
Computably Enumerable Sets in the Solovay and
the Strong Weak Truth Table Degrees

George Barmpalias

School of Mathematics,
University of Leeds,
Leeds LS2 9JT, U.K

georgeb@maths.leeds.ac.uk

http://www.maths.leeds.ac.uk/∼georgeb

Abstract. The strong weak truth table reducibility was suggested by
Downey, Hirschfeldt, and LaForte as a measure of relative randomness,
alternative to the Solovay reducibility. It also occurs naturally in proofs
in classical computability theory as well as in the recent work of Soare,
Nabutovsky and Weinberger on applications of computability to differ-
ential geometry. Yu and Ding showed that the relevant degree structure
restricted to the c.e. reals has no greatest element, and asked for maxi-
mal elements. We answer this question for the case of c.e. sets. Using a
doubly non-uniform argument we show that there are no maximal ele-
ments in the sw degrees of the c.e. sets. We note that the same holds for
the Solovay degrees of c.e. sets.

1 Introduction

The strong weak truth table reducibility was suggested by Downey, Hirsch feldt,
and LaForte as a measure of relative randomness. Versions of this reducibil-
ity are present in computability theory; for instance, these are automatically
produced by the basic technique of ‘simple permitting’ and one of them was
used in the recent work of Soare, Nabutovsky and Weinberger on applications
of computability theory to differential geometry. The strong weak truth table
reducibility naturally induces a degree structure, the sw degrees. Yu and Ding
showed that the sw degrees restricted to the c.e. reals have no greatest element,
and asked for maximal elements. We solve this question for the case of c.e. sets.
Using a doubly non-uniform argument we show that there are no maximal ele-
ments in the sw degrees of the c.e. sets. The strong weak truth table reducibility
was originally suggested as an alternative for the Solovay (or domination) re-
ducibility which has been very successful tool for the study the complexity of
c.e. reals but presents various shortcomings outside this class. Of course, the sw
degrees present other difficulties (as the lack of join operator, see below) but
they are nevertheless very interesting to study from a wider perspective. More-
over, Downey, Hirschfeldt and LaForte [2] noticed that as far as the computably
enumerable sets are concerned, the sw degrees coincide with the Solovay degrees.
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So we also show that the Solovay degrees of c.e. sets have no maximal element.
In the following we assume basic computability theory background; knowledge
of algorithmic randomness is not essential but can be useful. For definitions,
motivation and history of related notions as the Solovay degrees we refer mainly
to [1] and secondly to [4].

Studying relative randomness, Downey, Hirschfeldt and LaForte [2] found
Solovay reducibility insufficient, especially as far as non-c.e. reals are concerned.
One of the two new measures for relative randomness they suggested is a strength-
ening of the weak truth table reducibility, which they called strong weak truth
table reducibility or sw for short. This reducibility is quite natural since it occurs
in many proofs in classical computability theory: it follows when we apply simple
permitting for the construction of a set ‘below’ a given one.

Definition 1. (Downey, Hirschfeldt and LaForte [2]) We say A ≤sw B if there
is a Turing functional Γ and a constant c such that ΓB = A and the use of this
computation on any argument n is bounded by n + c.

The special case when c = 0 gives a stronger reducibility which was used by
Soare, Nabutovsky and Weinberger (see [7]) in applying computability theory to
differential geometry.

We remind the definition of a c.e. real.

Definition 2. A real number is computably enumerable (c.e.) if it is the limit
of a computable increasing sequence of rationals.

The main justification for ≤sw as a measure of relative randomness was the
following

Proposition 3. (Downey, Hirschfeldt, LaForte [2]) If a ≤sw b are c.e. reals
then for all n, the prefix-free complexity of a � n is less than or equal to that of
b � n (plus a constant).

So ≤sw arguably qualifies as a measure of relative randomness for the c.e. reals
(and in particular, it preserves randomness). Downey, Hirschfeldt, LaForte [2]
have showed that Solovay reducibility (also known as domination) and strong
weak truth table reducibility coincide on the c.e. sets. But, as we see below, this
is not true for the c.e. reals.

Yu and Ding proved the following

Theorem 4. (Yu and Ding [6]) There is no sw-complete c.e. real.

By a ‘uniformization’ of their proof they got two c.e. reals which have no c.e.
real sw-above them. Hence

Corollary 5. (Downey, Hirschfeldt, LaForte [2]) The structure of sw-degrees is
not an upper semi-lattice.

They also asked whether there are maximal sw-degrees of c.e. reals. They con-
jectured that there are such, and they are exactly the ones that contain random
c.e. reals. The main idea of their proof of theorem 4 can be applied for the case
of c.e. sets in order to get an analogous result. Using different ideas we prove the
following stronger result.
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Theorem 6. There are no sw-maximal c.e. sets. That is, for every c.e. set A,
there exists a c.e. set W such that A <sw W .

Since the Solovay degrees and sw-degrees coincide on the c.e. sets we get

Corollary 7. The substructure of the Solovay degrees consisting of the ones with
c.e. members (i.e. containing c.e. sets) has no maximal elements.

2 About the Structure

We state some easy results about the c.e. sets and reals in the structure of sw
degrees. We remind the following definition:

Definition 8. A (total) Solovay test is a c.e. set of binary strings S such that∑
σ∈S 2−|σ| < ∞ (and computable). A real a avoids S if

∃<∞σ ∈ S(σ � a).

(Schnorr) Random is a real which avoids all (total) Solovay tests.

After the discussion in the previous section, it is natural to ask: are there c.e.
reals above all c.e. sets?

Proposition 9. Every random c.e. real is sw-above every set in the finite levels
of the difference hierarchy.

But are there non-random c.e. reals with this property?

Proposition 10. There are non-random c.e. reals sw-above every set in the
finite levels of the difference hierarchy.

E.g. a =
∑

e∈N

∑
n∈We

2−(e+n+2) is non-random and sw-above all c.e. sets.

Question 1. Are the c.e. reals above the c.e. sets necessarily Schnorr random?

3 About the Proof of Theorem 6

Before we get into the technical part of the proof, we draw a map of it. Given a
c.e. set A we construct three c.e. sets W1, W2, W3 one of which will be strictly sw-
above A. Figure 1 illustrates this idea and shows the double non-uniform nature
of the proof, which will become more clear in the technical part (in particular,
W1 will be qualitatively different from W2,W3). We note that some of Wi may
not be able to even compute A. Given a c.e. set A we construct a c.e. W which
satisfy the requirements

Q : A ≤sw W

Ne : ΦA
e �= W
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W1

W2 W3

Fig. 1. Double non-uniformity in the proof of theorem 6

where Φe is the e-th sw-functional in an effective enumeration and has use
(bounded by) n + e on argument n. Although Ne can be satisfied with a non-
uniform proof in the style of [6] (thus showing that there is no sw-maximum c.e.
set), adding Q makes the situation more difficult. In particular, for any number
of W -witnesses that we reserve for Ne, we need to reserve roughly the same
number of W -witnesses for A-coding (i.e. Q), and these must be roughly of the
same level of magnitude as those for Ne. But this is impossible since once you
have occupied an interval of N for Ne (as in [6]) you can’t always find another
equally big (disjoint) interval of numbers not much larger than the ones in the
first interval. Note that building a large (finite) number of (candidates for) W
doesn’t help much since each of these W will have the need of double space
discussed above.

To illustrate the above, consider an attempt to diagonalize against ΦA
0 = W

with a witness w. W.l.o.g. assume that the constant associated with our reduction
A ≤sw W is 0 (i.e. the use is the identity function). We wait until ΦA

0 (w) ↓= 0
and put w ↘ W . Then A � w may change (in order to rectify the computation)
and this change must be coded in W below w. So one diagonalization requires
two witnesses.

To deal with this situation we will require A to be ‘sufficiently charged’ in the
sense that the 1s in its characteristic sequence are sufficiently dense. Relying on
this assumption, we won’t enumerate an axiom for the reduction A ≤sw W unless
we witness a certain amount of enumeration in A. This way we save positions
in W which would have to be used for the A-coding, had we not waited for this
enumeration to occur. If our hypothesis is true, the construction will build one
W which fulfils the requirements.

Of course, this ‘density’ hypothesis (which is the base of case A of the proof)
is not without loss of generality. A second construction (case B) will assume
the failure of the density hypothesis, and produce two sets W1,W2; if indeed
the hypothesis fails, one of these will satisfy all the requirements. Overall we
construct three different sets and so this proof is non-uniform.

Case A. The hypothesis is

∀e, c∃�(|A � (� + e)| + |A ∩ (c, �]| < � − c) (1)
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and the instance of it used by Ne is

∃�(|A � (� + e)| + |A ∩ (c, �]| < � − c) (2)

where c is the largest number reserved for diagonalization and A-coding by the
higher priority requirements Ni, i < e. Every requirement reserves a full interval
of N for enumeration into W and Ne in particular reserves (c, �], where � is the
least witness for (2). So, in this case (−1, c] is full of numbers reserved by Ni, i <
e. Every time a requirement reserves an interval (c, �], it automatically starts
sw-coding A ∩ (c, �] into W ∩ (c, �] (the use function of the reduction being the
identity). This means that from now on every time that a new element n appears
in A∩(c, �], we enumerate a number t ≤ n into W∩(c, �]. In this setting, condition
2 guarantees that although we will need to spend part of (c, �] for A-coding, there
will still be enough witnesses for a successful ripple of Ne-diagonalizations (i.e.
one that finishes with a diagonalization which is not rectified).

Since the largest number reserved by Ne is the � of 2, if ce, �e are the c, � of
condition 2 for Ne then ce = �e−1 where �−1 = −1. It is easy to see that a list

�0 < �1 < �2 < . . .

of suitable endpoints for all the requirements can be effectively obtained by
choosing an �e to be one of the � of 2 for c = �e−1 (say the first that occurs
during the given enumeration of A). So we divide N into

(−1, �0], (�0, �1], . . . ,

sw-code A ∩ (�e−1, �e] into W ∩ (�e−1�e] for each e, and use the rest of the
witnesses for a diagonalization ripple for Ne (i.e. a sequence of diagonalizations
where each of them is performed after the previous one has been rectified). It
is straightforward to use an initial segment of (�e−1, �e] for the A coding and
the rest of it for diagonalizations. So we injectively map (the current value of)
A ∩ (�e−1, �e] onto an initial segment of (�e−1, �e] in an order-preserving way
and for the sake of Q require that whenever an element of that A ∩ (�e−1, �e]
appears in A, the corresponding element (which belongs to the same interval) is
enumerated into W . It is obvious that each element of (�e−1, �e] is mapped to a
number less than or equal to itself and so the coding is sw with the identity as
use function.

Ne-Module.

1. (Set up) Wait until �e−1 has been defined and there is an � > �e−1 as in 2
with c = �e−1. Define �e = � and the attack interval

Ie = (�e−1, �e].

Injectively map Ie ∩ A onto an initial segment of Ie in an order-preserving
way (this can be done in a unique way).

2. (Diagonalization) Wait until �(ΦA
e ,W ) > �e and put max(W ∩ Ie) ↘ W .

Each of these strategies require attention when they are ready to move on to the
next step (note that part 2 is a loop). Step 1 is performed only once for each
requirement and so there will be no injury.
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Q-Module. Let Γ be the functional we build for the reduction A ≤sw W .

1. (Γ rectification) Search Γ up to the finite current level of its definition and
find the least n with

ΓW (n) ↓�= A(n).

Then n ∈ (�i, �i+1] for some i; enumerate into W the corresponding element
of n under the injective mapping defined during the definition of �i+1.

2. (Γ enumeration) Let i be the largest number such that �i ↓. If ΓW (�i) ↑
then enumerate axioms ΓW = A up to �i with use function the identity.

Construction. At each stage:

– Run Q-module
– Run Ne-module for the highest N requiring attention.

Verification. By induction we show that for every e, Ne is satisfied and Γ is
defined and correct up to �e. Since by 1 �e is eventually defined for all e and
�e < �e+1, this is all we need to show. Supposing that it holds for all i < e,
we show that it is true for e. Suppose that �e is defined at stage s0. At this
stage W ∩ (�e−1, �e] is empty and according to the Q-module the only numbers
in (�e−1, �e] enumerated into W by this strategy will be because of numbers
appearing in A ∩ (�e−1, �e] after stage s0.

By the first step of the strategy Ne, at s0 we have

|A � (�e + e)| + |A ∩ (�e−1, �e]| < |(�e−1, �e]|. (3)

Strategy Q can enumerate into W ∩ (�e−1, �e] no more than the first |A[s0] ∩
(�e−1, �e]| elements of (�e−1, �e]. Also, no other strategy apart from Ne can enu-
merate numbers of this interval into W . So according to 3 there will be more than
|A[s0] � (�e + e)| for the use of Ne. Each time the agreement ΦA

e = W exceeds
�e, this strategy will perform a diagonalization. After each diagonalization, the
length of agreement can only exceed �e again if a number enters A below �e + e.
Hence there will be a diagonalization which cannot be rectified and this shows
that Ne succeeds.

On the other hand, since Ne chooses as diagonalization witness the largest
element of (�e−1, �e] not yet in W , it follows from 3 that the first |A[s0]∩(�e−1, �e]|
elements will not be used by this strategy (since, by the time it would need to use
them it will have reached a diagonalization which cannot be rectified). And of
course they are not going to be used by other N strategies nor by Q for the sake
of numbers appearing in A outside (�e−1, �e]. So any of these will stay outside
W until (if ever) its corresponding element (under the injective mapping defined
in step 1 of Ne, which is greater or equal to it) enters A. So Q will always be
able to rectify (and refresh) Γ on (�e−1, �e]. So, using the induction hypothesis,
eventually Γ will be defined and correct up to �e. This concludes the induction
step and the verification. Note that the reduction of A to W just described is
also a many-one reduction.
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Case B. Suppose that 1 does not hold and so

∃e, c∀�(|A � (� + e)| + |A ∩ (c, �]| > � − c)

which can be written as

∃e, c∀� > e, (|A � �| + |A ∩ (c, � − e]| > � − e − c)

which implies
∃c∀� > c, (2|A � �| > � − c).

But the latter can be written as

∃c∀� > c, (2|A � �| < � + c).

If there is some 0 ≤ c1 < c such that

∃∞� > c, (2|A � �| ≥ � + c1)

there will be a greatest such. For that one it would be

∃∞� > c, (2|A � �| = � + c1)

for a possibly different constant c. But then A would be computable which is a
trivial case. So we may assume that there is no such c1 and hence

∃c∀� > c, (2|A � �| < �).

By finitely modifying A (e.g. set it empty up to c) we get

∀� > 0, (2|A � �| < �). (4)

This extra hypothesis does not restrict the result, since if it holds for a set then
it holds for any finite modification of it. Now 1 allows us to sw-code A into W
by only using the even numbers. So we reserve 2N for Q and define the coding
as follows.

Q-Module. If some n has just been enumerated into A, put the largest even
number ≤ n of W into W .

By this procedure for any n, A � n is coded in the even positions of W � n.
We may fix an enumeration of A in which at most one number appears in it at
each stage. To see that the coding succeeds we prove the following

Lemma 11. If W (2k) = 0 at some stage, then

|A � 2k| ≥ |{2t < 2k | W (2t) = 1}|

at the same stage.
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Proof of lemma. Indeed, each even number in W � 2k must have been the
code of some number n enumerated in A in a previous stage. But no such n (i.e.
one that triggered enumeration into W � 2k) can be ≥ 2k since Q would have
chosen 2k or greater (since W (2k) = 0 such codes were available). �

Now the coding works unless there is a stage s where some n ↘ A and all even
numbers ≤ n are already in W . If 2k is the least even not yet in W , 2k > n ≥ 0
and lemma 11 implies that

|A � 2k| ≥ k

holds at this stage, which contradicts 4. So Q indeed makes sure that A ≤sw W .
Of course this is independent with what we do with the odd numbers in relation
to W , which we are going to use for satisfying the N requirements.

We will construct two sets W1,W2 both sw-above A (via the Q-strategy) one
of which will satisfy all N requirements. So we can replace N by

N ′
e : ΦA

e �= W1 ∨ ΨA
e �= W2.

Each N ′
e will occupy the odd numbers of an interval [2ce +1, 2ce+1 +1) of N and

use them as diagonalization witnesses. So the e-th requirement will have

ce+1 − ce := k (5)

numbers available for each of W1, W2, from 2ce + 1 on. To find a k sufficiently
big to guarantee the success of this diagonalization ripple we consider the recti-
fication resources of A below

[2(ce+1 − 1) + 1 + e] + 1 = 2(ce + k) + e

which bounds the use of any of our e-witnesses. By 4,

|A � 2(ce + k) + e| < ce + k +
e

2
and so there can only be less than ce+k+ e

2 rectifications to the e-diagonalizations.
Since we play with two sets W1, W2 (and N ′

e is a disjunction) we have 2k wit-
nesses available. Hence it suffices to choose k so that

2k ≥ ce + k +
e

2
i.e. k ≥ ce + e

2 . By setting k = ce + e
2 , c0 = 0 and using 5 we get an appropriate

sequence (ci) (where ce is the number of witnesses reserved by N ′
i , i < e) and

are able to proceed with the N ′
e-strategy.

N ′
e-Module.

1. Wait until �(ΦA
e ,Wi) > 2ce+1 + 1 for both i = 1, 2.

2. Consider the maximum witness of N ′
e not yet in W1 or W2; that is,

max(2N + 1) ∩ [2ce + 1, 2ce+1 + 1) ∩ (W 1 ∪ W 2).

Put it into W1 if it is not in already; otherwise enumerated into W2.

The above strategy requires attention when the condition in the first step is
fulfilled. Now the construction is straightforward: at stage s run the Q-module
for both Wi, and the highest priority N ′

e-module requiring attention.
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Verification. First note that Q uses only even numbers and each N ′
e only odd

ones. So Q does not have any interaction with the rest of the construction and
so A ≤sw Wi can be derived as explained above; note that the characteristic
sequences of W1,W2 are identical on the even positions. Moreover there is no in-
teraction between pairs of N ′ strategies since their witness intervals are disjoint.
Each of these requirements succeeds because of the choice of witness intervals,
as explained above. The operation of such a requirement is a sequence of diag-
onalizations against one of the reductions ΦA

e = W1, ΨA
e = W2, each of which

(except the first one) takes place after an A-change below a certain level. When
we defined the parameters ce we showed that these A-changes cannot be as many
as the number of witnesses for both Wi. This means that one of these reduc-
tions will stop having expansionary stages and thus the N ′ strategy will start
waiting in step 1 indefinitely, after a certain stage. This is obviously a successful
outcome.

Further Remarks. One of the referees has pointed out that theorem 6 can be
proved as follows (this approach is closer to the construction of W1 above). Fix
the density of A

α = lim sup
n→∞

|{m ≤ n : A(m) = 1}|
n

and a rational approximation d of it with error less than ε (say = 1
10 ). Then we

can effectively choose diagonalization intervals Ik as we did for the construction
of W1, so that after we enumerate axioms on Ik for the computation of A from
W , only a small number (relative to the length of Ik) of extra elements can enter
A below max Ik (e.g. 1

10 th of max Ik). Then, choosing max Ik big enough we can
ensure that there is space in Ik for A-coding and enough A-diagonalizations,
even for the case when we diagonalize against a functional with use x + c for
arbitrary constant c.

Note that roughly speaking the smaller the error ε of the approximation to
α is, the more non-uniform the proof is. E.g. if we choose ε ≤ 1

n we can divide
the unit interval into n equal parts and consider the centers of these as our
rational approximations d. For any given A one of these must be correct and so
the corresponding construction is successful. Setting ε ≤ 1

3 suffices: we get three
sets W1,W2,W3 one of which satisfies the requirements. It is interesting that
there is no obvious way to succeed with less than three attempts.
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