
Continuous Semantics for Strong Normalization

Ulrich Berger

Department of Computer Science,
University of Wales Swansea,

Singleton Park,
Swansea SA2 8PP, UK
u.berger@swan.ac.uk

Abstract. We prove a general strong normalization theorem for higher
type rewrite systems based on Tait’s strong computability predicates and
a strictly continuous domain-theoretic semantics. The theorem applies to
extensions of Gödel’s system T , but also to various forms of bar recursion
for which strong normalization was hitherto unknown.

1 Introduction

The problem of proving strong normalization for typed λ-calculi and higher type
rewrite systems has been studied extensively in the literature [14, 9, 15, 10, 17,
7, 5, 8, 1, 16, 6, 11]. In this paper we present a new method for proving strong
normalization of higher type rewrite systems based on a strict domain-theoretic
semantics. The idea is similar to Plotkin’s adequacy proof for PCF [12]: One
gives a suitable interpretation of terms in a domain-theoretic model and uses a
continuity argument to show that any term not denoting ⊥ normalizes. The main
difference between Plotkin’s and our result is that while Plotkin considers terms
with a general fixed point operator, for which, of course, only weak normalization
can be proven, we consider recursion schemes defined by pattern matching and
we prove strong normalization.

Another new aspect of our method is that it allows for a modular normal-
ization proof: First one proves strong normalization for the underlying typed
λ-calculus with stratified constants only, i.e. constants with conversion rules that
do not involve recursion. This can be done by an extension of Tait’s computabil-
ity method [14]. Then one uses a continuity argument to lift strong normalization
to recursively defined constants that have a total value w.r.t. to a strict domain-
theoretic semantics.

We will apply our results to a λ-calculus formulation of Gödel’s system T
extended by two versions of bar recursion in finite types: Spector’s original ver-
sion [13], and a version due to Berardi, Bezem and Coquand [2]. For this system
strong normalization was hitherto unknown.

In this paper we consider a simply typed system over the booleans and the in-
tegers, closed under the formation of list and function types. The motivation for
this (somewhat ad hoc) choice is that this allows for a convenient formulation of

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 23–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

24 U. Berger

bar recursion. Our results could be easily extended to type systems closed under
arbitrary strictly positive definitions. Also extensions to second-order polymor-
phic types seem to be possible.

2 Extended Gödel’s System T

The set of types, ρ, σ, . . . is generated from the base types boole and nat by the
formation of list types, ρ∗, and function types, ρ → σ. As usual we write ρ → σ
for ρ1 → . . . → ρn → σ where → associates to the right. Types which are not
function types, i.e. boole, nat and list types ρ∗, are called inductive (because their
elements will be generated inductively). We let the letter ι range over inductive
types.

The term language is determined by a set C of typed constants cρ. Typed
terms are constructed from typed variables, xρ, and constants, cρ, by abstrac-
tion, (λxρMσ)ρ→σ, application, (Mρ→σNρ)σ, and constructor term formation,
0nat, S(Mnat)nat, []ρ

∗
, cons(Mρ, Nρ∗

)ρ∗
. Type information will often be omitted

provided this doesn’t cause ambiguities. Instead of Mρ we will sometimes write
M : ρ. We let the symbol co range over the constructors 0, S, [] and cons. In a
constructor term co(M)ι the terms M are called arguments.

β-conversion is defined as usual by

(λxM)N �→ M [N/x]

where by M [N/x] we mean the usual substitution of every free occurrence of
x in M by N renaming bound variables in M if necessary. More general we
will consider substitutions θ, which are mappings from variables to terms of the
same type, and define Mθ as the simultaneous replacement in M of x by θ(x)
renaming bound variables in M if necessary.

The operational meaning of a constant c ∈ C of type ρ1 → . . . → ρn → σ is
determined by constant-conversion rules of the form

cLρ1
1 . . . Lρn

n �→ Rσ

We require that for any constant c the number n above is fixed, i.e. if cL �→ R
and cL′ �→ R′ are rules, then the vectors L and L′ must have the same length.
In the situation above we say that c takes n arguments.

Consider, for example, the constants if: boole → ρ → ρ → ρ, <: nat → nat →
boole, lh: ρ∗ → nat, get: ρ∗ → nat → ρ, and ++: ρ∗ → ρ∗ → ρ∗,

if Tx y �→ x

if Fx y �→ y

n < 0 �→ F

0 < S(m) �→ T

S(n) < S(m) �→ n < m

lh [] �→ 0

Continuous Semantics for Strong Normalization 25

lh cons(x, s) �→ S(lh(s))

get []n �→ 0ρ

get cons(x, s) 0 �→ x

get cons(x, s)S(n) �→ get s n

[] ++ t �→ t

cons(x, s) ++ t �→ cons(x, s ++ t)

where 0ρ is some closed term of type ρ. These are examples primitive recursion
in higher types. Gödel’s system T summarizes this definition pattern by con-
stants for primitive recursion, Rnat,ρ: ρ → (nat → ρ → ρ) → nat → ρ, with the
conversion rules

Rnat,ρxy0 �→ x

Rnat,ρxyS(z) �→ yz(Rnat,ρxyz)

Similar rules can be introduced for recursion constants for the other inductive
types. In sections 5 we will also consider constants with rules that cannot be
derived from primitive recursion.

By a conversion we mean a β-conversion or an instance of a constant-
conversion rule, i.e. Lθ �→ Rθ for some constant-conversion rule L �→ R and
substitution θ. We write M →1 N if N is obtained from M by replacing one
subterm occurrence of the left hand side of a conversion by its right hand side. We
call a term M strongly normalizing, SN(M), if M is in the accessible part of the
relation →1, i.e. there is no infinite reduction sequence M →1 M1 →1 M2 →1
Equivalently, the predicate SN can be inductively defined by the rule

∀K (M →1 K → SN(K))
SN(M)

We call a system of constant-conversion rules R strongly normalizing if every
term is strongly normalizing with respect to R.

It is well-known that Gödel’s system T , i.e. the system of conversion rules for
primitive recursion in finite types is strongly normalizing. In the next section we
will reexamine the proof of this fact using Tait’s strong computability predicates
and generalize it so as to accommodate further constants and conversions.

3 Proving Strong Normalization Using Strong
Computability

We define for every type ρ what it means for a term Mρ to be strongly com-
putable, SCρ(M). The definition is by recursion on (the built up of) ρ. For an
inductive type ι the predicate SCι is defined inductively. We only give the rules
for a list type ρ∗. For boole and nat the rules are similar.

26 U. Berger

SCρ∗([])
SCρ(M) SCρ∗(N)

SCρ∗(cons(M,N))

∀K (M→1K → SCρ∗(K))
SCρ∗(M)

(Mnotaconstructorterm)

SCρ→σ is defined explicitely from SCρ and SCσ.

SCρ→σ(M) ≡ ∀N (SCρ(N) → SCσ(MN))

Lemma 1. (a) If SCρ(M) and M →1 M ′, then SCρ(M ′).
(b) A constructor term is strongly computable iff all its arguments are.

Proof. (a) Easy induction on ρ. If ρ is an inductive type the assertion is proved
by a side induction on the definition of SCρ. For function types we use the (main)
induction hypothesis.

(b) Obvious.

Lemma 2. (a) SCρ(M) → SN(M).
(b) SCρ(x) for every variable x of type ρ.

Proof. Induction on ρ. In order to get the proof through we need to strengthen
part (b) to

(b’) SN(A) → SCρ(A) for every term A with ‘variable head’,

where terms with variable head are variables and terms of the form AM where
A is a term with variable head.

(a) If ρ is an inductive type, then the implication follows easily by a side
induction on the definition of SCρ(M), possibly using the main induction hy-
pothesis. Case ρ → σ. Assume SCρ→σ(M). By i.h. (b’) we have SC(xρ). Hence
SCσ(Mx). By i.h. (a), SN(Mx). Hence SN(M).

(b’) Let A be a strongly normalizing term with variable head. If A has an
inductive type, then we show SC(A) by a side induction on SN(A). Since A is
not a constructor term, it suffices to show SC(B) for all one step reducts B
of A. Clearly B has variable head, hence SC(B) by side induction hypothesis.
If A has type ρ → σ, we assume SCρ(M) and have to show SCσ(AM). By
induction hypothesis (a) we have SN(M). Hence SN(AM) (one easily proves
SN(A)∧SN(M) → SN(AM) for terms Aρ→σ with variable head, since a reduction
of AM can only take place in A or in M and any reduct of A has variable head).
Hence SC(AM), by induction hypothesis (b’).

We call a term reactive if it is an abstraction, or of the form (cL1 . . . Lk)θ for
some conversion rule cL1 . . . Ln �→ R with n > k and some substitution θ. The
property of a term M to be neutral is defined by recursion on M . If M is not a
constructor term, then M is neutral if M is not reactive. If M is a constructor
term, then M is neutral iff all its arguments are neutral. Clearly, if Mρ→σ is

Continuous Semantics for Strong Normalization 27

neutral, then for any term Nρ the term is MN is again neutral and any one step
reduction of MN must happen by converting either M or N . However, neutral
terms are not closed under one step reduction.

Lemma 3. A neutral term is strongly computable iff all its one step reducts are.

Proof. Because of Lemma 1 (a) it suffices to show that a neutral term M is
strongly computable provided all of its one step reducts are. The proof is by
induction on the type of M . For inductive types ι the assertion is proved by a
side induction on neutral terms of type ι. Take, for example, we may assume
ι = ρ∗ If M ι is not a constructor term, then the assertion holds by definition of
SCι. Now let M ι = cons(M1,M2). Since we assume that all one step reducts of M
are strongly computable, it follows, by Lemma 1 (b), that all one steps reducts of
the arguments Mi are strongly computable. Hence, by main- respectively side-
induction hypothesis, M1 and M2 are strongly computable. Let finally M be
of type ρ → σ. We show SCσ(MN) for all strongly computable terms N by
a side induction on SN(N). Since the term MN is neutral it suffices, by the
main induction hypothesis, to show the strong computability of all its one step
reducts. If M is reduced, we are done by assumption on M , if N is reduced, we
use the side induction hypothesis.

Lemma 4. If M [N/x] is strongly computable for all strongly computable terms
N , then λxM is strongly computable.

Proof. Let Mρ→σ fulfill the assumption of the lemma, and assume SCρ(N).
We have to show SCσ((λxM)N). Since the latter term is neutral it suffices to
show that all its one step reducts are strongly computable. By Lemma 2 (a) and
Lemma 1 (a) we may argue by induction on SN(M,N). Assume (λxM)N →1 K.
If the conversion has happened within M or N , then we may use the induction
hypothesis. If not, then we must have K = M [N/x] which is strongly computable
by assumption.

Proposition 5. A term containing only strongly computable constants is
strongly normalizable.

Proof. By induction on terms M containing only strongly computable constants
we show that Mθ is strongly computable for every substitution θ such that θ(x)
is strongly computable for all variables x in the domain of θ. For variables and
constants this holds by assumption. For constructor terms and applications we
use the induction hypothesis and the definition of strong computability. Ab-
stractions are taken care of by the induction hypothesis and Lemma 4. The
proposition now follows with the empty substitution and Lemma 2 (a).

Proposition 6. Gödel’s system T is strongly normalizing.

Proof. By proposition 5 it suffices to show that all constants, i.e. the recursors
are strongly normalizing. We have to show that Rσ∗,ρMNL is strongly com-
putable for all strongly computable terms M,N,L of appropriate types. Using

28 U. Berger

Lemma 2 (a) and Lemma 1 (a) we argue by induction on SN(M,N,L). We also
use a side induction on L. Since Rσ∗,ρMNL is a neutral term it suffices, by
Lemma 3, to show SCρ(K) for all K such that Rσ∗,ρMNL →1 K. If the conver-
sion took place within one of the terms in M,N,L, then we use the main induc-
tion hypothesis and Lemma 1 (a). Otherwise the visible recursor was involved
in the conversion. If L = [] and K = M , then we are done since, by assumption,
M is strongly computable. If L = cons(H,T) and K = NHT (Rσ∗,ρMNT), then
H and T are strongly computable, in particular SCρ(Rσ∗,ρMNT) by the side
induction hypothesis. Again it follows that K is strongly computable.

4 Stratified Terms

For the rest of this paper we will restrict constant conversion rules to the form

cP1 . . . Pn �→ R

where FV(cP1 . . . Pn) ⊆ FV(R) and the Pi are constructor patterns, i.e. terms
built from variables by constructor application only. All examples of constant
conversion rules we have seen so far are of this form.

The set of stratified terms is defined inductively as follows: Every variable is
stratified; a constant c is stratified if for every rule cP1 . . . Pn �→ R the term R
is stratified; a composite term is stratified if all its immediate subterms are.

Clearly a term is stratified iff it contains stratified constants only.
Note that stratification is a severe restriction. For example any constant with

a recursive conversion rule, i.e. the constant reappears on the right hand side of
the rule, is not stratified. We do not claim that stratified terms are of particular
interest as such. We will just use them as a technical tool in our termination
proof based on strict semantics (section 5).

Proposition 7. Every stratified term is strongly normalizing.

Proof. We proceed similarly as in the proof of proposition 5. By induction on
the stratification of M we show that Mθ is strongly computable for every sub-
stitution θ such that θ(x) is strongly computable for all variables x ∈ FV(M).
Only the case that M is a constant is interesting. All other cases are as in propo-
sition 5, that is, we use the induction hypothesis. Let c be a constant that takes
n arguments. We have to show that cM1 . . . Mn is strongly computable for all
strongly computable Mi. We do a side induction on the strong normalizability
of the Mi (using Lemma 2 (a)). Since cM1 . . .Mn is neutral it suffices to show
that all one step reducts of this term are strongly computable. If one of the Mi

is reduced, we apply the side induction hypothesis. Otherwise there is a rule
cP1 . . . Pn �→ R and a substitution θ with (cP1 . . . Pn)θ = cM1 . . . Mn and the
reduct is Rθ. Since the Pi are constructor patterns, it follows from the strong
computability of the Mi, by repeated application of Lemma 1 (b), that θ(x) is
strongly computable for each x ∈ FV(M). Hence Rθ is strongly computable, by
the main induction hypothesis.

Continuous Semantics for Strong Normalization 29

5 Strong Normalization Based on Strict Semantics

We will now develop a general semantic method for proving strong normalization
of higher type rewrite systems. To begin with we discuss the rewrite systems we
will apply this method to: Spector’s bar recursion [13] and a version of bar
recursion due to Berardi, Bezem and Coquand [2].

Let us write ρω for nat → ρ, if B thenM else N for if BMN , |M | for lh M ,
M∗N for M ++ 〈N〉 where 〈N〉 := cons(N, []), and ̂M for get M . Spector’s bar
recursion in finite types is given (for each pair of types ρ, σ) by a constant

Φ : (ρω → nat) → (ρ∗ → σ) → (ρ∗ → (ρ → σ) → σ) → ρ∗ → σ

with the following defining equation

Φyghs = if yŝ < |s| then gs else hs(λx.Φygh(s∗x))

Turning this into a conversion rule would clearly not be strongly normalizing.
Therefore we replace the right hand side by a call of an auxiliary constant Ψ
with an extra boolean argument in order to force evaluation of the test yŝ < |s|
before the subterm Φygh(s∗x) may be reduced further (Vogel’s trick).

Φyghs �→ Ψyghs(yŝ < |s|)
ΨyghsT �→ gs

ΨyghsF �→ hs(λx.Φygh(s∗x))

We denote the rewrite system above by BR.
Berardi, Bezem and Coquand’s variant of bar recursion, which is also dis-

cussed in [4], is given by

Φ: (ρω → nat) → (nat → (ρ → nat) → ρ) → ρ∗ → nat

Φygs = y(λk.if k < |s| then sk else gk(λx.Φyg(s∗x)))

where sk := get s k. Applying Vogel’s trick again we obtain the rewrite system

Φygs �→ y(λk.Ψygsk(k < |s|))
ΨygskT �→ sk

ΨygskF �→ gk(λx.Φyg(s∗x))

which we call MBR (modified bar recursion).
The rewrite systems BR and MBR (and all rewrite systems discussed earlier)

are instances of a class of rewrite systems which are distinguished by the fact
that they induce a semantic interpretation of constants in a canonical way: A
functional rewrite system is a system of constant-conversion rules

cP1 . . . Pn �→ R

(Pi constructor patterns with FV(cP1 . . . Pn) ⊆ FV(R)) which are left linear,
i.e. a variable occurs at most once in the left hand side of a rule, and mutually
disjoint, i.e. the left hand sides of two different rules are non-unifiable.

30 U. Berger

Our semantic method will work for arbitrary functional rewrite systems. The
idea is to deduce the termination of a term M directly from the totality of the
constants in M with respect to a strict interpretation of terms as total elements
in the domain theoretic model Ĉ of partial continuous functionals. The model
Ĉ assigns to every type ρ a Scott domain Ĉ(ρ) such that Ĉ(ρ → σ) ≡ [Ĉ(ρ) →
Ĉ(σ)], the domain of continuous functions form Ĉ(ρ) to Ĉ(σ) where ’≡’ means
‘isomorphic’, and Ĉ(ρ∗) is defined by the ‘recursive domain equation’

Ĉ(ρ∗) ≡ 1 + Ĉ(ρ) × Ĉ(ρ∗)

where ‘+’ means the domain theoretic disjoint sum (adding a new bottom el-
ement). We denote the canonical injection of the one point space 1 into Ĉ(ρ∗)
by [] and the other canonical injection by cons. The definitions of Ĉ(boole) and
Ĉ(nat) are similar.

The total elements in Ĉ(ρ) are defined by recursion on ρ in the obvious way: A
continuous function f ∈ Ĉ(ρ → σ) is total if f(a) is total for all total arguments
a. The set of total elements of Ĉ(ρ∗) is given by an inductive definition: [] is total,
and if a ∈ Ĉ(ρ) and b ∈ Ĉ(σ) are total, then cons(a, b) is total. Similar definitions
apply to the other inductive types. Note that the total elements of Ĉ(ρ∗) may be
viewed as finite lists of total elements of Ĉ(ρ) and the total elements of Ĉ(boole)
and Ĉ(nat) are copies of the usual boolean values and the natural numbers
respectively.

Let CEnv denote the domain of all constant environments, that is, families
α assigning to each constant cρ ∈ C some α(c) ∈ Ĉ(ρ). Similarly, VEnv denotes
the domain of all variable environments, i.e. families η assigning to each vari-
able xρ some η(x) ∈ Ĉ(ρ). For every term Mρ we define the strict semantics,
[M]:CEnv → VEnv → Ĉ(ρ), by

[x]αη = η(x)
[c]αη = α(c)

[λxM]αη(a) = [M]αηa
x

[MN]αη =
{

[M]αη(a) if a := [N]αη �= ⊥
⊥ otherwise

[co(M1, . . . ,Mk)]αη =
{

co(a1, . . . , ak) if ai := [Mi]αη �= ⊥ for all i
⊥ otherwise

Lemma 8. (a) If α(c) is total for all constants c in M and η(x) is total for all
x ∈ FV(M), then [M]αη is total.

(b) If α(c) = ⊥ for some constant c occurring in M , then [M]αη = ⊥.
(c) [M]α([θ]αη) = [Mθ]αη where ([θ]αη)(x) := [θ(x)]αη.
(d) [M][ζ]αηη = [Mζ]αη where ζ is a ‘constant substitution’, i.e. ζ(cρ) is a term

of type ρ for each constant cρ, and ([ζ]αη)(c) := [ζ(c)]αη.

Proof. Easy inductions on M .

Next we define the semantics of constants induced by their conversion rules.

Continuous Semantics for Strong Normalization 31

We let ⊥ denote the ‘undefined’ variable environment, i.e. ⊥(x) = ⊥ρ for all
variables xρ.

For a vector P :ρ of constructor patterns containing each variable at at most
one place and a ∈ Ĉ(ρ) we define the P -predecessor of a, predP (a) ∈ VEnv, by
recursion on the number of constructors occurring in P .

predx(a) = ⊥a
x

predx,co(Q),P (a, co(b), c) = predx,Q,P (a, b, c)
predx,co(Q),P (a, b, c) = ⊥ if b is not of the form co(b)

We say a matches P if in the definition of predP (α) the last clause has never
been used.

Let R be a functional rewrite system. For a given vector a ∈ Ĉ there can
be at most one rule cP �→ R ∈ R such that a matches P , because the rules in
R are mutually disjoint. Therefore the following operator ΓR:CEnv → CEnv is
welldefined and continuous.

ΓR(α)(c)(a) :=
⊔

{[R]αpredP (a) | cP �→ R ∈ R, a matches P }

We define the constant environment αR as the least fixed point of ΓR.
We now state the main the result of this paper.

Theorem 9. Let R be a functional rewrite system. If αR(c) is total for every
constant in M , then M is strongly normalizing.

The proof of this theorem needs some preparation. In the following we fix a
functional rewrite system R.

Lemma 10. Let cP �→ R ∈ R be a rule, θ a substitution and η a variable
environment. Set a := [P θ]αRη. If ⊥ �∈ a, then a matches P and αR(c)(a) =
[R]αRpredP (a).

Proof. That [P θ]αRη matches P is easily shown by induction on the number of
constructors in P . The rest follows immediately from the definition of ΓR.

Lemma 11. If M →1 N , then [M]αRη
 [N]αRη.

Proof. Induction on M , where w.l.o.g. we assume [M]αRη �= ⊥.
Case (λxM)N →1 M [N/x]. Setting a := [N]αRη we have [(λxM)N]αRη

([λxM]αRη)(a) = [M]αRηa
x = [M [N/x]]αRη, by Lemma 8 (c).

Case cP θ →1 Rθ for some rule cP �→ R ∈ R. [cP θ]αRη
 αR(c)(a) =
[R]αRpredP (a) = [Rθ]αRη. The last two equations hold by Lemmas 10 and 8 (c).

All other cases (i.e. conversion of a proper subterm) follow immediately from
the induction hypothesis and the fact that constructors and application are in-
terpreted strictly.

We now introduce a stratified variant Rω of R. Let C be the set of constants
of R. For each c ∈ C and every natural number n we introduce a new constant

32 U. Berger

cn. Set Cω := {cn | c ∈ C, n ∈ ω}. For any C-term M let M[n] be the Cω-term
obtained from M by replacing every occurring constant c by cn. We set

Rω := {cn+1P �→ R[n] | cP �→ R ∈ R, n ∈ ω}

Clearly Rω is again a functional rewrite system. Furthermore all constants cn

are stratified (induction on n). We write A � M if M is a C-term and A is a
Cω-term obtained from M by replacing every occurrence of a constant c by some
cn (different occurrences of the same constant may receive different indices).

Lemma 12. If A � M and A contains no constant of the form c0, then to every
C-term M ′ such that M →1 M ′ there is a Cω-term A′ such that A →1 A′ and
A′ � M ′.

Proof. Easy induction on M .

We define the Cω-constant environment αRω
like the C-constant environment

αRω
, but with R replaced by Rω. Hence

αRω
(cn+1)(a) =

⊔

{[R[n]]αRω predP (a) | cP �→ R ∈ R, a matches P }

and αRω
(c0) = ⊥ (there is no rule for c0).

Lemma 13. αR(c) =
⊔

n∈ω αRω
(cn) and αRω

(cn)
 αRω
(cn+1) for every con-

stant c ∈ C.

Proof. Set αn(c) := αRω
(cn). Since αR =

⊔

n∈ω Γn
R⊥ and Γn

R⊥
 Γn+1
R ⊥, it

suffices to show αn = Γn
R⊥ for all n. We prove this by induction on n. For n = 0

both sides are ⊥.

αn+1(c)(a) = αRω
(cn+1)(a)

=
⊔

{[R[n]]αRω predP (a) | cP �→ R ∈ R, a matches P }
=

⊔

{[R]αnpredP (a) | cP �→ R ∈ R, a matches P } (Lemma 8 (d))

= ΓR(αn)(c)(a)
= (Γn+1

R ⊥)(c)(a) (induction hypothesis)

Lemma 14. [M]αRη =
⊔

n∈ω[M[n]]αRω η for every C-term M and every variable
environment η.

Proof. Set, as in the previous proof, αn(c) := αRω
(cn). By Lemma 13 we have

αR =
⊔

n∈ω αn where αn
 αn+1. Hence, because [M] is a continuous function,

[M]αRη =
⊔

n∈ω

[M]αnη
8 (d)
=

⊔

n∈ω

[M[n]]αRω η

Now we are ready to prove Theorem 9. Let M be a (C-)term such that αR(c) is
total for every constant in M . Let η be any total environment. Then [M]αRη is

Continuous Semantics for Strong Normalization 33

total, by Lemma 8 (a), and therefore different from ⊥. By Lemma 14 it follows
that there is some n such that [M[n]]αRω η �= ⊥. Clearly M[n] � M . Therefore
it suffices to show that whenever A � N and [A]αRω η �= ⊥, then N is strongly
normalizing. We prove this by induction on the strong normalizability of the
Cω-term A, using proposition 7. We need to show that all one step reducts
of N are strongly normalizing. So, assume N →1 N ′. Since [A]αRω η �= ⊥ we
know, by Lemma 8 (b), that A does not contain a constant of the form c0. It
follows with Lemma 12 that A →1 A′ with A′ � N ′ for some Cω-term A′. By
Lemma 11 [A′]αRω η �= ⊥, hence we can apply the induction hypothesis to A′

and N ′.
Let us now apply Theorem 9 to prove strong normalization for bar recursion.

Theorem 15. Gödel’s systemT extended by BR and MBR is strongly normal-
izing.

Proof. We only carry out the proof for MBR. For BR the proof is similar and
slightly simpler. Our strict semantics interprets the constants Φ and Ψ of MBR
as continuous functionals ϕ and ψ which satisfy for total arguments y, g, s, k (in
Ĉ) the equations

ϕygs = y(λk.ψygsk(k < |s|))
ψygskT = sk

ψygskF =
{

gk(λx.ϕyg(s∗x)) if ϕyg(s∗x) �= ⊥ for some x
⊥ otherwise

By a continuity argument one shows that for every total y the the binary relation
�y on the total elements of type ρ∗ defined by

s �y t :≡ y(λk.if k < |s| then sk else⊥) = ⊥ ∧ s∗a = t for some total a

is wellfounded. Now the totality of ϕygs and ψygs for total y, g, s can be proven
easily by induction on �y. With Theorem 9 strong normalization follows.

Remarks. Tait [14], Vogel [17], Luckhardt [10] and Bezem [5] proved strong nor-
malization for BR formulated in a combinatorial calculus. Our result is
slightly stronger since we work in a λ-calculus framework which allows more
reductions. Strong normalization for MBR is completely new. Further interest-
ing rewrite rules where Theorem 9 applies to are realizers of the negative- and
A-translations of the axiom schemes of countable choice [2] and open induc-
tion [3].

From a logical point of view our proof is roughly equivalent to the proofs in
the work cited, since the partial continuous functionals can be defined primitive
recursively (finite neighborhoods, or compact elements of Scott domains) and
totality in Ĉ(ρ) has the same logical complexity as, say the definition of strong
computability for infinite terms of type ρ.

34 U. Berger

References

1. H. Barendregt. Lambda calculi with types. In S. Abramsky, D.M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages
117–309. Clarendon Press, Oxford, 1992.

2. S. Berardi, M. Bezem, and T. Coquand. On the computational content of the
axiom of choice. Journal of Symbolic Logic, 63(2):600–622, 1998.

3. U. Berger. A computational interpretation of open induction. In F. Titsworth, ed-
itor, Proceedings of the Ninetenth Annual IEEE Symposium on Logic in Computer
Science, pages 326–334. IEEE Computer Society, 2004.

4. U. Berger and P. Oliva. Modified bar recursion and classical dependent choice. In
Logic Colloquium 2001. Springer, to appear.

5. M. Bezem. Strong normalization of barrecursive terms without using infinite terms.
Archive for Mathematical Logic, 25:175–181, 1985.

6. F Blanqui, J-P. Jouannaud, and M. Okada. The calculus of algebraic constructions.
In P. Narendran and M. Rusinowitch, editors, Proceedings of RTA’99, number 1631
in LNCS, pages 301–316. Springer Verlag, Berlin, Heidelberg, New York, 1999.

7. T. Coquand. Une théorie des constructions. PhD thesis, Université Paris VII,
1985.

8. H. Geuvers and M.J. Nederhof. A modular proof of strong normalization for the
calculus of constructions. Journal of Functional Programming, 1(2):155–189, 1991.

9. J-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse, et son appli-
cation à l’élimination des coupures dans l’analyse et la théorie des types. In J.E.
Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, pages
63–92. North–Holland, Amsterdam, 1971.

10. H. Luckhardt. Extensional Gödel Functional Interpretation – A Consistency Proof
of Classical Analysis, volume 306 of Lecture Notes in Mathematics. Springer, 1973.

11. R. Matthes. Monotone inductive and coinductive constructors of rank 2. In L Fri-
bourg, editor, Computer Science Logic (Proceedings of the Fifteenth CSL Confer-
ence), number 2142 in LNCS, pages 600–615. Springer Verlag, Berlin, Heidelberg,
New York, 2001.

12. G. D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223–255, 1977.

13. C. Spector. Provably recursive functionals of analysis: a consistency proof of anal-
ysis by an extension of principles in current intuitionistic mathematics. In F. D. E.
Dekker, editor, Recursive Function Theory: Proc. Symposia in Pure Mathematics,
volume 5, pages 1–27. American Mathematical Society, Providence, Rhode Island,
1962.

14. W.W. Tait. Normal form theorem for barrecursive functions of finite type. In J.E.
Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, pages
353–367. North–Holland, Amsterdam, 1971.

15. A.S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and
Analysis, volume 344 of Lecture Notes in Mathematics. Springer, 1973.

16. J. van de Pol and H. Schwichtenberg. Strict functionals for termination proofs. In
M. Dezani-Ciancaglini and G. Plotkin, editors, Typed Lambda Calculi and Appli-
cations, volume 902 of LNCS, pages 350–364. Springer Verlag, Berlin, Heidelberg,
New York, 1995.

17. H. Vogel. Ein starker Normalisationssatz für die barrekursiven Funktionale.
Archive for Mathematical Logic, 18:81–84, 1985.

	Introduction
	Extended G\"odel’s System T
	Proving Strong Normalization Using Strong Computability
	Stratified Terms
	Strong Normalization Based on Strict Semantics
	References

