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Abstract. This is a survey of a century long history of interplay between
Hilbert’s tenth problem (about solvability of Diophantine equations) and
different notions and ideas from the Computability Theory.

1 Statement of the Problem: Intuitive Notion of
Algorithm

In the year 1900 the prominent German mathematician David Hilbert delivered
to the Second International Congress of Mathematicians (held in Paris) his fa-
mous lecture titled Mathematische Probleme [12]. There he put forth 23 (groups
of) problems which were, in his opinion, the most important open problems in
mathematics that the pending 20th century would inherit from passing 19th
century. Problem number 10 was stated as follows:

10. Entscheidung der Lösbarkeit einer diophantischen Gle-
ichung.

Eine diophantische Gleichung mit irgendwelchen Unbekannten und
mit ganzen rationalen Zahlkoefficienten sei vorgelegt : man soll ein Ver-
fahren angeben, nach welchem sich mittels einer endlichen Anzahl von
Operationen entscheiden läßt, ob die Gleichung in ganzen rationalen
Zahlen lösbar ist. 1

A Diophantine equation is an equation of the form

P (x1, . . . , xm) = 0 (1)

1 10. Determination of the Solvability of a Diophantine Equation. Given a
Diophantine equation with any number of unknown quantities and with rational
integral numerical coefficients: Devise a process according to which it can be deter-
mined by a finite number of operations whether the equation is solvable in rational
integers.
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where P is a polynomial with integer coefficients. Hilbert raised the question
about solving Diophantine equations in “rational integers” which were nothing
else but numbers 0,±1,±2, . . . ; without loss of generality in this paper we will
deal with solving Diophantine equations in natural numbers so all lower-case
Latin letters will range over 0, 1, 2, . . .

Since Diophantus’s time (3rd century A.D.) number-theorists have found
solutions for plenty of Diophantine equations and also have proved the unsolv-
ability of a large number of other equations. However, for different classes of
equations, or even for different individual equations, one had to invent different
specific methods. In the 10th problem Hilbert asked for a universal method for
recognizing the solvability of Diophantine equations, i.e., in modern terminology
the 10th problem is a decision problem (the only one among the 23 problems).

Note that Hilbert did not use the word “algorithm” in his statement of the
tenth problem. Instead, he used the rather vague wording “a process according
to which it can be determined by a finite number of operations ...”. Although
he could have used the word “algorithm,” it would not really have helped much
to clarify the statement of the problem because, at that time, there was no
rigorous definition of the general notion of an algorithm. What existed was a
number of examples of particular mathematical algorithms (such as celebrated
Euclid’s algorithm for finding the greatest common divisor of two integers), and
an intuitive conception of an algorithm in general.

Does it imply that Hilbert’s tenth problem was ill-posed? Not at all. The
absence of a general definition of an algorithm was not in itself an obstacle to
finding a positive solution of Hilbert’s tenth problem. If somebody invented the
required “process”, it should be clear that in fact this process does the job, so
an intuitive conception of an algorithm would be sufficient for positive solution
of the tenth problem which was, most likely, Hilbert’s expectation.

2 Davis’s Conjecture: Are All Effectively Enumerable
Sets Diophantine?

The first investigations aimed at a proof of algorithmic undecidability of Hilbert’s
tenth problem appeared at the beginning of 1950’s. In particular, at that time
Martin Davis considered Diophantine sets which are sets of natural numbers
having Diophantine representations, i.e., definitions of the form

a ∈ M ⇐⇒ ∃x1 . . . xm[P (a, x1, . . . , xm) = 0] (2)

where P is again a polynomial with integer coefficients one of the variables of
which, a, is now a parameter. Davis’s aim was to give a characterization of the
whole class of Diophantine sets. The computability theory immediately puts a
condition which is necessary for a set to be Diophantine: every Diophantine set
is, evidently, effectively enumerable. Davis conjectured ([5, 6]) that this necessary
condition is also sufficient:

Davis’s conjecture. A set of natural numbers is Diophantine if and only if it
is effectively enumerable.
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Effectively enumerable sets can be defined via the notion of an algorithm,
but the things can be taken in the reversed order: having given an indepen-
dent definition of a effectively enumerable set, one can develop the whole the-
ory of computability in terms of effectively enumerable sets instead of algo-
rithms; examples of such an approach can be found in G.S. Tseitin’s paper
[38] and P. Martin-Löf’s book [25]. Thus Davis’s conjecture opened a way to
base the computability theory on the number-theoretical notion of a Diophan-
tine set.

3 Davis’s Conjecture: First Step to the Proof via
Arithmetization

Martin Davis’s made the first step to proving his conjecture by showing in [6] that
every effectively enumerable set M has an almost Diophantine representation:

Theorem (Martin Davis). Every effectively enumerable set M has a repre-
sentation of the form

a ∈ M ⇐⇒ ∃z∀y≤z∃x1 . . . xm[P (a,x1, . . . , xm, y, z) = 0] (3)

where P is a polynomial with integer coefficients and ∀y≤z is the bounded uni-
versal quantifier “for all y not greater than z”.

A representation of this type became known as the Davis normal form. To ob-
tain it, Davis started in [6] with a representation of the set M by an arbitrary
arithmetical formula with any number of bounded universal quantifiers. The ex-
istence of such arithmetical formulas for every effectively enumerable set was
demonstrated by Kurt Gödel in his classical paper [10]. Thanks to the bound on
the universal quantifiers, every such formula defines an effectively enumerable
and hence these formulas could be used for foundation of the Computability
Theory.

4 Original Proof of Davis: Post’s Normal Forms

According to a footnote in Davis’ paper [6], the idea of obtaining the representa-
tion (3) by combining universal quantifiers from a general arithmetic represen-
tation was due to the (anonymous) referee of the paper. The original proof of
Davis (outlined in [5] and given with details in [8]) was quite different. Namely,
Davis managed to arithmetize Post normal forms using only one universal quan-
tifier. These forms are a special case of more general canonical forms introduced
by Emil L. Post [36] as a possible foundation of computability theory (and the
above cited book [25] uses just Post canonical forms).
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5 Davis’s Conjecture Proved: Effectively Enumerable
Sets Are Diophantine

It took two decades before Davis’s conjecture became a theorem (for historical
details see, for example, [29]; for an extensive bibliography on Hilbert’s tenth
problem visit [43]). The following weaker result due to Martin Davis, Hilary
Putnam, and Julia Robinson [9] was a mile-stone on the way to the proof of
Davis’s conjecture:

DPR-Theorem. For every effectively enumerable set M there exists a repre-
sentation of the form

a ∈ M ⇐⇒ ∃x1 . . . xm[E(a, x1, x2, . . . , xm) = 0] (4)

where E is an exponential polynomial, i.e., an expression constructed by combin-
ing the variables and particular integers using the traditional rules of addition,
multiplication and exponentiation.

The last step in the proof of Davis’s conjecture was done in [26], and nowadays
corresponding theorem is often called

DPRM-Theorem. The notions of a Diophantine set and the notion of an ef-
fectively enumerable set coincide.

Thus a (seemingly narrow) notion from the Number Theory turned out to be
equivalent to the very general notion from the Computability Theory.

6 Existential Arithmetization I: Turing Machines

Already the very first proof of the DPRM-theorem given in [26] was constructive
in the sense that as soon as a set M is presented in any standard form, it is
possible to find corresponding Diophantine representation (2). This was done in
the following four steps:

1. construction of an arithmetical formula with many bounded universal quan-
tifiers;

2. transformation of this formula into Davis normal form (3);
3. elimination the single bounded universal quantifier at the cost of passing

to exponential Diophantine equations, getting an exponential Diophantine
representation (4);

4. elimination of the exponentiation.

Now that we know that in fact no universal quantifier is necessary at all, it
would be more natural to try to perform the whole arithmetization by using only
purely existential formulas. From technical point of view for the success of this
approach it is crucial to select an appropriate device for the initial representation
of the set M.
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For the first time such a purely existential arithmetization was done in [28]
with the set M being recognized by a Turing machine; a simplified way of con-
structing Diophantine representation by arithmetization of Turing machines is
presented in [29]; yet another construction based on Turing machines is given
in [39].

7 Existential Arithmetization II: Register Machines

When arithmetizing Turing machine, one has first to introduce a method to
represent the content of the tape of the machine by numbers. In this respect
another kind of abstract computing devices, register machines, turned out to be
more suitable as a starting point for constructing Diophantine representations.
Register machines were introduced almost simultaneously by several authors:
J. Lambek [22], Z. A. Melzak [32], M. L. Minsky [33, 34], and J. C. Shepherdson
and H. E. Sturgis [37]. Like Turing machines, register machines have very prim-
itive instructions but, in addition, they deal directly with numbers rather than
with words. This led to a “visual proof” of simulation of register machines by
Diophantine equations (see [17, 18, 31]).

8 Existential Arithmetization III: Partial Recursive
Functions

Another classical tool for the foundations of the Computability Theory are par-
tial recursive functions. Existential arithmetization of these functions was done
in [30] where Diophantine representations are constructed inductively, alongside
construction of a partial recursive function from the initial functions. In order
to deal with the primitive recursion and with the operator of minimization it
turned out useful to generalize the notion of a partial recursive function: instead
of dealing, say, with one-argument function f it was more convenient to work
with a function F , defined on arbitrary n-tuples of natural number by

F (〈a1, . . . , an〉) = 〈f(a1), . . . , f(an)〉. (5)

9 Universality in Number Theory: Collapse of
Diophantine Hierarchy

The DPRM-theorem allows a transfer of a number of ideas from the Computabil-
ity Theory to the Number Theory. One example of such a transfer is the existence
of a universal Diophantine equation, i.e., an equation

U(a, k, y1, . . . , yM ) = 0 (6)

with the following property: for arbitrary Diophantine equation

P (a, x1, . . . , xm) = 0 (7)
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there exist (effectively calculable) number kP such that for arbitrary value of the
parameter a the equation (7) has a solution in x1, . . . , xm if and only if equation

U(a, kP , y1, . . . , yM ) = 0 (8)

has a solution in y1, . . . , yM . This implies that traditional number-theoretical
hierarchy of Diophantine equations of degree 1, 2, . . . with 1, 2 , . . . unknowns
collapses at some level. While the existence of (6) immediately follows from
DPRM-theorem and the existence of, say, a universal Turing machine, the mere
idea of the existence of a such universal object in the theory of Diophantine
equations looked quite implausible not only for number-theorists, but for some
logicians also (see [21]).

The existence of a universal Diophantine equation is an example of a result
which is number-theoretical by its statement, but which was originally proved by
tools from Computability Theory; today such an equation (6) can be constructed
by purely number-theoretical methods (see [29]).

10 Growth of Solution: Speeding Up Diophantine
Equations

Another example of a transfer of ideas from Computability Theory to Number
Theory is as follows. M.Davis [7] used the DPRM-theorem in order to get for
Diophantine equations an analog of a speed-up theorem of Manuel Blum [3].
Namely, for every total computable function α(a, x) one can construct two one-
parameter Diophantine equations

P1(a, x1, . . . , xk) = 0, P2(a, x1, . . . , xk) = 0 (9)

such that

(i) for every value of the parameter a exactly one of these two equations has a
solution;

(ii) if Diophantine equations

Q1(a, y1, . . . , yl) = 0, Q2(a, y1, . . . , yl) = 0 (10)

are solvable for the same values of the parameter a as, respectively, equations
(9), then one can construct a third pair of Diophantine equations

R1(a, z1, . . . , zm) = 0, R2(a, z1, . . . , zm) = 0 (11)

such that
• these equations are again solvable for the same values of the parameter

a as, respectively, equations (9);
• for all sufficiently large values of the parameter a for every solution

y1, . . . , yl of one of the equations (10) there exists a solution z1, . . . , zm

of the corresponding equation (11) such that

y1 + · · · + yl > α(a, z1 + · · · + zm). (12)
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These formulation of a Diophantine speed-up contains, for the sake of the
most generality, the notion of a total computable function; by substituting for
α any particular (fast growing) total computable function, one would obtain
a purely number-theoretic result which, however, has never been imagined by
number-theorist.

11 Diophantine Machines: Capturing Nondeterminism

The DPRM-theorem allows one to treat Diophantine equations as computing
devices. This was done in a picturesque form by Leonard Adleman and Ken-
neth Manders in [2]. Namely, they introduced the notion of Non-Deterministic
Diophantine Machine, NDDM for short.

A NDDM is specified by a parametric Diophantine equation (7) and works
as follows: on input a it guesses the numbers x1, . . . , xm and then checks (7); if
the equality holds, then a is accepted.

NDDM

P (a, x1, . . . , xm) ?= 0 ��

� � �

input

a

guess

x1, . . . , xm

YES NO

accept a reject

The DPRM-theorem is exactly the statement that NDDMs are as powerful as,
say, Turing machines, i.e., every set acceptable by a Turing machine is accepted
by some NDDM, and, of course, vice versa.

The idea behind the introduction of a new computing device was as follows:
in NDDM we have full separation of guessing and deterministic computation,
and the latter is very simple—just the calculation of the value of a polynomial.

12 Unambiguity: Equations with Unique Solution

NDDMs are essentially non-deterministic computing devices. For such devices
non-determinism is sometimes fictitious in the sense that at most one path can
lead to accepting; if this is so one speaks about unambiguous computations. Cor-
responding property for (exponential) Diophantine representations was called
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single-foldness: a representation (2) or (4) is called single-fold representation if
for given value of the parameter a there exists at most one choice of the unknowns
x1, . . . , xm.

The existence of single-fold exponential Diophantine representations for every
effectively enumerable set was established in [27] and later was improved to
the existence single-fold exponential Diophantine representations with only 3
existential variables (see [14, 29]).

The existence of single-fold (or even weaker finite-fold) Diophantine represen-
tations is a major open problem; the positive answer would shed light on some
difficulties met in Number Theory in connection with effectivisation of some
results about Diophantine equations (for more details see, for example, [27, 29]).

Single-fold exponential Diophantine representations found applications in the
descriptional complexity (see below).

13 Diophantine Complexity: D Versus NP

While the DPRM-theorem implies that NDDMs are as powerful as any other
abstract computational device, the intriguing crucial question remains open: how
efficient are the NDDMs? Adleman and Manders supposed that in fact NDDMs
are as efficient as Turing machines.

For the latter there are two natural complexity measures: TIME and SPACE.
For NDDMs there is only one natural complexity measure which plays the role
of both TIME and SPACE. This measure is SIZE, which is the size (in bits) of
the smallest solution of the equation (it is not essential whether we define this
solution as the one with the smallest possible value of max{x1, . . . , xm}, or of
x1 + · · · + xm).

Adleman and Manders obtained in [2] the first results comparing the efficiency
of NDDMs and Turing machines by estimating the SIZE of a NDDM simulating
a Turing machine with TIME in special ranges.

Imposing bounds on the SIZE, we can define a corresponding complexity
class. It was shown by A.K. Vinogradov and N.K. Kossovskii [40] that in this
way one can define all Grzegorczyk classes starting from E3. Of course, the lower
classes are of greater interest, and, what is typical, they turned out to be more
difficult.

Adleman and Manders [1] also introduced the class D consisting of all sets
M having representations of the form

a ∈ M ⇐⇒ ∃x1 . . . xm

[
P (a, x1, . . . , xm) = 0& |x1| + · · · + |xm| ≤ |a|k]

where |a| denotes, as usual, the (binary) length of a. It is easy to see that
D ⊆ NP and the class D is known (see [24]) to contain NP-complete problems
but otherwise the class D is little understood. Adleman and Manders asked
whether in fact D = NP. Recently Chris Pollett [35] showed that this is so
provided that D ⊆ co-NLOGTIME, and indicated a number of other ways to
tackle D = NP question.
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An arithmetical definitions of the class NP via bounded analog of Davis
normal form (3) were given by Bernhard R. Hodgson and Clement F. Kent
[19, 13] and by Stasis Yukna [41, 42].

Helger Lipmaa [23] introduced PD, the “deterministic part” of the class D,
and used Diophantine equations for secure information exchange protocols.

14 Random Diophantine Equations: Complexity on
Average

The class NP contains thousands of equivalent problems which are supposed
to be difficult (unless P = NP). However, only few problems from NP were
proved to be of the maximal difficulty on average. Ramarathanam Venkate-
san and Sivaramakrishnan Rajagopalan considered the Randomized Diophantine
Problem and proved that it is average-case complete; unfortunately, their proof
is conditional, and their assumption (on existence of a Diophantine equation
with a special property) is equivalent to D = NP.

15 Parallel Computations: Calculation of a Polynomial
on a Petri Net

Petri nets and systems of vector addition were introduced as tools for describing
parallel computations. Michael Rabin used the undecidability of (exponential)
Diophantine equation to prove that some relations between systems of vector
addition (and hence also between Petri nets, because the latter easily simulate
systems of vector addition) are not recognizable (see paper of Michel Hack [11]
where a stronger result was obtained, or [29–Section 10.2]). The crucial point was
a definition (introduced by Rabin) of a calculation of the values of (exponential)
polynomials by systems of vector addition.

16 A Step Above Hilbert’s Tenth Problem:
Computational Chaos in Number Theory

Diophantine equations are undecidable. However, every Diophantine set is effec-
tively enumerable and hence its descriptive complexity is the least possible: for
every polynomial P the initial segment of the set M from (2), i.e., the intersection
of the set M with the set

{a | a ≤ N}, (13)

can be coded by O(log(N)) bits only. However, we can reach the maximal descrip-
tive complexity by considering questions which are only slightly more compli-
cated than those from Hilbert’s tenth problem. Gregory Chaitin [4] constructed
a one-parameter exponential Diophantine equation such that the set
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{a | ∃∞x1 . . . xm[E(a, x1, x2, . . . , xm) = 0]} (14)

requires N bits (up to an additive constant) for prefix-free coding of its intersec-
tion with the set (13); here ∃∞ means the existence of infinitely many solutions
of the equation. Informally, one can say that the set (14) is completely chaotic.

More recently Toby Ord and Tien D. Kieu [20] constructed another expo-
nential Diophantine equation which for every value of a has only finitely many
solutions but the parity of the number of solutions again has completely chaotic
behavior in the sense of the descriptive complexity. I was able to generalize this
result in the following way: instead of asking about the parity of the number
of solutions one can ask whether the number of solutions belongs to any fixed
decidable infinite set with infinite complement.

All these results were obtained for exponential Diophantine equations because
they are based on the existence of single-fold exponential Diophantine represen-
tations; the existence of similar chaos among genuine Diophantine equations is
a major open question.
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Québec, 6(1):81–97, 1982.

16. J. P. Jones and Yu. V. Matijasevich. Direct translation of register machines into
exponential Diophantine equations. In L. Priese, editor, Report on the 1st GTI-
workshop, number 13, pages 117–130, Reihe Theoretische Informatik, Universität-
Gesamthochschule Paderborn, 1983.
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18. J. P. Jones, Y.V.Matijasevič. Proof of recursive unsolvability of Hilbert’s tenth
problem. Amer. Math. Monthly 98(8):689–709, 1991.

19. C. F. Kent and B. R.Hodgsont. An arithmetical characterization of NP. Theoretical
Computer Science, 21(3), 255–267, 1982.

20. T. Ord and T. D. Kieu. On the existence of a new family of Diophantine equations
for Ω. Fundam. Inform. 56, No.3, 273-284 (2003).

21. G. Kreisel, “Davis, Martin; Putnam, Hilary; Robinson, Julia. The decision problem
for exponential Diophantine equations.” Mathematical Reviews, 24#A3061:573,
1962.

22. J. Lambek. How to program an infinite abacus. Canad. Math. Bull., 4:295–302,
1961.

23. H. Lipmaa. On Diophantine Complexity and Statistical Zero-Knowledge Argu-
ments. Lecture Notes in Computer Science, v. 2894, 2003, 398–415.

24. K. L.Manders and L.Adleman. NP-complete decision problems for binary quadrat-
ics. J. Comput. System Sci., 16(2):168–184, 1978.
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