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Abstract. Seventeen years ago, John McCarthy wrote the note Episte-
mological challenges for connectionism as a response to Paul Smolensky’s
paper On the proper treatment of connectionism. I will discuss the ex-
tent to which the four key challenges put forward by McCarthy have been
solved, and what are the new challenges ahead. I argue that there are
fewer epistemological challenges for connectionism, but progress has been
slow. Nevertheless, there is now strong indication that neural-symbolic
integration can provide effective systems of expressive reasoning and ro-
bust learning due to the recent developments in the field.

1 Introduction

This paper is about the integration of neural networks and symbol processing;
it is about how to represent, learn, and compute expressive forms of symbolic
knowledge using neural networks. I believe this is the way forward towards the
provision of an integrated system of expressive reasoning and robust learning.
The provision of such a system, integrating the two most fundamental phenom-
ena of intelligent cognitive behaviour (i.e. the ability to learn from experience
and the ability to reason from what has been learned) has been recently identi-
fied by Leslie Valiant as a key challenge for computer science [25]. The goal is
to produce biologically plausible models with integrated reasoning and learning
capability, in which neural networks provide the inspiration and the machinery
necessary for cognitive computation and learning, while logics provide practical
reasoning and explanation capabilities to the models, facilitating the interaction
between them and the outside world.

In what follows, I will briefly review my recent work (joint with Luis Lamb
and Dov Gabbay) on how to integrate logic and neural networks [8, 9]. I will then
address the open question of how to represent variables effectively in neural net-
works, which emerges from my recent work (joint with Dov Gabbay) on how to
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combine neural networks in a principled way [7]. Throughout, I will try and put
the recent advances on neural-symbolic integration in the context of John Mc-
Carthy’s note Epistemological challenges for connectionism [17], written as a re-
sponse to Paul Smolensky’s paper On the proper treatment of connectionism [22].
Briefly, McCarthy identifies four knowledge representation problems for neural
networks: the problem of elaboration tolerance (the ability of a representation to
be elaborated to take additional phenomena into account); the propositional fix-
ation of neural networks (based on the assumption that neural networks cannot
represent relational knowledge); the problem of how to make use of any avail-
able background knowledge as part of learning, and the problem of how to obtain
domain descriptions from trained networks as opposed to mere discriminations.

I will start by giving examples of how we represent propositional modal logic
(and thus relational knowledge) in neural networks, pointing the reader to the
papers in the area. I will then discuss our proposal for combining (fibring) neu-
ral networks, and how it may allow us to represent variables. In what regards the
challenges put forward by McCarthy, in a nutshell, the problem of elaboration tol-
erance may be resolved by having networks that are fibred in a hierarchy (this is
similar to the idea of using self-organising maps [12], e.g., for language process-
ing, in which the lower levels of abstraction are used for the formation of concepts
that are then used at the higher levels of the hierarchy); in the case of the so-called
propositional fixation of neural networks, connectionist modal logic shows that,
as a matter of fact, neural networks can encode relational knowledge (in the form
of accessibility relations) [9]; as for learning with background knowledge, this can
be achieved by translating symbolic rules into the initial architecture of a neural
network; whereas problem description can be obtained by rule extraction from
trained neural networks. In the past decade, a number of such translation algo-
rithms [8, 9, 13, 23] and knowledge extraction algorithms [1, 3, 19, 24] has been pro-
posed.

Nevertheless, there are still challenges ahead, particularly in what regards the
effective integration of expressive reasoning and robust learning. In this case, we
cannot afford to lose on the learning capability side as we add reasoning capa-
bility to neural networks. This means that we cannot depart from the idea that
neural networks are composed of simple processing units organised in a massively
parallel way (and allow for some clever neurons to perform complex symbolic
computation). We also would like our models to be biologically plausible, not as
a principle but in a pragmatic way. There have been recent advances in brain
imaging, which offer us data we can make use of to get insight into new forms
of representation. Human beings are quite extraordinary at performing practical
reasoning as they go about their daily business. There are cases where the human
computer, slow as it is, is faster than Artificial Intelligence systems. Why are we
faster? Is it the way we perceive knowledge as opposed to the way we represent
it? Do we know immediately which rules to select and apply? We must look for
the correct representation in the sense that it mirrors the way we perceive and
apply the rules [10]. Ultimately, Neural-Symbolic integration is about asking and
trying to answer these questions.
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2 Neural-Symbolic Integration

For neural-symbolic integration to be effective in complex applications, we need
to investigate how to represent, reason, and learn expressive logics in neural net-
works. We also need to find effective ways of expressing the knowledge encoded
in a trained network in a comprehensible symbolic form.

There are two ways to move forward and benefit from neural-symbolic in-
tegration. The first is to take standard neural networks and try and find out
which logics they can represent. The other is to take well established logics and
concepts (e.g. recursion) and try and encode them in a neural network architec-
ture. This needs to be carried out in a systematic way. Whenever we show that
a particular logic can be represented by a particular neural network, we need to
show that the network and the logic are in fact equivalent (a way to do this is to
prove that the network computes the semantics of the logic). Similarly, if we de-
velop a knowledge extraction algorithm, we need to make sure that it is correct
in the sense that it produces rules that are encoded in the network, and that it
is complete in the sense that it produces rules that increasingly approximate the
exact behaviour of the network.

In the past twenty years, a number of models for neural-symbolic integration
has been proposed. Broadly speaking, researchers have made contributions to
three main areas. Neural-symbolic systems provide either: (i) a logical charac-
terisation of a connectionist system; (ii) a connectionist implementation of a
logic; or (iii) a hybrid system bringing together advantages from connectionist
systems and symbolic artificial intelligence [15]. Key contributions to the area
were given by Ron Sun [23], Lokendra Shastri [20], and Steffen Hölldobler [14] on
the knowledge representation side, by Jude Shavlik [21] on learning with back-
ground knowledge, and by Sebastian Thrun on knowledge extraction [24], among
others. The reader is referred to [6] for a general presentation of the subject of
neural-symbolic integration, and to [4] for a more advanced collection of papers
on the subject.

Neural-symbolic systems [6] contain six main phases: (1) symbolic knowledge
insertion; (2) inductive learning with examples; (3) massively parallel deduction;
(4) theory fine-tuning ; (5) symbolic knowledge extraction; and (6) feedback (see
Figure 1). In phase (1), symbolic knowledge is translated into the initial archi-
tecture of a neural network with the use of a Translation Algorithm. In phase
(2), the neural network is trained with examples by a neural learning algorithm,
which revises the theory given in phase (1) as background knowledge. In phase
(3), the network can be used as a massively parallel system to compute the logi-
cal consequences of the theory encoded in it. In phase (4), information obtained
from the computation carried out in phase (3) may be used to help fine-tuning
the network to better represent the problem domain. This mechanism can be
used, for example, to resolve inconsistencies between the background knowledge
and the training examples. In phase (5), the result of training is explained by
the extraction of revised symbolic knowledge. As with the insertion of rules, the
Extraction Algorithm must be provably correct, so that each rule extracted is
guaranteed to be encoded in the network. Finally, in phase (6), the knowledge
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extracted may be analysed by an expert to decide if it should feed the system
once again, closing the learning cycle. A typical application of Neural-Symbolic
Systems is in safety-critical domains, e.g. power plant fault diagnosis, where the
neural network can be used to detect a fault quickly, triggering safety proce-
dures, while the knowledge extracted from it can be used to explain the reasons
for the fault later on. If mistaken, this information can be used to fine tune the
learning system.
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Fig. 1. Neural-Symbolic Learning Systems

In this paper, we focus on knowledge representation (phase (1) above). First,
let us see how the Translation Algorithm works in the case of general logic
programs1. Before we proceed, let us define the type of neural network used
here. An artificial neural network is a directed graph. A unit in this graph is
characterised, at time t, by its input vector Ii(t), its input potential Ui(t), its
activation state Ai(t), and its output Oi(t). The units (neurons) of the network
are interconnected via a set of directed and weighted connections. If there is a
connection from unit i to unit j then Wji ∈ � denotes the weight associated
with such a connection. The input potential of neuron i (Ui(t)) is obtained by
applying the propagation rule of neuron i (gi) such that Ui(t) = gi(Ii(t),Wi),
where Ii(t) is the input vector (x1(t), x2(t), ..., xn(t)) to neuron i at time t, and
Wi denotes the weight vector (Wi1,Wi2, ...,Win) to neuron i. In addition, θi (an
extra weight with input always fixed at 1) is known as the threshold of neuron i.

The activation state of neuron i (Ai(t)) is a bounded real or integer number
given by its activation rule (hi). In general, hi does not depend on the previous
activation state of the neuron, and the propagation rule gi is a weighted sum
such that Ai(t) = hi(

∑
j((Wij · xj(t)) − θi)). Finally, in general, the output is

given by the identity function, and thus Oi(t) = Ai(t).
The units of a neural network can be organised in layers. A n-layer feed-

forward network N is an acyclic graph. N consists of a sequence of layers and

1 A general clause is a rule of the form L1, ..., Lk → A, where A is an atom and Li

(1 ≤ i ≤ k) is a literal. A general logic program is a finite set of general clauses.
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connections between successive layers, containing one input layer, n − 2 hidden
layers and one output layer, where n ≥ 2. When n = 3, we say that N is a single
hidden layer network. When each unit occurring in the i-th layer is connected
to each unit occurring in the i + 1-st layer, we say that N is a fully-connected
network.

Now, let P be a general logic program, and let N be a single hidden layer
feedforward neural network. Each clause (rl) of P can be mapped from the input
layer to the output layer of N through one neuron (Nl) in the single hidden
layer of N . Intuitively, the Translation Algorithm from P to N implements the
following conditions: (C1) The input potential of a hidden neuron (Nl) can only
exceed Nl’s threshold (θl), activating Nl, when all the positive antecedents of
rl are assigned the truth-value true while all the negative antecedents of rl are
assigned false; and (C2) The input potential of an output neuron (A) can only
exceed A’s threshold (θA), activating A, when at least one hidden neuron Nl

that is connected to A is activated.

Example: Consider the logic program P = {B ∧C ∧¬D → A;E ∧F → A;B}.
The Translation Algorithm derives the network N of Figure 2, setting weights
(W ) and thresholds (θ) in such a way that conditions (C1) and (C2) above are
satisfied. Note that, if N ought to be fully-connected, any other link (not shown
in Figure 2) should receive weight zero initially.
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Fig. 2. Neural Network for Logic Programming

Note that, in the above example, each input and output neuron of N is
associated with an atom of P. As a result, each input and output vector of
N can be associated with an interpretation for P. Note also that each hidden
neuron Nl corresponds to a rule rl of P. In order to compute the stable models
of P, output neuron B should feed input neuron B such that N is used to iterate
TP , the fixed-point operator of P. N will eventually converge to a stable state
which is identical to a stable model of P [6].

Details about the translation and extraction algorithms, their proofs of cor-
rectness, and extensions to other types of logic program can be found in [6],
together with algorithms to deal with inconsistencies and experimental results
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in the areas of DNA sequence analysis, power systems fault diagnosis, and the
evolution of requirements in software engineering.

3 Connectionist Modal Logic

Let us now consider the case of modal logic programs, which extend logic pro-
grams with the necessity (�) and possibility (♦) modalities, according to an
accessibility relation R(ωi, ωj) on possible worlds ωi and ωj . I will give an ex-
ample of how neural networks can represent such modalities. The basic idea is
simple. Instead of having a single network, if we now allow a number of networks
(like the one in Figure 2) to occur in an ensemble, and we label the networks as
w1, w2, etc, we can talk about having x in w1 and having x in w2. In this way, we
can see w1 as a possible world and w2 as another, and this allows us to represent
modal logic programs2. This is of interest in connection with McCarthy’s con-
jecture on the propositional fixation of neural networks because there is a well
established translation between propositional modal logic and the two-variable
fragment of first order logic3 [26], which indicates that neural-symbolic systems
may go beyond propositional logic, thus contradicting McCarthy’s conjecture.

Example: Let P = {ω1 : r → �q; ω1 : ♦s → r; ω2 : s; ω3 : q → ♦p; R(ω1;ω2),
R(ω1,ω3)}. The network ensemble N in Figure 3 is equivalent to P. Take network
N1 (representing ω1). To implement the semantics of ♦, output neurons of the
form ♦α should be connected to output neurons α in an arbitrary network Ni

(representing ωi) to which N1 is related. For example, taking i = 2, ♦s in N1

is connected to s in N2. To implement the semantics of �, output neurons �α
should be connected to output neurons α in every network Ni to which N1 is
related. For example, �q in N1 is connected to q in both N2 and N3. Dually,
taking N2, output neurons α need to be connected to output neurons ♦α and
�α in every world Nj related to N2. For example, s in N2 is connected to ♦s in
N1 via the hidden neuron denoted by ∨ in Figure 3, while q in N2 is connected
to �q in N1 via the hidden neuron denoted by ∧. Similarly, q in N3 is connected
to �q in N1 via ∧. The translation terminates when all output neurons have
been considered. The translation algorithm defines the weights and thresholds
of the network in such a way that it can be shown to compute a fixed-point
semantics of the modal logic program associated to it (for any extended modal

2 An extended modal program is a finite set of clauses C of the form ωi :
ML1, ..., MLn → MA, where ωi is a label representing a world in which the associ-
ated clause holds, and M ∈ {�, ♦}, together with a finite set of relations R(ωi, ωj)
between worlds ωi and ωj in C.

3 In [26], Vardi states that “(propositional) modal logic, in spite of its apparent propo-
sitional syntax, is essentially a first-order logic, since the necessity and possibility
modalities quantify over the set of possible worlds... the states in a Kripke structure
correspond to domain elements in a relational structure, and modalities are noth-
ing but a limited form of quantifiers”. In the same paper, Vardi then proves that
propositional modal logics correspond to fragments of first-order logic.



Fewer Epistemological Challenges for Connectionism 145

 
s 

q 

q 

   p 

N2 

N3 

N1 

    q 

r 

 r 

   s 

q 

� 

   s 

�

M1

M2M1

 H1  H2 

 H1 

 H1 

Fig. 3. Connectionist Modal Logic

program P there exists an ensemble of feedforward neural networks N with a
single hidden layer and semi-linear neurons, such that N computes the modal
fixed-point operator MTP of P). The proof and details about the algorithm
can be found in [9]. Finally, as we link the neurons in the output layer to the
corresponding neurons in the input layer of each network Ni, the ensemble can
be used to compute the modal program in parallel. In this example, we connect
output neurons ♦s and r to input neurons ♦s and r, respectively, in N1, and
output neuron q to input neuron q in N3. The ensemble converges to a stable
state containing {♦s, r,�q} in ω1, {s, q} in ω2, and {q,♦s} in ω3.

4 Fibring Neural Networks

In Connectionist Modal Logic (CML), one needs to create copies of certain con-
cepts. As a result, CML cannot deal with infinite domains, since this would
require infinitely many copies. An alternative is to map the instances of a vari-
able onto the reals, and then use real numbers as inputs to a neural network
as a way of representing variables. This has been done in [15], in which a the-
orem shows that the fixed-point semantics of first order logic programs can be
approximated arbitrarily well by neural networks very similar to the one de-
picted in Figure 2. However, the question of which neural network approximates
a given first order program remained, since no translation algorithm has been
introduced in [15]. Recently, we have followed the idea of representing variables
as real numbers, and proposed a translation algorithm from first order acyclic
programs to neural network ensembles [2]. The algorithm makes use of fibring
of neural networks [7], which we discuss in the sequel. Briefly, the idea is to use
a neural network to iterate a global counter n. For each clause Ci in the logic
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program, this counter is combined (fibred) with another neural network, which
determines whether Ci outputs an atom of level n for a given interpretation I.
This allows us to translate programs having an infinite number of ground in-
stances into a finite neural network structure (e.g. ¬even(x) → even(s(x)) for
x ∈ N, s(x) = x + 1), and to prove that indeed the network approximates the
fixed-point semantics of the program. The translation is made possible because
fibring allows one to implement a key feature of symbolic computation in neural
networks, namely, recursion.

The idea of fibring neural networks is simple. Fibred networks may be com-
posed not only of interconnected neurons but also of other networks, forming a
recursive architecture. A fibring function then defines how this recursive archi-
tecture must behave by defining how the networks in the ensemble relate to each
other. Typically, the fibring function will allow the activation of neurons in one
network (A) to influence the change of the weights in another network (B) (e.g.
by allowing the activation state of a neuron in A to be multiplied by the weights
of neurons in B). Intuitively, this may be seen as training network B at the same
time that one runs network A. Interestingly, albeit being a combination of simple
and standard neural networks, fibred networks can approximate any polynomial
function in an unbounded domain, thus being more expressive than standard
feedforward networks (which are universal approximators of functions in com-
pact, i.e. closed and bounded, domains only) [7]. For example, fibred networks
compute f(x) = x2 exactly for x ∈ R.

Figure 4 exemplifies how a network (B) can be fibred into a network (A).
Of course, the idea of fibring is not only to organise networks as a number of
subnetworks (A, B, etc). In Figure 4, for example, the output neuron of A is
expected to be a neural network (B) in its own right. The input, weights, and
output of B may depend on the activation state of A’s output neuron, according
to the fibring function ϕ. One such function may be simply to multiply the
weights of B by the activation state of A’s output neuron. Fibred networks
can be trained from examples in the same way that standard networks are (for

A
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W1

W2

W3 o1

B
i1

i2

W1

W2

W3 o1

ϕ

Fig. 4. Fibring Neural Networks
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example, with the use of backpropagation [18]). Networks A and B above, e.g.,
could have been trained separately before having been fibred. Notice also that, in
addition to using different fibring functions, networks can be fibred in a number
of different ways as far as their architectures are concerned. Network B above,
e.g., could have been fibred into a hidden neuron of network A.

I believe that fibring can contribute to the solution of the problem of elabora-
tion tolerance by offering a principled and modular way of combining networks.
Network A could have been trained, e.g., with a robot’s visual system, while
network B would have been trained with its planning system, and fibring would
serve to perform the composition of the two systems (along the lines of Gab-
bay’s methodology for fibring logical systems [11]). Of course, a lot of work still
remains to be done in this area, particularly in what regards the question of how
one should go about fibring networks in real applications.

5 Concluding Remarks

I see CML as an example of how neural networks can contribute to logic, and I see
fibring as an example of how logic can bring insight into neural networks. CML
offers a parallel model of computation to modal logic that, at the same time, can
be integrated with an efficient learning system. Fibring is a clear example of how
concepts from symbolic computation may help in the development of new neural
network models (this does not necessarily conflicts with the concept of biological
plausibility, e.g. fibring functions can be understood as a model of presynaptic
weights, which play an important role in biological neural networks).

Together with its algorithms for learning from examples and background
knowledge [6] and for knowledge extraction from trained neural networks [5]
(which I have neglected in this paper), I believe that neural-symbolic integration
finally starts to address all the challenges put forward by McCarthy. On the
other hand, there are new challenges now, which arise directly from our goal of
integrating reasoning and learning in a principled way, as put forward by Valiant
[25].

In my opinion, the key challenges ahead are: how to get a constructive trans-
lation of variables into simple neural networks, and how to have a sound and
complete extraction method that is also efficient for large-scale networks. Let
me try and explain what I mean by a constructive translation. In the proposi-
tional case, when we look at a neural network, we can see the literals and their
relationship with other literals explicitly represented as neurons and their con-
nections with other neurons in the network. In the same way, we would like to
be able to look at a first order neural network and see the variables and their
relationship with other variables explicitly represented in the network. Although
fibring allows us to translate first order programs into neural networks, the cur-
rent translation algorithm does not produce one such constructive view of the
network. As a result, we still do not know how to learn first order programs using
neural networks, and I believe that a constructive translation would help shed
light into this learning problem. Due to the success of the propositional case, I
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am convinced that such a representation would allow for effective learning if it
kept the networks simple. This is still a big challenge. Of course, we will need to
be much more precise as we develop this work, and we will need to keep an eye
on the recent developments in the area of logic and learning [16].
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