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Abstract. We propose a meta-framework called ‘Plastik’ which i) supports the 
specification and creation of runtime component-framework-based software 
systems and ii) facilitates and manages the runtime reconfiguration of such sys-
tems while ensuring integrity across changes. The meta-framework is funda-
mentally an integration of an architecture description language (an extension of 
ACME/Armani) and a reflective component runtime (OpenCOM). Plastik-
generated component frameworks can be dynamically reconfigured either 
through programmed changes (which are foreseen at design time and specified 
at the ADL level); or through ad-hoc changes (which are unforeseen at design 
time but which are nevertheless constrained by invariants specified at the ADL 
level). We provide in the paper a case study that illustrates the operation and 
benefits of Plastik.  

1   Introduction 

Software architecture modeling using Architecture Description Languages (ADLs) is 
becoming increasingly popular in the early phases of system development [ 1,  2,  3]. 
Such languages facilitate the construction of high-level models in which systems are 
described as compositions of components. They play an important role in developing 
high quality software by supporting reasoning about structural properties early in the 
development process. This can make it easier to produce more extensible structures, 
locate design flaws, and better maintain consistency. 

At the same time there has been a parallel development of runtime component 
models which are targeted at the actual construction and deployment of systems 
[ 4, 5, 6, 7]. These component models are becoming quite sophisticated in their capabili-
ties for runtime reconfiguration. For example, they use reflective or runtime aspect-
oriented programming techniques to allow software to inspect, adapt and extend itself 
while it is running. This is particularly useful in inherently adaptive software envi-
ronments such as mobile computing and adaptive real-time systems [ 8]. 
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It is clear that an integration of the two above-mentioned strands of development 
holds significant potential. Some early work has attempted to do this (see related 
work discussion in section 5) but this has typically suffered from two main limita-
tions: i) it has not taken a sufficiently comprehensive approach to formally specifying 
and constraining runtime reconfiguration at the ADL level, and ii) it has not leveraged 
the most recent developments in reconfigurable runtime component technologies. The 
‘Plastik’ meta-framework described in this paper is an ADL/ component runtime 
integration that attempts to address such limitations.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Plastik’s system architecture  

The Plastik architecture, illustrated in figure 11, supports formally-specified run-
time reconfiguration of systems through an integration of an ADL and a reflective, 
component model runtime. The ADL level is based on ACME/ Armani [ 9, 10] which 
we have enhanced with new constructs for dynamic reconfiguration; and the runtime 
level is based on our OpenCOM component model [7] and its association notions of 
component frameworks and reflective meta-models [ 12]. 

Plastik supports both programmed and ad-hoc reconfiguration: 

• Programmed reconfiguration pertains to changes that can be foreseen at sys-
tem design time. In Plastik, this is supported at the ADL level in terms of 
‘predicate-action’ specifications. For example, consider a PDA-based video 
application that needs to run over both fixed and wireless networks. In such 
an environment, one could specify a programmed reconfiguration that 
switches from a MPEG decoder to an H.263 decoder (‘action’) when the 
PDA detects a drop in the quality of network connectivity (‘predicate’) [12]. 
In this example, the predicate could be expressed in our extended ADL as a 
function of a dynamic property of an underlying protocol component, and the 
associated action would take the form of (extended) ADL statements that re-
place the old component with the new one.  

                                                           
1 Section 3 expands on the various entities depicted in figure 1. 
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• Ad-hoc reconfiguration, on the other hand, is intended for changes that are 
not and cannot be foreseen at system design time. The approach here is to 
build general invariants into the specification of the system and to accept any 
change as long as the invariants are not violated. As an example, the above 
mobile computing scenario might be enhanced by the insertion of a jitter-
smoothing buffer which, despite not having been considered at design time, 
could nevertheless be usefully inserted at runtime.  

In addition, Plastik allows both programmed and ad-hoc reconfiguration to be ini-
tiated from multiple architectural levels (see section 3) which enables considerable 
flexibility.  

The remainder of this paper is structured as follows. Section 2 provides back-
ground on ACME/ Armani and on the OpenCOM component runtime; it also consid-
ers the relationship between the two technologies. Section 3 then details our approach 
to programmed and ad-hoc reconfiguration, and section 4 presents a case study which 
exemplifies the approach. Finally, section 5 discusses related work, and section 6 
offers our conclusions. 

2   Background on ACME/Armani and OpenCOM 

2.1   The ACME/Armani ADL 

The Plastik meta-framework’s ADL level provides the basis for specifying systems 
and enabling and constraining their reconfiguration. We have selected ACME [ 9] as 
our ADL because: 

• Unlike many ADLs it offers sufficient generality to straightforwardly describe 
a variety of system structures. Most ADLs are domain-specific so they do not 
provide generic structures to cope with a wide range of systems. 

• It comes with tools that provide a good basis for designing and manipulating 
architectural descriptions and generating code. 

The basic elements of ACME are as follows: Components are potentially compos-
ite computational encapsulations that support multiple interfaces known as ports. 
Ports are bound to ports on other components using first-class intermediaries called 
connectors which support so-called roles that attach directly to ports. Attachments 
then define a set of port/role associations. Representations are alternative decomposi-
tions of a given component; they reify the notion that a component may have multiple 
alternative implementations. The ACME type system provides an additional dimen-
sion of flexibility by allowing type extensions via the extended with construct. Prop-
erties are <name, type, value> triples that can be attached to any of the above ACME 
elements as annotations (apart from attachments). Finally, architectural styles define 
sets of types of components, connectors, properties, and sets of rules that specify how 
elements of those types may be legally composed in a reusable architectural domain 
(see example below).  

In addition, we adopt the Armani [ 10] extensions to ACME. Armani is a FOPL-
based sub-language that is used to express architectural constraints over ACME archi-
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tectures. For example, it can be used to express constraints on system composition, 
behavior, and properties. Constraints are defined in terms of so-called invariants 
which in turn are composed of standard logical connectives and Armani predicates 
(both built-in and user-defined) which are referred to as functions. Although Armani 
appears to introduce an element of dynamicity, it is important to emphasise that 
ACME/Armani does not currently support dynamic runtime reconfiguration of sys-
tems (see also section 5). 

The ACME fragment below illustrates the main ACME/Armani concepts. The 
style definition includes two port types and two roles types. The OSIComp component 
type then defines the central player in a layered communications system environment. 
This definition includes a connector type which is used to connect protocol layers and 
an Armani invariant that states that a system must comprise a four-level stack.  

Style PlastikMF { 
          Port Type ProvidedPort, RequiredPort; 
          Role Type ProvidedRole, RequiredRole;  
          …. 
}; 
 
Component Type OSIComp: PlastikMF { 

ProvidedPort Type upTo, downTo; 
  RequiredPort Type downFrom, upFrom;  

 
    Property Type layer =  
       enum {application, transport, network, link}; 
}; 
 
Connector Type conn2Layers: PlastikMF { 

ProvidedRole Type source; 
RequiredRole Type sink;  

}; 
 
Invariant  
 Forall c:OSIComp in sys.Components 
  cardinality(c.layer = application) = 1 and 
  cardinality(c.layer = transport) = 1 and 
  cardinality(c.layer = network) = 1 and 
  cardinality(c.layer = link) = 1 and 
 
Property Type applicationProtocol; 
Property Type transportProtocol; 
Property Type networkProtocol; 
Property Type linkProtocol; 

Fig. 2. An example definition in ACME 
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2.2   The OpenCOM Reflective Component Model 

The OpenCOM component runtime has been extensively used over the past few years 
to build reconfigurable systems software elements such as middleware and program-
mable networking environments [ 11]. A high-level view of its programming model is 
given in figure 3. Components (the filled rectangles) are encapsulated units of func-
tionality and deployment that interact with their environment (i.e. other components) 
exclusively through interfaces (the small circles) and receptacles (the small cups). A 
component may support multiple interfaces and receptacles and may be internally 
composite (i.e. composed of other components). Components are deployed at runtime 
into environments called capsules (the outer dotted box) which support a runtime 
‘capsule API’ containing operations to load/ unload components (and also to bind/ 
unbind interfaces and receptacles; see below). The loading of components into a cap-
sule can be requested by any component inside or outside the capsule (this is referred 
to as third-party deployment). Interfaces are units of service provision offered by 
components; they are expressed in terms of sets of operation signatures and associated 
datatypes. For programming language independence, OMG IDL is used as an inter-
face definition language. Receptacles are ‘anti-interfaces’ used to make explicit the 
dependencies of components on other components: whereas an interface represents an 
element of service provision, a receptacle represents a unit of service requirement. 
Receptacles are key to supporting a third-party style of composition (to complement 
the third-party deployment referred to above): when third-party deploying a compo-
nent into a capsule, one knows by looking at the component’s receptacles precisely 
which other component types must be present to satisfy its dependencies. Finally, 
bindings, which are created via the capsule API, are associations between a single 
interface and a single receptacle. As with loading, the creation of bindings is inher-
ently third-party in nature; it can be performed by any party inside or outside the  
capsule. 
 

 

 

 

Fig. 3. The OpenCOM component model  

In implementation, the OpenCOM programming model is supported by a small 
runtime of around 17KB in size. Components are written in C++ by default. As well 
as supporting the programming model concepts described above, the OpenCOM run-
time also supports a set of so-called reflective meta-models [ 12] which facilitate 
reconfiguration of systems by permitting different system aspects to be inspected, 
adapted and extended at runtime. In particular, OpenCOM employs the following 
meta-models:  

 
capsule 
API 
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• an architecture meta-model which exposes the compositional topology of a 
system of deployed components in terms of a causally-connected graph struc-
ture;  

• an interception meta-model which allows one to interpose interceptors at bind-
ings between component interfaces; and  

• an interface meta-model which allows one to discover information about inter-
faces at runtime and to invoke interface types that are dynamically discovered 
at runtime. 

The final key aspect of OpenCOM is that it supports building systems in terms of 
the medium granularity (i.e. between components and whole systems) notion of com-
ponent frameworks (hereafter, CFs) [ 12]. CFs are tightly-coupled clusters of compo-
nents that cooperate to address some focused domain of functionality, and which 
accept ‘plug-in’ components that tailor or extend functionality in that domain. The 
idea is that one constructs systems by composing and configuring appropriate CFs. 
For example, one might develop a middleware system by composing CFs that address 
independent functionality domains such as protocol stacking, thread scheduling and 
request-handling [12]. Importantly, CFs incorporate policies and constraints that de-
termine how and to what extent the CF can be runtime reconfigured. Typically, per-
CF constraints are also imposed on the use of the reflective meta-models. Essentially, 
reflection provides maximal openness and flexibility, whereas CFs channel and con-
strain this expressive ‘power’ into useful and safe forms.  

2.3   Mapping from ACME/Armani to OpenCOM 

As can readily be observed, there is a close correspondence between concepts in 
ACME/Armani and in OpenCOM. This correspondence is summed up in table 1. 

Table 1. ACME/Armani to OpenCOM correspondences  

ACME/Armani OpenCOM 
component (composite) component 
connector (composite) component 
port interface/ receptacle 
role interface/ receptacle 
attachment binding 
representation (composite) component 
property  interface operation 
style CF 
invariant CF constraints 

The style-to-CF correspondence is central. As domain-specific units of re-usable 
and dynamically reconfigurable functionality, OpenCOM CFs are the natural target 
abstraction for ADL-specified styles whose specification incorporates programmed 
reconfiguration and constraints on ad-hoc reconfiguration. This observation forms the 
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basis for Plastik’s approach to reconfiguration as detailed in the next section. The fact 
that OpenCOM supports third-party deployment and binding is also crucial in ena-
bling the runtime to be manipulable from the ADL level. 

3   Approach to Reconfiguration 

3.1   Architecture 

Before discussing our approach to programmed and ad-hoc reconfiguration, we 
briefly expand on the architecture diagram presented in figure 1.  

Note first that figure 1 has two ADL sub-levels: a style level and an instance level. 
The style level is used to define generic patterns—an example could be a ‘protocol 
stacking’ style which defined a basic set of elements and constraints for describing 
linear compositions of ‘protocol’ components. The instance level then particularises a 
style for a specific context while honouring any constraints imposed by the style. For 
example, one could define an ‘TCP/IP stack’ CF that imposed the additional con-
straints that the maximum number of levels was 4, that a stack can only be reconfig-
ured when a connection is dormant, and that a “TCP” component must always be 
placed above an “IP” component. 

Figure 1 also illustrates Plastik’s system configurator which is divided into two 
levels: an architectural configurator responsible for accepting and validating recon-
figuration requests at the ADL levels, and a runtime configurator responsible for man-
aging the OpenCOM/ runtime level. There is one instance of the architectural 
configurator in the whole Plastik system, but there is one instance of the runtime con-
figurator for each deployed CF. Both parts of the configurator are implemented in an 
interpreted scripting language called Lua [ 13]. The link between the ADL and the 
runtime levels is realised as an ACME/ Armani compiler (we use AcmeLIB [22] as 
the basis of this). The output of the compiler is a Lua program that instantiates Open-
COM elements that correspond to the ADL-level specifications. The compiler also 
generates finite state machines that implement Armani invariants as discussed below. 
These are located in the runtime configurator of each CF. More detail is given below. 

3.2   Programmed Reconfiguration 

3.2.1   Limitations of ACME/ Armani 
As indicated in the introduction, we address programmed reconfiguration by provid-
ing appropriate extensions to ACME/Armani. Before introducing these extensions, we 
will briefly motivate them by analysing the limitations of ‘standard’ ACME/ Armani 
with respect to dynamic programmed reconfiguration. 

Programmed reconfiguration could potentially be expressed using the following 
existing ACME/Armani concepts as a basis:  

• The Armani ‘invariants’ are potentially useful in ensuring that a system pre-
serves the constraints imposed by the software architecture despite the dy-
namic insertion or removal of ACME elements.  

• The ‘extend with’ construct enables type extension, and could conceivably be 
applied to extend types at runtime.  
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• The ‘representation’ construct could be used as a basis of switching from one 
representation of a component to another at runtime.  

• The ‘properties’ construct could also be used to describe how components may 
be changed at runtime.  

Nevertheless, these features are insufficient as a basis for runtime reconfiguration. 
First, the ‘extend with’ and ‘representation’ constructs do not address the most gen-
eral reconfigurations that might be required—e.g. those involving removal of compo-
nents or other elements. Second, ‘properties’ on their own are severely limited by the 
fact that they have no inherent semantics—which means that their interpretation is 
intuitive and depends on a shared understanding. Furthermore, neither properties nor 
any of the other constructs mentioned provide any way of specifying when reconfigu-
ration should take place or what should be changed in any particular configuration 
operation.  

3.2.2   ACME Extensions for Programmed Reconfiguration 
The first extension is a conditional construct that allows the ADL programmer to 
express runtime conditions under which programmed reconfigurations should take 
place, together with a specification of what should change. The syntax of the con-
struct is as follows: 

On (<predicate>) do <actions> 

The ‘predicate’ is expressed using the standard Armani predicate syntax, and refers 
to properties attached to ACME components. Composite predicates involving multi-
ple properties are supported. As will be explained later, it is these properties that 
‘ground’ the predicate in the OpenCOM runtime system. The ‘actions’ are arbitrary 
ACME statements2 that are instantiated when the predicate becomes true. These 
statements could, for example, declare additional components and connect them into 
the existing architecture by declaring additional attachments. Where more than one 
action is specified, it is assumed that the set of actions will be instantiated in sequence 
and atomically. 

The second extension is a pair of constructs that specify the destruction of existing 
ACME elements: 

detach <element>  
remove <element>  

Detach is used to remove an attachment between a port and a role; and remove is 
used to destroy an existing component, connector or representation. Removal of ele-
ments is only possible when they are no longer involved in an attachment. The idea is 
that remove and detach can be used as On-do actions to enable architectures to be 
dismantled as well as constructed. Given this capability, fully general runtime 
changes are possible, ranging from simple replacement of an element to a wide-
ranging reconfiguration that can modify the whole architecture. The use of remove 
and detach in conjunction with On-do is illustrated in figure 4: 

                                                           
2 In this and the following extensions, we build on existing ACME constructs but apply them 

(such as here) in novel syntactical contexts. The semantics are, however, maintained.  
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On (net_bandwidth = low) do { 
 detach MPEG-dec.req to conn-dec.p; 
 remove MPEG-dec; 

   Component H263-dec : decoder = new decoder extended with { 
     Property decoder-type = “H263”; 
   }; 

 Attachments 
         H263-dec.r to conn-dec.p; 

} 

Fig. 4. Example of use of the On-do statement 

When the given predicate becomes true (i.e. when the net_bandwidth property 
transits to the value low), the following reconfiguration sequence takes place: compo-
nent MPEG-dec is detached from connector conn-dec and removed; and then a new 
H.263 component is instantiated and attached to the same connector.  

The third extension that we propose is intended to express runtime dependencies 
between architectural elements. Managing dependencies among first-class entities is 
especially important to dynamic reconfiguration to avoid architectural mismatches 
when a new element is inserted in a system. The syntax of this extension is as follows: 

dependencies <statements> 

The dependencies statement allows expression of the fact that dynamic instantia-
tion/ destruction components is dependent on the creation/ destruction of other com-
ponents. Here is an illustration of the use of dependencies: 

Component transport: OSIComp = {  
... 
dependencies { 

   extended with {RequiredPort bufport}; 
Component bm: bufferManager;  
Invariant 
 forall p:ProvidedPort in bm.Ports  
  p.rate > 1000 
} 
 
Connector transtobuf { 
 ProvidedRole pr; 
 RequiredRole rr; 
} 
Attachments { 
 transport.bufport to transtobuf.rr; 

   bm.pp to transtobuf.pr; 
  } 
 } 
} 

Fig. 5. Example of use of the dependencies statement 



10 T. Batista, A. Joolia, and G. Coulson 

 

This specifies that the transport component depends on a buffer manager; therefore 
an instance of the latter is instantiated and attached whenever an instance of the for-
mer is created. (The example also includes an invariant that requires that the buffer 
manager must be able to accept data at a certain rate.) 

The fourth and final extension allows attachments to be specified for a type as well 
as for an instance (only instances are supported by standard ACME). The precise 
instance to be used is selected at runtime according to a policy specified by the asso-
ciated connector3. The syntax of the construct is as follows: 

<connector> to dynamic <componentport> 

An example of the use of the dynamic statement is shown in figure 6. This assumes 
that ConnX contains a policy that determines which instance of the Network compo-
nent type will be attached.  

Attachments {ConnX.r to dynamic Network.p} 

Fig. 6. Example of use of the dynamic statement 

Note that there is an analogue to this sort of dynamic component instantiation in 
Darwin [ 14]. However, in Darwin it is not possible to declare an attachment to a 
specified ‘provided’ port of a dynamic component. We consider that this makes the 
architectural description unclear and can lead to unexpected bindings at runtime. 

3.2.3   Supporting Programmed Reconfiguration at Runtime 
This largely amounts to providing runtime support for the above-described ACME 
extensions for programmed reconfiguration. First, the predicate element of each On-
do statement is compiled into a runtime finite state machine (FSM) representation. All 
the FSMs for each Plastik CF are contained in the associated per-CF runtime configu-
rator. As mentioned, the ADL-level predicates are ‘grounded’ into the OpenCOM 
runtime through their embedded property elements. In particular, it is required that 
each ADL-level property is supported by corresponding ‘property operations’ in a 
distinguished interface of the OpenCOM component that underpins the ADL-level 
component to which the property is attached. There are simple lexical conventions 
that tie ADL-level property names to runtime level property operations, and the prop-
erty operation are discovered and bound to by the configurator at runtime using 
OpenCOM’s interface meta-model. Given this machinery, the FSMs are evaluated 
every time a runtime property operation reports (via a callback) a change in the value 
of the runtime property. This evaluation may then trigger an execution of the On-do 
statement’s ‘actions’ clause. 

Execution of the actions clause is carried out transactionally in case the whole se-
quence cannot be completed (e.g. if an attempt is made to remove an element that is 
still attached to some other element). It is also important to confirm that the proposed 
reconfiguration will not violate any general Armani-specified constraints elsewhere in 
the CF (whether at the style or the instance levels). These general constraints are dis-
cussed further in section 3.3. 

                                                           
3 We are also considering alternative means of specifying these policies. 
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Implementation of the detach and remove actions make use of OpenCOM’s archi-
tecture meta-model to ensure that the required preconditions of these actions (see 
section 3.2.2) are satisfied. The load/unload and bind/unbind APIs of OpenCOM’s 
capsule API are then used to effect each actions. The dependencies statement causes 
the runtime to dynamically load (and bind) any dependent components whenever it 
instantiates an OpenCOM component whose ADL-level analogue specifies such a 
dependency. Finally, the implementation of the dynamic construct also builds directly 
on OpenCOMs load/ bind APIs. It involves the prior evaluation of an associated pol-
icy to select the appropriate instance—this is performed by Lua code generated from 
the policy statement. 

3.3   Ad-Hoc Reconfiguration 

By definition, ad-hoc reconfiguration is not specified at the ADL level. Rather, our 
approach is to constrain at the ADL-level the allowable range of permissible ad-hoc 
reconfigurations. For this we again rely on Armani invariants and similarly ground the 
invariants using property values that refer to the runtime level. 

In Plastik, ad-hoc reconfiguration can be initiated either at the ADL level or at the 
runtime level. ADL level ad-hoc reconfiguration involves submitting an architecture 
modification script to the architectural configurator. This script is written in our ex-
tended ACME and specifies a set of proposed runtime changes to a target ADL speci-
fication. The script may not include invariants at the top level. The changes are ap-
plied to the target specification which is then recompiled to produce a Lua diff script 
that is (transactionally) executed to reconfigure the runtime CF. As in the case of 
programmed reconfiguration, the runtime system confirms before making any 
changes that running the diff script will not violate any architectural constraints speci-
fied in the target ADL specification. Both style and instance level invariants are taken 
into account. Notice that because the architecture modification script is written in 
extended ACME, it is possible to dynamically add new programmed reconfiguration 
clauses to a running CF. 

Reconfiguration requests at the runtime level take the form of operations directly 
applied the OpenCOM reflective meta-models. This is the ‘traditional’ means of ex-
ploiting OpenCOMs reconfiguration capabilities. In Plastik, however, the meta-model 
APIs are hidden by automatically-generated per-CF wrappers so that calls on them are 
first validated by an evaluation of the invariants as discussed above.  

Supporting ad-hoc reconfiguration at both the ADL and runtime levels raises issues 
of causality—i.e. to what extent are changes at one level reflected in the other? Our 
current approach is to provide full causality in the ADL-to-runtime direction, but not 
in the other direction. An implication of this is that a runtime-level ad-hoc reconfigu-
ration may cause rejection of a subsequent ad-hoc reconfiguration at the ADL level 
due to an inconsistency having being introduced—e.g. if the ADL-level reconfigura-
tion request refers to some component that has previously been removed by the run-
time-level reconfiguration. In practice, we expect that most CFs will employ either 
ADL-level or runtime-level ad-hoc reconfiguration but not both. Use of the runtime 
level is appropriate in low-level system environments that are driven primarily by 
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dynamic events in other low-level CFs. Use of the ADL-level, on the other hand, is 
more appropriate for higher-level CFs that are primarily driven by applications or 
GUIs.  

4   Case Study  

To further illustrate the use of Plastik, we extend the running OSIComp example to 
demonstrate both programmed and ad-hoc reconfiguration of the example protocol 
stack illustrated in figure 7. 

 

Fig. 7. Example of a reconfigurable protocol stack 

4.1   Programmed Reconfiguration 

To illustrate programmed reconfiguration consider changing the Application compo-
nent of our system from an MPEG decoder to an H.263 decoder on the basis of a 
change in available bandwidth (as outlined in the introduction and specified in figure 
4). The definition of the MPEG component, which derives from decoder which in 
turn derives from OSIComp, is as follows: 

 
Component Type decoder:OSIComp = new OSIComp extended with 
{}; 
Component MPEG-dec: decoder = new decoder extended with { 

ProvidedPort transportProtocol:downTo = { 
 Property protocol:string=”tcp”; 
 Invariant 
   Forall p in self.ProvidedPorts  
                 p.protocol = transportProtocol 

}; 
Property layer = ‘application’; 
Property decoder-type=”MPEG”; 

}; 

Link 

Network

Transport

Application

= connector

Buffer mgr
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(Note the invariant that requires that the component can only be connected to a 
transport protocol.) The programmed reconfiguration is specified in the below defini-
tion of the complete system.  
 

System OSIStack : PlastikMF { 
 
Component MPEG-dec:OSIComp; // Application Level 
Component Transport:OSIComp; 
Component Network:OSIComp; 
Component Link:OSIComp; 
 
Connector AppToTrans: conn2Layers; 
Connector TransToNet: conn2Layers; 
Connector NetToPhys: conn2Layers; 
 
Attachments{ 
 //connecting the Application to Transport layer 

Application.dataTo to AppToTrans.source; 
 Transport.dataFrom to AppToTrans.sink; 
 
 //connecting the Transport to Network layer 
 Transport.dataTo to TransToNet.source; 
 TransToNet.sink to dynamic Network.dataFrom;  
 
 //connecting the Network to Physical layer 
 dynamic Network.dataTo to NetToPhys.source;  
 Link.dataFrom to OuterApplication; 
}; 
On (Link.net_bandwidth = low) do 
{ 

 detach MPEG-dec.downTo to AppToTrans.source; 
    remove MPEG-dec; 

Component H263-dec : decoder = new decoder extended with   
{ 

     Property decoder-type = “H263”; 
     }; 

  Attachments 
         H263-dec.downTo to AppToTrans.source; 

}; 
}; 
 

The key part of this is the On-do statement, the predicate of which includes a 
Link.net_bandwidth property. This is a property of the link layer component and, as 
outlined in section 3.2.3, is realised at the runtime level as a dynamic ‘property opera-
tion’. Depending on its value, this property will trigger a programmed reconfiguration 
that replaces the MPEG-decoder component with an H.263-decoder component. 

4.2   Ad-Hoc Reconfiguration 

As mentioned, ad-hoc reconfiguration can be initiated from either the ADL level or 
the runtime level.  
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As an example of ad-hoc reconfiguration at the ADL level consider changing the 
Transport component’s BufferManager with a larger BigBufferManager. The change 
script to achieve this is as follows:  
 
//inserting new Component BigBufferManager 
Component BigBufferManager{ 

ProvidedPort pp; 
RequiredPort rp; 
 … 

}; 
 
detach BufferManager.pp to transtobuf.pr; 
remove BufferManager; 
 
Component bbm: BigBufferManager = new BigBufferManager; 
Attachments{ 
 BigBufferManager.pp to transtobuf.pr;  
}; 

 
The script detaches and removes the old component, and then creates and attaches 

an instance of the new component. 
As an example of reconfiguration at the runtime level consider inserting a logging 

component between the Network and the Link layers. This could be implemented 
using the OpenCOM meta-models [7] as follows.  
 

 
This pseudo-C code uses the architecture meta-model to discover the current to-

pology of the system and then uses the OpenCOM’s capsule API to insert the logging 
component. Recall that the calls to the meta-model are ‘wrapped’ by Plastik so that it 
can be ensured that they do not break any architectural constraints that were specified 
at the ADL level. 

Component_instance loggingI; 
Loaded_component logging; //new component to be loaded 
 
logging = load(comp_type_logging); 
loggingI = instantiate(logging); 
//use the Architecture meta-model to inspect and insert the 
Logging component 
 
if(ArchMM.connected(Network-comp, Link-comp)) 
{ 
 ArchMM.unbind(Network-comp,Link-comp); 
 ArchMM.bind(NEWBINDER,Network-comp,loggingI); 
 ArchMM.bind(NEWBINDER,loggingI,Link-comp); 
 ArchMM.insert(loggingI,CLSID); 
 ArchMM.updateLink(CLSID,Network-Comp); 
} 
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5   Related Work  

Relevant areas of related work are as follows: software architecture, frameworks that 
support reconfiguration, and component runtime systems.  

Software Architecture. Dynamic ACME [ 15] is an ACME extension that models 
dynamic architectures. However, it is focused on constraining evolution of specifica-
tions rather than providing support for runtime reconfiguration.  

 ArchWare [ 16] shares some similarities with Plastik as it implements dynamic 
change via reflection and reification, and is driven by an ADL with formal support. 
ArchWare uses hyper-code, an active executing graph with a programmable interface, 
as a representation, for purposes of reflection, of the executing system.. In contrast, 
Plastik adopts a efficient component runtime as its execution element and focuses on 
the mapping from an (extended) ADL to this runtime.  

Mae (Managing Architectural Evolution) [ 17] is an architectural evolution envi-
ronment that uses xADL to specify architectures. Its basis for reconfiguration is a 
versioning mechanism combined with a check-out/check-in approach. A key differ-
ence between this work and ours is that Mae supports only programmed reconfigura-
tion (it achieves this by selecting architectural configurations from a ‘version space’). 
It also lacks a formal approach with which to impose constraints to ensure consistency 
upon reconfiguration..  

Frameworks that Support Reconfiguration. [ 18] focuses on evolution guided by 
the idea that architectures must react to events and perform architectural changes 
autonomously. ‘Agents’ receive external events, monitor the global architecture, and 
capture and manage changes in the architecture. Each agent maintains a knowledge 
base with information about the architecture and rules for programmed reconfigura-
tion. The ‘B’ formalism is used to specify the architectural representation and con-
straints. This work has some similarities with Plastik in the sense they both use ADL 
and formal methods as a basis for implementing reconfiguration. Unlike Plastik, how-
ever, this work does not use reflection to implement dynamic reconfiguration and ad-
hoc reconfiguration is restricted because it is based on a-priori defined rules.  

FORMAware [ 19] is a reflective component-based framework that combines ex-
plicit architectural description and meta-information to constrain reconfiguration. To 
avoid inconsistency it checks architectural constraints according to style rules that 
restrict the types of architecture elements and possible configurations. A transaction 
service manages the reconfiguration. A fundamental difference between our work and 
FORMAware is that our proposal includes statements to improve ADL expressive-
ness for defining ad-hoc and programmed dynamic reconfiguration. In addition, 
unlike FORMAware, we adopt a formal approach to set constraints and ensure consis-
tency upon reconfiguration.  

Jadda (Java Adaptive component for Dynamic Distributed Architecture) [ 20] is an-
other framework that relies on architecture specification to support dynamic recon-
figuration. It uses xADL and again no formal support is provided for constraining 
dynamic reconfiguration. Jadda’s support for ad-hoc reconfiguration is accomplished 
via a console that is used to submit a xADL file with the change specification. Al-
though it handles dynamic architectural changes, Jadda is limited to ad-hoc reconfigu-
ration with no formal support. Thus, it does not guarantee consistency.  
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Component Runtime Systems. Fractal is a hierarchically-structured component 
model [ 5] that provides reflective features to support dynamic architectural reconfigu-
ration. It uses an XML-based ADL to specify the high level structure of an applica-
tion. Although this work resembles our proposal in outline it does not support ad-hoc 
reconfiguration nor define expressive constructs at the ADL level to describe recon-
figuration possibilities. In addition, the ADL has no formal support to ensure consis-
tency. Moreover, the relationship between the architecture level and the component 
runtime is not clearly specified in the literature.  

Finally, Koala [ 21] is a component model that uses an ADL based on Darwin to 
manage the complexity of software in electronics products. However, dynamic recon-
figuration is restricted to switching between components based on statically defined 
conditions. Moreover, changes in component structure need administrator approval.  

6   Conclusions 

We have proposed a meta-framework that relies on a style-based ADL associated 
with a formal approach to describe the architecture and behavior of systems. It di-
rectly supports programmed reconfiguration and also provides invariants that con-
strain ad-hoc reconfiguration. The ADL level is supported by a flexible configurable 
component runtime which grounds the ADL level in a viable implementation envi-
ronment. The paper focuses on extensions to ACME/Armani that express both pro-
grammed and ad-hoc reconfiguration. It also outlines the mapping from the ADL 
description to the OpenCOM component runtime entities and shows how ad-hoc 
changes can be initiated from either the ADL or the runtime level. 

Currently, we are using the AcmeLIB tools to implement the compiler and runtime 
FSM engines discussed in section 3. At the time of writing we do not have a fully 
implemented system but rather have successfully trialed key aspects of the design.  

Planned future work includes investigating further the issue of causality between 
changes made at the different architectural levels (see section 3.3), and carrying out 
experiments with more realistic application scenarios.  
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