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Abstract. We develop a methodology for solving high dimensional dependency
estimation problems between pairs of data types, which is viable in the case where
the output of interest has very high dimension, e.g., thousands of dimensions. This
is achieved by mapping the objects into continuous or discrete spaces, using joint
kernels. Known correlations between input and output can be defined by such
kernels, some of which can maintain linearity in the outputs to provide simple
(closed form) pre-images. We provide examples of such kernels and empirical
results.

1 Introduction

We begin by providing some background in kernel methods.
Suppose we are given empirical data

(x1, y1), . . . , (xm, ym) ∈ X × Y. (1)

Here, the domain X is some nonempty set that the inputs xi are taken from; the yi ∈ Y
are called targets. Here and below, i, j = 1, . . . ,m.

Note that we have not made any assumptions on the domain X other than it being a
set. In order to study the problem of learning, we need additional structure. In learning,
we want to be able to generalize to unseen data points. In the case of pattern recognition,
given some new input x ∈ X , we want to predict the corresponding y ∈ {±1}. Loosely
speaking, we want to choose y such that (x, y) is in some sense similar to the training
examples. To this end, we need similarity measures in X and in {±1}. The latter is
easier, as two target values can only be identical or different. For the former, we require
a similarity measure

k : X × X → R, (x, x′) 7→ k(x, x′) (2)

with the property that there exists a map Φ into a Hilbert space H such that for all
x, x′ ∈ X ,

k(x, x′) = 〈Φ(x), Φ(x′)〉 . (3)

Such a function k is called a positive definite (pd) kernel [1–3], H is the reproducing
kernel Hilbert space (RKHS) associated with it, and Φ is called its feature map. A
popular example, in the case where X is a normed space, is the Gaussian

k(x, x′) = exp
(
−‖x− x′‖2

2 σ2

)
, (4)

where σ > 0.
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The advantage of using a pd kernel as a similarity measure is that it allows us to
construct algorithms in Hilbert spaces. For instance, consider the following simple clas-
sification algorithm, where Y = {±1}. The idea is to compute the means of the two
classes in the RKHS, c1 = 1

m1

∑
{i:yi=+1} Φ(xi), and c2 = 1

m2

∑
{i:yi=−1} Φ(xi),

where m1 and m2 are the number of examples with positive and negative target values,
respectively. We then assign a new point Φ(x) to the class whose mean is closer to it.
This leads to

y = sgn (〈Φ(x), c1〉 − 〈Φ(x), c2〉+ b) (5)

with b = 1
2

(
‖c2‖2 − ‖c1‖2

)
. Rewritten in terms of k, this reads

y = sgn

 1
m1

∑
{i:yi=+1}

k(x, xi)−
1

m2

∑
{i:yi=−1}

k(x, xi) + b

 (6)

and b = 1
2

(
1

m2
2

∑
{(i,j):yi=yj=−1} k(xi, xj)− 1

m2
1

∑
{(i,j):yi=yj=+1} k(xi, xj)

)
.

Let us consider one well-known special case of this type of classifier . Assume that
the class means have the same distance to the origin (hence b = 0), and that k can be
viewed as a density, i.e., it is positive and has integral 1,

∫
X

k(x, x′)dx = 1 for all x′ ∈
X . Then (6) corresponds to the Bayes decision boundary separating the two classes,
subject to the assumption that the two classes are equally likely and were generated
from two probability distributions that are correctly estimated by the Parzen windows
estimators of the two classes,

p1(x) :=
1

m1

∑
{i:yi=+1}

k(x, xi), p2(x) :=
1

m2

∑
{i:yi=−1}

k(x, xi). (7)

The classifier (6) is quite close to the Support Vector Machine (SVM) that has re-
cently attracted much attention [3–5]. It is linear in the RKHS (see (5)), while in the
input domain, it is represented by a kernel expansion (6). It is example-based in the
sense that the kernels are centered on the training examples, i.e., one of the two argu-
ments of the kernels is always a training example. This is a general property of kernel
methods, due to the Representer Theorem [5, 6]. The main point where SVMs deviate
from (6) is in the selection of the examples that the kernels are centered on, and in the
weight that is put on the individual kernels in the decision function. The SVM decision
boundary takes the form

y = sgn

(
m∑

i=1

λik(x, xi) + b

)
, (8)

where the coefficients λi and b are computed by solving a convex quadratic program-
ming problem such that the margin of separation of the classes in the RKHS is maxi-
mized. It turns out that for many problems this leads to sparse solutions, i.e., often many
of the λi take the value 0. The xi with nonzero λi are called Support Vectors.

Using methods from statistical learning theory [4], one can bound the generalization
error of SVMs. In a nutshell, statistical learning theory shows that it is imperative that
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one uses a class of functions whose capacity (e.g., measure by the VC dimension) is
matched to the size of the training set. In SVMs, the capacity measure used is the size
of the margin.

The SV algorithm has been generalized to problems such as regression estimation
[4], one-class problems and novelty detection [5], as well as to mappings between gen-
eral sets of objects [7]. The latter uses two kernels, kX and kY , onX andY , respectively,
and learns a linear map between the associated RKHS’s HX and HY . The feature map
of kX analyzes the input by computing its feature representation in HX , while the fea-
ture map of kY synthesizes the output Ψ of the linear map in HY . It can be thought of
as inducing a generative model for the outputs; in the algorithm, it is usually employed
to compute a pre-image of Ψ in Y .

In the present paper, we will generalize this situation to the case where there is a
kernel that jointly compares inputs and outputs.

To this end, first consider the problem of linear regression. Given a training set of
paired objects {(x1,y1), . . . , (xm,ym)} identically and independently sampled from a
distribution P over the product space X × Y , we wish to find a function W that maps
from X into Y such that: ∫

X×Y
‖y −Wx‖2YdP(x,y)

is minimized.
This is a classical learning problem that has been widely studied when Y ⊂ R

q

has a small dimension. When the output dimension becomes very high, in order to
generalize well one must take into account (i) correlation between output variables (ii)
correlation between input variables X ⊂ R

p and (iii) correlation between input and
output variables.

If prior knowledge about such correlations exists, it can be encoded into a regular-
izer. For example, a minimization scheme could be adopted that minimizes

1
m

m∑
i=1

‖yi −Wxi‖+
dim(X )∑

i,j=1

dim(Y)∑
s,t=1

WijWstSijst.

Here, Sijst encodes the correlation between inputs i,j with outputs s and t.
For example, suppose one is learning a mapping between two spaces of equal and

large dimension, e.g. pairs of images or spectra. Then the most obvious prior knowledge
one has is that, e.g., pixels in images that are close in the input are also close in the
output. This knowledge can be encoded into S. The challenge is to rewrite such an
optimization problem in the general case so that (i) it can be solved in a dual form to
make it tractable for high dimension and (ii) it can be generalized with kernels to also
solve nonlinear problems.

In this work we will show how to encode such prior knowledge by defining appro-
priate joint kernel functions and subsequent minimization in dual variables, building on
work such as [7] and [8]. The subsequent algorithm will solve much more than linear
regression: it will generalize nonlinear support vector machines for classification and
regression, and will be also be able to deal with structured outputs such as strings, trees
and graphs via kernels [8–10] .
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2 Linear Maps

We start by learning the linear map W such that a prediction on data is

y(x) = argminy∈Y‖Wx− y‖2 = Wx.

Note that if the argmin is taken over a linear space, then y(x) = Wx, but in more
general settings, it will be necessary to compute it using other means. We consider an
ε-insensitive loss approach, as in support vector regression [11]. We choose the W that
minimizes

‖W‖2FRO (9)

using the Frobenius norm, subject to

‖Wxi − y‖2 ≥ ‖Wxi − yi‖2 + ε2/2, (10)

∀i, {∀y ∈ Y : ‖yi − y‖ > ε}.

We note that this generalizes support vector classification and Regression:

– For y ∈ R one obtains support vector regression (SVR) [11] without threshold, and
for y ∈ Rq one obtains vector-valued ε-insensitive SVR [12]. We rewrite (10) as

min
y∈Cε(yi)

‖Wxi − y‖2 ≥ ‖Wxi − yi‖2 + ε2/2

where Cε(yi) is the complement of the ball of radius ε centered at yi. If Wxi is
not in the latter ball, the value of this minimum is zero and the problem does not
have any solution. On the other hand, if Wxi is in the ball, then this minimum is
not zero and can be computed directly. Its value is attained for the following y:

y = yi +
Wxi − yi

‖Wxi − yi‖
ε.

The value of the minimum is then (ε− ‖Wxi − yi‖)2. We then have the constraint

(ε− ‖Wxi − yi‖)2 ≥ ‖Wxi − yi‖2 + ε2/2,

which gives, after some algebra, ‖Wxi − yi‖ ≤ ε/4.
– For y ∈ {±1} and 0 ≤ ε < 2 we obtain two-class SVMs [11] (W is a 1×p matrix).

Expanding the constraint (10) for each i gives

−2yWxi + 2yiWxi ≥ ε2/2.

For y, yi ∈ {±1}, ‖yi − y‖ > ε only occurs for y = −yi, in which case we have
yiWxi ≥ ε2/8, the usual SVM constraints, disregarding scaling and threshold b.

– Similarly, for y ∈ {0, 1}q, where the cth
i entry is 1 when example i is in class

ci, and 0 otherwise, and 0 ≤ ε <
√

2 we can obtain multiclass SVMs [13]. As
‖y‖ = 1 we have the constraints
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y>i Wxi − y>Wxi ≥ ε2/4,

where the q rows of W =

w1

. . .
wq

 correspond to the q hyperplanes of multi-class

SVMs (W is a q × p matrix). Because only one constraint is switched on at one
time due to the zeros in y we have to minimize ‖W‖2FRO =

∑
i ‖wi‖2 subject to

∀i, wci
xi −wjxi ≥ ε2/4, ∀j ∈ {1, . . . , q} \ ci which is the same as in [13], again

disregarding scaling and thresholds.

Generalizing to the non-separable case in the usual manner [8, 11] should be straight-
forward. Note that the constraints can also be written as:

∀i, {∀y ∈ Y : ‖yi − y‖ > ε} : 2(yi − y)Wxi ≥ ε2/2 + ‖yi‖2 − ‖y‖2. (11)

Let us now restrict ourselves slightly to the situation where the outputs are normalized
so ∀y ∈ Y : ‖y‖ = 1. (Obviously this is only useful in the multi-dimensional case.)
Hence, we rewrite our optimization problem as: minimize

‖W‖2FRO (12)

subject to

∀i, {∀y ∈ Y : ‖yi − y‖ > ε} : y>i Wxi − y>Wxi ≥ ε2/4. (13)

We can regard F (x,y) = y>Wx as a function that returns the degree of fit between
x and y. The output on a test point can now be written

y(x) = argminy∈Y‖Wx− y‖2

= argmaxy∈Yy>Wx =
Wx
‖Wx‖

. (14)

because, by Cauchy-Schwarz, the function argmaxyy
>Wx is maximal if y

‖y‖ is parallel
to Wx∗.

With this optimization problem for the case of discrete Y and ε → 0, we obtain the
support vector machine for interdependent and structured output spaces (SVM-ISOS) of
[8]. In practice, one could relax the restriction upon the normalization of y during train-
ing because separability could still be obtained. However, if one is dealing with con-
tinuous outputs without this restriction then the preimage given by argmaxy∈Yy>Wx
would not be well defined. This is the reason why in the work of [8] normalization was
not an issue, as only the discrete output case was considered1.

We now show how to develop our method for joint kernels.

1 In practice, in our experiments with joint kernels, we normalize the joint kernel itself, not the
outputs, because the output in this case is not easily accessible.
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3 Joint Kernel Maps

We can rewrite the last optimization problem by considering W as a vector w of dimen-
sion dim(X )dim(Y), and choosing the feature map

ΦXY(x,y) = 〈(xy>)ij〉 i = 1, . . . , dim(Y)
j = 1, . . . , dim(X ).

The optimization problem then consists of minimizing2

‖w‖2 (15)

subject to
〈w, ΦXY(xi,yi)− ΦXY(xi,y)〉 ≥ ε2/2, (16)

∀i, {∀y ∈ Y : ‖yi − y‖ > ε}.

However, we are free to choose another mapping, as we shall see later (indeed, choos-
ing a mapping which incorporates prior knowledge is the whole point of using this
approach).

We call ΦXY the joint kernel map (JKM), and

J((x,y), (x̂, ŷ)) = ΦXY(x,y)>ΦXY(x̂, ŷ)

the joint kernel. This relates our method to the work of [14] and [15].
Constructing the corresponding dual problem we obtain: maximize3

ε2

4

∑
i,y:‖yi−y‖>ε

αiy−
1
2

∑
i, y : ‖yi − y‖ > ε
j, ŷ : ‖yi − ŷ‖ > ε

αiy αjŷ〈ΦXY(xi,yi)−ΦXY(xi,y), ΦXY(xj ,yj)−ΦXY(xj , ŷ)〉

subject to
αij ≥ 0, i = 1, . . . ,m, {∀y ∈ Y : ‖yi − y‖ > ε}.

2 Note that we could also simplify the optimization problem further by splitting the constraints:
i.e. minimize ‖w‖2 subject to

∀i : 〈w, ΦXY(xi,yi)〉+ b ≥ ε2/8

{∀y ∈ Y : ‖yi − y‖ > ε} : 〈w, ΦXY(xi,y)〉+ b ≤ −ε2/8.

If this problem is linearly separable, then its solution w is also a feasible solution of (15)-(16).
3 Note that with infinitely many constraints, standard duality does not apply for our optimization

problem. However, for the purposes of the present paper, we are not concerned with this. For
practical purposes, we may assume that for any ε > 0, our data domain has a fin ite ε-cover
(e.g., our domain could be a compact subset of Rn). Since on a computer implementation,
a constraint can only be enforced up to machine precision, we can thus imagine choosing
a sufficiently small ε, which reduces our setting to one with a finite number of constraints.
Furthermore, we find experimentally that the number of active constraints is small and scales
sublinearly with the number of examples or output dimension (see Figure 1).
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The objective can be rewritten with kernels:

ε2

4

∑
i,y:‖yi−y‖>ε

αiy − (1/2)
∑

i, y : ‖yi − y‖ > ε
j, ŷ : ‖yi − ŷ‖ > ε

αiyαjŷ[J((xi,yi), (xj ,yj))

−J((xi,yi), (xj , ŷ))− J((xi,y), (xj ,yj))

+J((xi,y), (xj , ŷ))].

The standard linear map therefore requires J((xi,yi), (xj ,yj))=〈xi,xj〉〈yi,yj〉=
K(xi,xj)L(yi,yj), where K(xi,xj) = 〈xi,xj〉 and L(yi,yj) = 〈yi,yj〉 are kernel
maps for input and output respectively.

Now
w =

∑
i,y:‖yi−y‖>ε

αij [ΦXY(xi,yi)− ΦXY(xi,y)].

For certain joint kernels (that are linear in the outputs) we can compute the matrix W
explicitly to calculate the mapping. However, for general nonlinear mappings of the
output (or input) we must solve the pre-image problem (cf. (14)):

y(x∗) = argmax
y∈Y

〈W,ΦXY(x∗,y)〉

= argmax
y∈Y

∑
i,y:‖yi−y‖>ε

αijJ((xi,yi), (x∗,y∗))

− αijJ((xi,y), (x∗,y∗)).

In the next section we discuss joint kernels, and consider several examples that do not
require one to solve the general pre-image problem. First, let us discuss related work,
and practical implementation considerations.

Optimization. Finding a solution to the above equations, which contain an infinite num-
ber of constraints, is feasible because in practice the solution tends to be very sparse. In
fact, the solution can be found in polynomial time if the pre-image can be computed in
polynomial time. An efficie nt method for the SVM for Interdependent and Structured
Output Spaces was developed in [8] and can be analogously implemented for Joint Ker-
nel Maps by using an iterative scheme: add the most violating example to the working
set and reoptimize, repeating until completion. One can then show that on each iteration
the objective function strictly improves and is guaranteed to terminate if the problem
is separable. In practice, in our experiments we also start with ε large, and decrease it
upon separability.

Related Algorithms. The idea of learning maps by embedding both input and output
spaces using kernels was first employed in the Kernel Dependency Estimation algo-
rithm [7], where the kernels were defined separately. This allowed correlations to be
encoded between output features, nonlinear loss functions to be defined, and for out-
puts to be structured objects such as strings and trees [8–10] (however, one must then
solve an often difficult pre-image problem). The method first decorrelates the outputs
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via performing a kernel principal component analysis (kPCA). kPCA yields principal
components vl ∈ R

q, l = 1 . . . n and corresponding variances λl. Henceforth the out-
put labels {yi}m

i=1 are projected to the column vectors vl to retrieve the m principal
coordinates zi ∈ Rn. This projection results in the new estimation task

arg min
W∈Rn×p

m∑
i=1

‖zi −Wxi‖2.

KDE for example performs a ridge regression on each component zij , 1 ≤ j ≤ n to
overcome overfitting. Predictions for a new point x? are made via predicting first the
principal coordinates z? = Wx?, and then using the principal components.

y? = V z?.

Here V ∈ Rq×n consists of the n principal components vl. In the case where n = q the
prediction performance will only depend on the basic regression used for estimating z?

since V acts as a basis transformation.
If one assumes that the main variation in the output are according to signal and the

small variances according to noise, then it is reasonable to take the first n principal
components corresponding to the largest variance λl. Alternatively, instead of cutting
off it is also possible to shrink the directions according their variance.

Compared to the current work and work such as SVM-ISOS [8], KDE has the ad-
vantage during training of not requiring the computation of pre-images. On the other
hand, it requires an expensive matrix inversion step, and does not give sparse solutions.
The inability to use Joint Kernels in KDE means that prior knowledge cannot be so
easily encoded into the algorithm. In our experiments (see Section 5) the difference be-
tween using this prior knowledge or not in real applications can be large, at least for
small sample size.

The authors of [16] also provide a method of using kernels to deal with high-
dimensional output regression problems using vector-valued kernel functions. One de-
fines a prediction function as follows:

f(x) =
m∑

i=1

K(xi,x)ci

where K(xi,xj) is a q by q matrix which in position Ks,t encodes the similarity be-
tween training points i and j with respect to outputs s and t. The weights ci are hence
q by 1 vectors. Although at first sight this approach seems very complicated in terms
of defining kernels, there are some natural examples where known correlation across
outputs can be encoded. However, simply minimizing

∑
i ‖yi− f(xi)‖2 yields a large,

non-sparse optimization problem with qm variables.
Considering once again classificat ion problems, the current work also turns out to

have strong relations with the work of [15] who employed a ranking perceptron algo-
rithm and a specific joint kernel on the natural language problem of parsing (outputting
a parse tree). In this case, the difficult pre-image problem was avoided by only se-
lecting among n pre-selected experts (parsing algorithms). The algorithm they used is
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thus similar to the one given in footnote 2, except in their case not all possible nega-
tive constraints are enforced, but only n − 1 per example. Using the multi-class SVM
formulation of [11, 13]:

f(xi,yi) > f(xi,y), ∀{y ∈ Y \ yi} (17)

and considering Y as some large set, e.g. of structured objects, one arrives at the for-
mulation of SVM-ISOS [8]. Essentially, this is a special case of our algorithm, where
the output is structured (discrete Y) and ε = 04. The authors apply the algorithm to
problems of label sequence learning, named entity recognition and others. Our work
complements this last one in helping to understand the role of joint kernels in learn-
ing problems where one can supply prior knowledge by way of the similarity measure.
The authors of [17] also provide a similar formulation to [8] but with a probabilistic
interpretation.

Although in this paper we do not consider structured output problems, the algorithm
we develop could indeed be applied to such problems. Let us consider one such prob-
lem, machine translation: translating a sentence into another language. The relation
between regression and classification in this framework is an interesting one. On the
one hand, one could argue that one desires separability, to return the correct pre-image
(sentence) on the training set. This is the approach of [8]. On the other hand, to classify
one sentence as correct, and all others as wrong as in the constraints of (17) could be
dangerous because it ignores the distance measure in the output space (other sentences
may also be plausible.) Thus even when the embedding is discrete, it may make sense
to treat it as regression if outputs close in output space have the same “label”. Although
the authors of [8] try to fix this problem with an adaptive soft margin approach, the
ε-insensitive approach of the current paper would preserve sparsity.

4 Joint Kernels

A joint kernel is a nonlinear similarity measure between input-output pairs, i.e.,
J((x,y), (x′,y′)) where (x,y) and (x′,y′) are labeled training examples,5

J((x,y), (x′,y′)) = 〈ΦXY(x,y), ΦXY(x′,y′)〉,

where ΦXY is a map into a dot product space. All functions J((x,y), (x′,y′)) that
take this form are positive definite, and all positive definite kernels J((x,y), (x′,y′))
can be written in this form. This follows directly from the corresponding statements for
kernels k(x,x′) (see, for example, [5]). The point of a joint kernel is to describe the
similarity between input-output pairs by mapping pairs into a joint space. A joint ker-
nel can encode more than just information about inputs or outputs independent of each
other: it can also encode known dependencies/correlations between inputs and outputs.

4 Ignoring the normalization conditions on the output which come from our original derivation,
as discussed previously.

5 Note there is nothing stopping us considering not just pairs here but also kernels on n-tuples,
e.g., of the form (x,y, z).
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Joint Kernels have already begun to be studied ([14],[8]); however, so far only discrete
output spaces and structured outputs (such as sequences) were considered. One of the
problems with Joint Kernels is that only for a subset of possible kernels can one com-
pute the pre-image easily. In [8] kernels on sequences are chosen that are amenable to
dynamic programming. Although some methods for speeding up pre-image computa-
tions exist [18, 19], this remains a difficult problem. In the following we describe some
kernels which avoid complex pre-image problems.

Tensor Product Kernels. A kernel that does not encode any correlations can be obtained
by using the product

JLINEAR((x,y), (x′,y′)) = K(x,x′)L(y,y′)

= 〈ΦX (x), ΦX (x′)〉〈ΦY(y), ΦY(y′)〉

where K and L are respectively kernels on the inputs and outputs. If K and L are
positive definite, then J will be, too; moreover, the associated feature space is known
to be the tensor product of the individual feature spaces.

An interesting special case is when L is a linear kernel. In that case

WLINEAR =
∑

i,y:‖yi−y‖>ε

αijΦX (xi)y>i − αijΦX (xi)y>.

When dim(X ) or dim(Y) are very large it can be more efficient to avoid the calculation
of W and calculate a test prediction directly:

WLINEARx =
∑

i,y:‖yi−y‖>ε

αijK(xi,x)y>i − αijK(xi,x)y>.

Hence we avoid difficult pre-image problems in this case.

Diagonal Regularization. Consider the case where dim(X ) = dim(Y), and it is known
that one is looking for a linear map where the true matrix W is close to the identity map.
Slightly more generally, one may know that the nth dimension of the input is correlated
with the nth dimension of the output. Instances of such problems include decoding
mass spectrometry (mapping from observed to theoretical spectra) and image mapping
problems (deblurring, morphing, etc.). This correlation can be directly encoded:

JDIAG((x,y), (x′,y′)) =

(1− λ)K(x,x′)〈y,y′〉+ λ
[ q∑

k=1

xkx′kyky′k

]
(18)

where λ controls the amount of encoded correlation. If λ is large, then the nth dimen-
sion in the input is presumed highly correlated with the nth dimension in the output, and
the similarity measure is dominated by these relationships. Algorithms that minimize
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the Frobenius norm choose these dimensions as relevant. Furthermore, the solution is
still linear (does not require a pre-image) because we can write

WDIAGx = (1− λ)WLINEARx +

λ
∑

i,y:‖yi−y‖>ε

αij [DIAG(xiy>i )− DIAG(xiy>)]x.

where D = DIAG(M) is a diagonal matrix with Dii = Mii.

Patch-Wise Correlation. The natural generalization of the previous kernel is when you
know that the nth dimension of the output is strongly correlated with a known set of
dimensions in the input; e.g., for mappings between images, one could know that a
region in the output image is strongly correlated with a region in the input image. This
knowledge can be encoded with the kernel

JPATCH((x,y), (x′,y′)) = (1− λ)K(x,x′)〈y,y′〉

+λ

|P|∑
k=1

[ ∑
p∈Pk

xpx′p
∑

p∈Pk

ypy′p
]

(19)

where P is the set of known correlated patches. This encodes patch correlation between
dimensions in x, between dimensions in y, and correlation between input and output,
i.e. between x and y.6 The evaluation on a test example can be expressed as:

WPATCHx = (1− λ)WLINEARx

+λ
∑

i,y:‖yi−y‖>ε

αij [
|P|∑
k=1

Pk(xiy>i )−
|P|∑
k=1

Pk(xiy>)]x

where P = Pk(M) is a matrix such that Pij = Mij if i ∈ Pk or j ∈ Pk (if i or j are in
the kth patch), or Pij = 0, otherwise.

Image Reconstruction. Consider the problem of image reconstruction. For example, in
a problem of digit reconstruction one should predict the bottom half of a digit given its
top half. The authors of [7] solved such a problem with the KDE algorithm. The input
and output kernels, K and L, used by that algorithm are separate and the algorithm
is not given in advance prior knowledge that the two images are related, i.e. that their
concatenation creates a single image. The kernels used were

K(x,x′) = exp(−‖x− x′‖2/(2σ2))

L(y,y′) = exp(−‖y − y′‖2/(2(σ∗)2)) (20)

6 One can introduce a weighting function over the patches, corresponding to the assumption that
the closer the pixels are, the more reliable is their correlation, cf. [5, Eq. (13.21)].
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In that work it was apparent that sometimes in the middle of the digit this approach
can cause some “glitches” when the two halves are connected together. A simple joint
kernel such as

JRBF((x,y), (x′,y′)) = exp(−‖(x,y)− (x′,y′)‖2/(2σ2))

(i.e. concatenating the images together, and then taking the RBF kernel) could capture
more of the problem than taking the product of the kernels in (20). The joint kernel
given here would take into account nonlinearities between pixels of input and output
dimensions. To improve this method further, invariances could also be encoded into the
kernel, e.g. by concatenating the input and output images and then taking into account
rotations, translations, etc. A local polynomial kernel [11] which takes encodes spatial
information within the image would also help to encode the mapping between input and
output; i.e., it would encode that the pixels at the very bottom of the input are highly
correlated with the pixels on the top of the output, as before.

5 Experiments

As said before, JKM reduces to support vector classification and regression for particu-
lar Y . We therefore only test our algorithm on regression problems of multiple outputs,
and show how employing joint kernels can benefit in this case.

5.1 Artificial Problem: The Identity Map

We performed a first experiment on toy data to demonstrate the potential of the ap-
proach. We chose a very simple problem: the input are xi ∈ Rp, each dimension drawn
independently from a normal distribution of mean 0, standard deviation 1. The output
is the same as the input, yi = xi, i.e. the task is to learn the identity map.

Table 1. Mean squared error for different joint kernels encoding the identity map (first three rows)
compared to ridge regression (RR) and k-nearest neighbors. Incorporating prior knowledge in the
joint kernel approach (λ > 0) improves generalization performance

dim(X ) = dim(Y) 20 30 50 75 100
JKMDIAG (λ = 1) 0.00 0.00 0.01 0.02 0.02
JKMDIAG (λ = 0.5) 0.03 0.14 0.34 0.50 0.62
JKMDIAG (λ = 0) 0.06 0.40 0.78 1.00 1.14
RR (best γ) 0.06 0.43 0.82 1.07 1.21
k-NN (best k) 0.92 1.09 1.27 1.40 1.47

We compared k-nearest neighbor and ridge regression with our approach. For the
former (k-NN and RR) we chose the best possible parameters, for the latter (JKM) we
show the results for the identity-map regularizing joint kernel (18) for λ = 0, 1

2 and 1,
with ε = 0.5√

p . For λ = 0 the set of possible linear maps is free; for λ = 1 only linear
maps that are diagonal matrices are considered.

The mean squared error for p = 20, . . . , 100 features are given in Table 1, with 20
examples for training and 100 for testing, averaged over 20 runs. A Wilcoxon signed



188 J. Weston, B. Schölkopf, and O. Bousquet

ranked test confirms that the two kernels with γ > 0 outperform the other techniques.
Further experiments adding noise to the dataset (not shown) yielded similar conclu-
sions. Figure 1 shows the number of active constraints (support vectors) for varying
output dimensions with training size 20 (left) and varying training set sizes with output
dimension 20 (right). The solutions are relatively sparse (consider that dual ridge re-
gression [20] uses pm variables for p outputs and m examples). Note that larger values
of λ (where the capacity of the set of functions is lower) have less active constraints.

Fig. 1. Number of Active Constraints (Support Vectors) on Artificial data varying output
dimension (left) and training set size (right)

5.2 Image Mapping: Learning to Smile

We consider the problem of mapping from the image of a face with a plain expression to
an image of the same person smiling using images from the MPI face database [21, 22].
We use 20 examples for training, and 50 for testing. The images are 156×176 = 27456
pixels. We selected a small number of training examples because in this setting the
weakness of existing methods was further exposed.

We applied a joint kernel mapping using the tensor product (linear) kernel (ε =
0.05) and the patch-wise kernel (19) with γ = 0.95, ε = 0.1 and patches of size 10×10
which overlap by 5 pixels. Training took 344 and 525 steps of adding a single violating
example for the linear and patch kernels, resulting in 150 and 162 support vectors,
respectively. Again, we compared with conventional regression techniques, choosing
their best possible hyperparameters. A naive employment of ridge regression on this
task fails, outputting a kind of “a verage” face image, independent of the input, see
Figure 2. The large dimensionality means there are many solutions with low empirical
error, RR (after choosing the optimal regularization constant) selects one that uses many
(irrelevant) inputs due to its regularizer. Similarly, k-NN cannot solve this problem well
for small sample size. See Figure 2 for example images, and Table 2 for mean squared
error rates comparing all these methods. By way of comparison, the baseline of simply
predicting the input image as the output (the plain expression) gives a test error of
0.1823± 0.003.
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Fig. 2. Prediction of smiling face given plain expression by joint kernel maps (patch and linear)
and ridge regression and k-NN. The large dimensionality means there are many solutions with
low empirical error, RR (after choosing the optimal regularization constant) selects one that uses
many (irrelevant) inputs due to its regularizer ‖w‖2 which favors non-sparse solutions. Only the
Patch-Kernel Joint Kernel Map is successful, as the choice of (joint) kernel limits the possible
choice of functions to ones which are close to the identity map

INPUT OUTPUT JKMP	
�� JKML
��	� RR (best �) �-NN (best �)
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Table 2. Test error on the smiling problem of the MPI face database

JKM− JKM−
PATCH LINEAR RR k-NN

(ε = 0.1) (ε = 0.05) (best γ) (best k)
Test error 0.142 0.227 0.222 0.244
Test error ±0.002 ±0.006 ±0.006 ±0.006

5.3 Conclusions

In this work we presented a general method of supervised learning via joint kernel
mappings, and showed how such kernels can encode certain regularization properties
which reflect prior knowledge in mappings. While the experiments shown here used
only simple types of joint kernels taking advantage of patch-wise information, these
examples are only an instantiation of our approach, to show its validity and to bring in-
sight into why and how joint kernels are useful. Joint kernels are mainly useful in cases
where their pre-image is easily computable, and are extendable to complex outputs such
as strings, trees and graphs. Indeed, we believe the gain of joint kernel methods is in
employing such complex structured outputs that go beyond standard classification and
regression such as in parsing, machine translation and other applications. In those cases
the difference between coding prior knowledge into a joint kernel and using two sepa-
rate kernels for input and output could potentially be large, at least in the small sample
size case. Although first studies in some of these areas have been completed [8, 15], no
study that we know of has yet directly compared this benefit.

Future work should also address issues of efficienc y (efficienc y of training, pre-
images for more complex nonlinear and structured kernels), and to more deeply explore
applications of these results.
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