine the simplicity of algebraic specifications
with higher-order features including function types. It is geared towards speci-
fication of functional programs, in particular in Haskell. The semantics of Has-
Casl is defined by a set-theoretic notion of intensional algebras. The advantage
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is that in an intensional setting function equivalence testing is possible within
some models. Moreover, we can distinguish between different functions that ex-
hibit the same behavior. By contrast extensional equality of functions means
that two functions are equal if they always produce the same results for the
same arguments. Standard ML, the data type part of Coloured Petri (CP) nets
[Jen92], cannot implement equality on function types. This means that it would
be difficult to consider P/T-systems and rules as defined in Section 3 as first-
class citizens and thus tokens in CP-nets. In our technical report [HM04] we
have presented a HasCasl-specification of P/T-systems, P/T-morphism and of
rule-based transformations according to the definitions in Section 3. This leads
to the formalism of algebraic higher-order (AHO) nets [HM03] where in contrast
to AHL-nets higher-order algebraic specifications in HasCasl are used. Since
tools for HasCasl already have been implemented this is a first step towards
an implementation of our approach presented in this paper.

In fact several aspects of HLNR-systems are supported by tools. The algebraic
approach to graph transformations which can also be used for rule-based transfor-
mations of nets, is supported by the graph transformation environment AGG (see
the homepage of [AGG]). AGG includes an editor for graphs and graph grammars,
a graph transformation engine, and a tool for the analysis of graph transforma-
tions. On top of the graph transformation system AGG there is the GenGED
environment (see the homepage of [Gen]) that supports the generic description
of visual modeling languages for the generation of graphical editors and the sim-
ulation of the behavior of visual models. Especially, rule-based transformations
for P/T-systems can be expressed using GenGED. These transformations can be
coupled to other Petri net tools using the Petri Net Kernel [KW01], a tool infras-
tructure for editing, simulating, and analyzing Petri nets of different net classes
and for integration of other Petri net tools. On the level of the data type part the
Heterogeneous Tool Set (Hets) (see the homepage of [Hets]) provides a parser and
static analysis for Casl and HasCasl-specifications; theorem proving support
in form of a translation to the Isabelle/HOL prover is under development. Also, a
translation tool from a HasCasl subset to Haskell is provided.

6 Conclusion and Future Work

In this paper we have presented the new concept of high-level nets with rules and
nets as tokens and initial marking, short HLNR-systems, which realizes our new
paradigm of “nets and rules as tokens”. This extends Valk’s paradigm “nets as
tokens”and also partly his notion of elementary object systems [Val98, Val01]. In
Section 2 we have presented a detailed case study of the “House of Philosophers”,
which allows to give an example driven introduction to HLNR-systems. Moreover
we have discussed the relationship to other approaches and pointed out that
it seems to be useful and possible to extend our approach by object-oriented
features and also to an interaction relation in the sense of Valk.

In Section 3 we have presented the main concepts for our paradigm “nets
and rules as tokens”. Due to the net inscriptions a firing step in the system
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level realizes on the one hand the computation of the follower marking of a
net (i.e. a P/T-system) and on the other hand the modification of a net by an
appropriate rule. Thus transformations become effectively included in the system
enabling the system to transform nets as tokens in a formal way by using also
rules as tokens. For this purpose we have introduced rule-based transformations
for P/T-systems in this paper. In fact we have presented an explicit version
of transformations avoiding pushout constructions, but our approach is equal
- up to isomorphism - to a double-pushout (DPO) approach in the sense of
[Ehr79, EHK91], which will allow to obtain also several other results already
known for the DPO-approach [Roz97]. From this point of view the paper presents
an interesting integration of concepts in the area of graph transformations and
Petri nets.

In HLNR-systems the coupling of a set of rules as tokens to certain transitions
is fixed due to the given net topology. In future work we will consider also
the migration of rules as tokens. This means the mechanism of mobility and
modification presented in our example could be transferred to rules as tokens in
order to achieve even more expressive models. The mobility aspect of rules as
tokens can be easily introduced by further transitions connecting places of the
type Rules. However the modification of rules as tokens (see [PP01]) requires an
extension of the corresponding algebra in Section 4.

Another interesting aspect for future work is to study transformations of
P/T-systems which preserve properties like safety or liveness. Especially in the
area of workflow modeling the notion of soundness (which comprises liveness)
is of importance (see e.g. [Aal98]). Here we can use the approach of property
preserving rules (see [PU03] for an overview). To integrate these kinds of rules
into HLNR-systems the set of rules ARules of the HLNR-System-Sig-algebra
A (see Section 4) would have to be restricted to property preserving rules.

Finally in Section 5 we have presented several specification and implementa-
tion aspects which are useful towards tool-support for our new concepts.
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