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Abstract. This paper presents a comparison between direct and recursive pre-
diction strategies. In order to perform the input selection, an approach based on 
mutual information is used. The mutual information is computed between all 
the possible input sets and the outputs. Least Squares Support Vector Machines 
are used as non-linear models to avoid local minima problems. Results are illus-
trated on the Poland electricity load benchmark and they show the superiority of 
the direct prediction strategy. 
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1   Introduction 

Prediction is an important part of decision making and planning process in engineer-
ing, business, medicine and many other application domains. Long-term prediction is 
typically faced with growing uncertainties arising from various sources, for instance, 
accumulation of errors and lack of information [1]. In long-term prediction, when 
predicting multiple steps ahead, we have several choices. In this work, two variants of 
prediction approaches, namely, direct and recursive prediction, using Least Squares 
Support Vector Machines (LS-SVM) [17], are studied and compared. Meanwhile, to 
improve the efficiency of prediction, mutual information (MI) is used to select the 
inputs [12]. Based on the experimental results, a combination of input selection and 
forecast strategy which can give comparatively accurate long-term time series predic-
tion will be presented. 

The paper is organized as follows: in section 2, mutual information is introduced. 
Time series prediction is explained in section 3. In section 4, LS-SVM is defined. In 
section 5 we present the experimental results and in section 6 conclusions and further 
works are presented. 



 Direct and Recursive Prediction of Time Series Using Mutual Information Selection 1011 

 

2   Mutual Information for Input Selection 

2.1   Input Selection  

Input selection is one of the most important issues in machines learning especially 
when the number of observations is relatively small compared to the number of  
inputs. In practice, there is no dataset with infinite number of data points and further-
more, the necessary size of the dataset increases dramatically with the number of 
observations (curse of dimensionality). To circumvent this, one should first select the 
best inputs or regressors in the sense that they contain the necessary information. 
Then it would be possible to capture and reconstruct the underlying relationship be-
tween input-output data pairs. Within this respect, some model dependent approaches 
have been proposed [2-6].  

Some of them deal with the problem of feature selection as a generalization error 
estimation problem. In this methodology, the set of inputs that minimize the gener-
alization error is selected using Leave-one-out, Bootstrap or other resampling tech-
niques. These approaches are very time consuming and may take several weeks. 
However, there are model independent approaches [7-11] which select a priori in-
puts based only on the dataset, as presented in this paper. So the computational load 
would be less than in model dependent cases.  Model independent approaches select 
a set of inputs by optimizing a criterion over different combinations of inputs. The 
criterion computes the dependencies between each combination of inputs and the 
corresponding output using predictability, correlation, mutual information or other 
statistics.   

In this paper, the mutual information is used as a criterion to select the best input 
variables (from a set of possible variables) for long-term prediction purpose.  

2.2   Mutual Information 

The mutual information (MI) between two variables, let say X and Y, is the amount of 
information obtained from X in presence of Y, and vice versa. MI can be used for 
evaluating the dependencies between random variables, and has been applied for 
Feature Selection and Blind Source Separation [12].  

Let us consider two random variables: the MI between them would be  

),()()(),( YXHYHXHYXI −+=  , (1) 

where H(.) computes the Shannon’s entropy. In the continuous entropy case, equation 
(1) leads to complicated integrations, so some approaches have been proposed to 
evaluate them numerically. In this paper, a recent estimator based on k-Nearest 
Neighbors statistics is used [13]. The novelty of this approach consists in its ability to 
estimate the MI between two variables of any dimensional spaces. The basic idea is to 
estimate H(.) from the average distance to the k-Nearest Neighbors (over all xi). MI is 
derived from equation (1) and is estimated as  
 



1012 Y. Ji et al. 

 

)()()(/1)(),( NnnkkYXI yx ψ+ψ+ψ−−ψ=  , (2) 

with N the size of dataset and ψ(x) the digamma function, 

dxxdxx /)(1)()( Γ−−Γ=ψ  , (3) 

)1(ψ ≈ −0.5772156 and  
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nx(i), ny(i) are the numbers of points in the region ||xi − xj|| ≤ εx(i)/2 and ||yi − yj|| 
≤ εy(i)/2. ε(i)/2 is the distance from zi to its k-Nearest Neighbors. εx(i)/2 and εy(i)/2 are 
the projections of ε(i)/2 [14]. k is set to be 6, as suggested in [14]. Software for calcu-
lating the MI based on this method can be downloaded from [15]. 

3   Time Series Prediction  

Basically, time series prediction can be considered as a modeling problem [16]:  a 
model is built between the input and the output. Then, it is used to predict the future 
values based on the previous values. In this paper we use two different strategies to 
perform the long-term prediction, which are direct and recursive forecasts. 

3.1   Direct Forecast 

In order to predict the values of a time series, M +1 different models are built,  

))(),...,2(),1(()(ˆ ntytytyfmty m −−−=+  , (5) 

with m = 0,1,…M, M is the maximum horizon of prediction. The input variables on 
the right-hand part of (5) form the regressor, where n is the regressor size.  

3.2   Recursive Forecast 

Alternatively, model can be constructed by first making one step ahead prediction,  

))(),...,2(),1(()(ˆ ntytytyfty −−−=  , (6) 

and then predict the next value using the same model,  

))1(),...,2(),1(),(ˆ()1(ˆ +−−−=+ ntytytytyfty  . (7) 

In equation (7), the predicted value of )(ty is used instead of the value itself, which is 

unknown. Then, )1(ˆ +ty  to )(ˆ Mty +  are predicted recursively. 
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4   Least Squares Support Vector Machines 

LS-SVM are regularized supervised approximators. Comparing with simple SVM, 
Only linear equation is needed to solve the results, which avoids the local minima in 
SVM. A short summary of the LS-SVM is given here; more details are given in [17]. 

The LS-SVM model [18-20] is defined in its primal weight space by,  

( ) by T +ϕω= xˆ  , (8) 

where ϕ(x) is a function which maps the input space into a higher dimensional feature 
space, x is the N-dimensional vector of inputs xi, and ω and b the parameters of the 
model. In Least Squares Support Vector Machines for function estimation, the follow-
ing optimization problem is formulated, 
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subject to the equality constraints, 

( ) Nieby iii T ,,1, K=++ϕω= x  . (10) 

In equation (10), the superscript i refers to the number of a sample. Solving this op-
timization problem in dual space leads to finding the αi and b coefficients in the fol-
lowing solution, 
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Function Κ(x, xi) is the kernel defined as the dot product between the ϕ(x)T and 
ϕ(x) mappings. The meta-parameters of the LS-SVM model are σ, width of the 
Gaussian kernels (taken to be identical for all kernels), and γ, regularization factor.  
LS-SVM can be viewed as a form of parametric ridge regression in the primal 
space. Training methods for the estimation of the ω and b parameters can be found 
in [17].  

5   Experimental Results  

The dataset used in this experiment is a benchmark in the field of time series predic-
tion: the Poland Electricity Dataset [21]. It represents the daily electricity load of 
Poland during 2500 days in the 90s. 

The first two thirds of the whole dataset is used for training, and the remaining data 
for testing. To apply the prediction model in equation (5), we set the maximum time 
horizon M = 6 and the regressor size n = 8.  

First, MI presented in section 2.2 is used to select the best input variables. All the 
2n-1 combinations of inputs are tested. Then, the one that gives the maximum MI is 
selected. The selection results for direct forecast are:  
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Table 1. Input selection results of MI 

 y(t) y(t+1) y(t+2) y(t+3) y(t+4) y(t+5) y(t+6) 
y(t-1) X X X X X X X 
y(t-2) X X X X X X X 
y(t-3)   X  X X  
y(t-4)  X X X    
y(t-5)  X X     
y(t-6) X   X    
y(t-7)    X    
y(t-8)       X 

 

For example, the 4th column means that,  

))7(),6(),4(),2(),1(()3(ˆ 3 −−−−−=+ tytytytytyfty  . (12) 

Then the LS-SVM is used to make the prediction. To select the optimal parameters 
model selection method should be used here, in the experiment, leave-one-out is uses. 
The errors for the leave-one-out procedure of every pairs of γ and σ are listed. Then 
the area around the minima is zoomed and searched until the hyper parameters are 
found. For recursive prediction, only one function is used, so one pair of γ and σ is 
needed, which is (33, 0.1). For direct prediction, seven pairs of parameters are re-
quired. They are (33, 0.1), (40, 0.1), (27, 0.1), (27, 0.1), (27, 0.1), (22, 0.1) and (27, 
0.1). The mean square error values of the results are listed in the table below: 

Table 2. MSE values of direct and recursive prediction 

 y(t) y(t+1) y(t+2) y(t+3) y(t+4) y(t+5) y(t+6) 
direct 0,00154 0,00186 0,00178 0,00195 0,00276 0,00260 0,00260 

recursive 0,00154 0,00362 0,00486 0,00644 0,00715 0,00708 0,00713 
 

As illustration, the MSE values are presented also in Fig. 1:  

 

Fig. 1. Prediction results comparison: dashed line corresponds to recursive prediction and solid 
line corresponds to direct prediction 
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Fig. 2. )(ˆ ty (represented as yh) and y(t) for each horizon of prediction 

 

Fig. 3. An example of prediction: )(ˆ ty is represented in dotted line and )(ty is represented in 

solid line 

In Fig. 1, the horizontal axis represents i in y(t+i), which varies from 0 to 6. The 
vertical axis represents the corresponding MSE values. The dashed line shows MSE 
values for recursive prediction and the solid line shows MSE values for direct predic-
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tion. From this figure, it can be seen that as i increases, the performances of the direct 
predictions are better than that of the recursive ones. 

To illustrate the prediction results, the predicted values by direct prediction are 
plotted against the real data in Fig. 2. The more the points are concentrated around a 
line, the better the predictions are. It can be seen that when i is large, the distribution 
of the points diverts from a line, because the prediction becomes more difficult. 

In Fig. 3, one example of the prediction results is given.  The dashed line repre-
sents seven real values from the Poland dataset. The solid line is the estimation using 
direct prediction. The figure shows that the predicted values and the real values are 
very close.  

The same methodology has been applied to other benchmark and similar results 
have been obtained. 

6   Conclusion  

In this paper, we compared two long-term prediction strategies: direct forecast and 
recursive forecast. MI is used to perform the input selection for both strategies: MI 
works as a criterion to estimate the dependencies between each combination of inputs 
and the corresponding output. Though 2n - 1 combinations must be calculated, it is 
fast compared to other input selection methods. The results show that this MI based 
method can provide a good input selection. 

Comparing both long-term prediction strategies, direct prediction gives better per-
formances than recursive prediction. The former strategy requires multiple models. 
Nevertheless, due to the simplicity of the MI input selection method, direct prediction 
strategy can be used in practice. Thus, the combination of direct prediction and MI 
input selection can be considered as an efficient approach for a long-term time series 
prediction.  
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