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Abstract. Following Lutz’s approach to effective (constructive) dimen-
sion, we define a notion of dimension for individual sequences based
on Schnorr’s concept(s) of randomness. In contrast to computable ran-
domness and Schnorr randomness, the dimension concepts defined via
computable martingales and Schnorr tests coincide. Furthermore, we
give a machine characterization of Schnorr dimension, based on pre-
fix free machines whose domain has computable measure. Finally, we
show that there exist computably enumerable sets which are Schnorr
irregular: while every c.e. set has Schnorr Hausdorff dimension 0 there
are c.e. sets of Schnorr packing dimension 1, a property impossible in
the case of effective (constructive) dimension, due to Barzdin’s
Theorem.

1 Introduction

Martin-Löf’s concept of individual random sequences was recently generalized
by Lutz [10, 11], who introduced an effective notion of Hausdorff dimension. As
(classical) Hausdorff dimension can be seen as a refinement of Lebesgue measure
on 2N, in the sense that it further distinguishes between classes of measure 0,
the effective Hausdorff dimension of an individual sequence can be interpreted
as a degree of randomness of the sequence. This viewpoint is supported by a
series of results due to Ryabko [15, 16], Staiger [21, 20], Cai and Hartmanis [3],
and Mayordomo [12], which establish that the effective Hausdorff dimension of
a sequence equals its lower asymptotic Kolmogorov complexity (plain or prefix-
free).

Criticizing Martin-Löf’s approach to randomness as not being truly algo-
rithmic, Schnorr [18] presented two alternative randomness concepts, one based
one computable martingales, nowadays referred to as computable randomness,
the other based on stricter effectivity requirements for Martin-Löf tests. This
concept is known as Schnorr randomness.
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In this paper we will generalize and extend Schnorr’s randomness concepts to
Hausdorff dimension. Like in the case of randomness, the approach suffers from
some technical difficulties like the absence of a universal test/martingale. We will
see that for dimension, Schnorr’s two approaches coincide, in contrast to Schnorr
randomness and computable randomness. Furthermore, it turns out that, with
respect to Schnorr dimension, computably enumerable sets can expose a complex
behavior, to some extent. Namely, we will show that there are c.e. sets of high
Schnorr packing dimension, which is impossible in the effective case, due to a
result by Barzdin’ [2]. On the other hand, we prove that the Schnorr Hausdorff
dimension of the characteristic sequence of a c.e. set is 0. Thus, the class of
computably enumerable sets contains irregular sequences – sequences for which
Hausdorff and packing dimension do not coincide.

The paper is structured is as follows. In Section 2 we give a short intro-
duction to the classical theory of Hausdorff measures and dimension, as well
as packing dimension. In Section 3 we will define algorithmic variants of these
concepts based on Schnorr’s approach to randomness. In Section 4 we prove
that the approach to Schnorr dimension via coverings and via computable mar-
tingales coincide, in contrast to Schnorr randomness and computable random-
ness. In Section 5 we derive a machine characterization of Schnorr Hausdorff
and packing dimension. Finally, in Section 6, we study the Schnorr dimension
of computably enumerable sets. The main result here will be that on those sets
Schnorr Hausdorff dimension and Schnorr packing dimension can differ as largely
as possible.

We will use fairly standard notation. 2N will denote the set of infinite bi-
nary sequences. Sequences will be denoted by upper case letters like A,B,C, or
X,Y,Z. We will refer to the nth bit (n ≥ 0) in a sequence B by either Bn or
B(n), i.e. B = B0B1B2 . . . = B(0)B(1)B(2) . . ..

Strings, i.e. finite sequences of 0s and 1s will be denoted by lower case letters
from the end of the alphabet, u, v, w, x, y, z along with some lower case Greek
letters like σ and τ . {0, 1}∗ will denote the set of all strings. The initial segment
of length n, A�n, of a sequence A is the string of length n corresponding to the
first n bits of A.

Given two strings v, w, v is called a prefix of w, v � w for short, if there
exists a string x such that vx = w, where vx is the concatenation of v and x.
Obviously, this relation can be extended to hold between strings and sequences
as well. A set of strings is called prefix free if all its elements are pairwise incom-
parable.

Initial segments induce a standard topology on 2N. The basis of the topology
is formed by the basic open cylinders (or just cylinders, for short). Given a string
w = w0 . . . wn−1 of length n, these are defined as [w] = {A ∈ 2N : A �n= w}.
For C ⊆ {0, 1}∗, we define [C] =

⋃
w∈C [w].

Throughout the paper we assume familiarity with the basic concepts of
computability theory such as Turing machines, computably enumerable sets,
computable and left-computable (c.e.) reals. Due to space consideration, formal
proofs of the results are omitted. (Some ideas are sketched.)
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2 Hausdorff Measures and Dimension

The basic idea behind Hausdorff dimension is to generalize the process of mea-
suring a set by approximating (covering) it with sets whose measure is already
known. Especially, the size of the sets used in the measurement process will be
manipulated by certain transformations, thus making it harder (or easier) to
approximate a set with a covering of small accumulated measure. This gives rise
to the notion of Hausdorff measures.

Definition 1. Let X ⊆ 2N. Given δ > 0 and a real number s ≥ 0, define

Hs
δ(X ) = inf

{
∑

w∈C

2−|w|s : (∀w ∈ C)[2−|w| ≤ δ] ∧ X ⊆ [C]

}

The s-dimensional Hausdorff measure of X is defined as

Hs(X ) = lim
δ→0

Hs
δ(X ).

Note that Hs(X ) is well defined, since, as δ decreases, there are fewer δ-covers
available, hence Hs

δ is non-decreasing. However, the value may be infinite. For
s = 1, one obtains Lebesgue measure on 2N.

The outer measures Hs have an important property.

Proposition 2. Let X ⊆ 2N. If, for some s ≥ 0, Hs(X ) < ∞, then Ht(X ) = 0
for all t > s.

This means that there can exist only one point s ≥ 0 where a given class
might have finite positive s-dimensional Hausdorff measure. This point is the
Hausdorff dimension of the class.

Definition 3. For a class X ⊆ 2N, define the Hausdorff dimension of X as

dimH(X ) = inf{s ≥ 0 : Hs(X ) = 0}.

For more on Hausdorff measures and dimension refer to the book by Falconer
[7]. A presentation of Hausdorff measures and dimension in 2N can be found in
[13].

2.1 Packing Dimension

We say that a prefix free set P ⊆ {0, 1}∗ is a packing for X ⊆ 2N, if for every
σ ∈ P , there is some A ∈ X such that σ � A.

Given s ≥ 0, δ > 0, let

Ps
δ (X ) = sup

{
∑

w∈P

2−|w|s : P packing for X and (∀w ∈ P )[2−|w| ≤ δ

}

. (1)
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Ps
δ (X ) decreases with δ, so the limit Ps

0(X ) = limδ→0 Ps
δ (X ) exists. Finally,

define

Ps(X ) = inf

{
∑

Ps
0(Xi) : X ⊆

⋃

i∈N

Xi

}

. (2)

(The infimum is taken over arbitrary countable covers of X .) Ps is called, in
correspondence to Hausdorff measures, the s-dimensional packing measure on
2N. Packing measures were introduced by Tricot [24] and Taylor and Tricot [23].
They can be seen as a dual concept to Hausdorff measures, and behave in many
ways similar to them. In particular, one may define packing dimension in the
same way as Hausdorff dimension.

Definition 4. The packing dimension of a class X ⊆ 2N is defined as

dimP X = inf{s : Ps(X ) = 0} = sup{s : Ps(X ) = ∞}. (3)

Again, we refer to Falconer’s book [7] for details on packing measures and
dimension.

2.2 Martingales

It is possible do characterize Hausdorff and packing dimension via martingales,
too. Martingales have become a fundamental tool in probability theory. In Cantor
space 2N, they can be described very conveniently.

Definition 5. A martingale on 2N is a function d : {0, 1}∗ → [0,∞) which
satisfies

d(w) =
d(w01) + d(w1)

2
for all w ∈ {0, 1}∗.

Martingales can be interpreted as capital functions of an accordant betting
strategy, when applied to a binary sequence. The value d(w) reflects the player’s
capital after bits w(0), . . . , w(|w| − 1) have been revealed to him.

Definition 6. Let g : N → [0,∞) be a positive, unbounded function. A martin-
gale is g-successful (or g-succeeds) on a sequence B ∈ 2N if

d(B �n) ≥ g(n) for infinitely many n.

d is strongly g-successful (or g-succeeds strongly) on a sequence B ∈ 2N if

d(B �n) ≥ g(n) for all but finitely many n. (4)

It turns out that, in terms of Hausdorff dimension, the relation between Hs-
nullsets and 2(1−s)n-successful martingales is very close.

Theorem 7. Let X ⊆ 2N. Then it holds that

dimH X = inf{s : ∃ martingale d 2(1−s)n-successful on all B ∈ X}. (5)
dimP X = inf{s : ∃ martingale d strongly 2(1−s)n-successful on all B ∈ X}.(6)
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In the form presented here, equation (5) was first proven by Lutz [9]. How-
ever, close connections between Hausdorff dimension and winning conditions on
martingales have been observed by Ryabko [17] and Staiger [22]. Equation (6)
is due to Athreya, Lutz, Hitchcock, and Mayordomo [1].

Note that, if a martingale 2(1−s)n-succeeds on a sequence A, for any t > s it
will hold that

lim sup
n→∞

d(A�n)
2(1−t)n

= ∞. (7)

So, when it comes to dimension, we will, if convenient, use (7) and the original
definition interchangeably. Furthermore, a martingale which satisfies (7) for t = 1
is simply called successful on A.

3 Schnorr Null Sets and Schnorr Dimension

We now define a notion of dimension based on Schnorr’s approach to randomness.

Definition 8. Let s ∈ [0, 1] be a rational number.

(a) A Schnorr s-test is a computable sequence (Sn)n∈N of c.e. sets of finite
strings such that, for all n,

∑
w∈Sn

2−|w|s ≤ 2−n, and
∑

w∈Sn
2−|w|s is a

uniformly computable real number.
(b) A class A ⊆ 2N is Schnorr s-null if there exists a Schnorr s-test (Sn) such

that A ⊆ ⋂
n∈N

[Sn].

The Schnorr random sequences are those which are (as a singleton class in
2N) not Schnorr 1-null.

Downey and Griffiths [4] observe that, by adding elements, one can replace
any Schnorr 1-test by an equivalent one (i.e., one defining the same Schnorr
nullsets) where each level of the test has measure exactly 2−n. We can apply
the same argument in the case of arbitrary rational s, and hence we may, if
appropriate, assume that

∑
w∈Sn

2−|w|s = 2−n, for all n.
Note further that, for rational s, each set Sn in a Schnorr s-test is actually

computable, since to determine whether w ∈ Sn it suffices to enumerate Sn

until the accumulated sum given by
∑

2−|v|s exceeds 2−n − 2|w|s (assuming the
measure of the n-th level of the test is in fact 2−n). If w has not been enumerated
so far, it cannot be in Sn. (Observe, too, that the converse does not hold.)

One can describe Schnorr s-nullsets also in terms of Solovay tests. Solo-
vay tests were introduced by Solovay [19] and allowed for a characterization
of Martin-Löf nullsets via a single test set, instead of a uniformly computable
sequence of test sets.

Definition 9. Let s ∈ [0, 1] be rational.

(a) An Solovay s-test is a c.e. set C ⊆ {0, 1}∗ such that
∑

w∈C 2−|w|s ≤ 1.
(b) An Solovay s-test is total if

∑
w∈C 2−|w|s is a computable real number.

(c) An Solovay s-test C covers a sequence A ∈ 2N if it contains infinitely
many initial segments of A. In this case we also say that A fails the test C.
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Theorem 10. For any rational s ∈ [0, 1], a class X ⊆ 2N is Schnorr s-null
if and only if there is a total Solovay s-test which covers every sequence A ∈ X .

3.1 Schnorr Dimension

Like in the classical case, each class has a critical value a critical value with
respect to Schnorr s-measure.

Proposition 11. Let X ⊆ 2N. For any rational s ≥ 0, if X is Schnorr s-null
then it is also Schnorr t-null for any rational t ≥ s.

This follows from the fact that every Schnorr s-test is also a t-test. The
definition of Schnorr Hausdorff dimension can now be given in a straightforward
way.

Definition 12. The Schnorr Hausdorff dimension of a class X ⊆ 2N is defined
as

dimS
H(X ) = inf{s ≥ 0 : X is Schnorr s-null}.

For a sequence A ∈ 2N, we write dimS
H A for dimS

H{A} and refer to dimS
H A

as the Schnorr Hausdorff dimension of A.

3.2 Schnorr Packing Dimension

Due to the more involved definition of packing dimension, it is not immediately
clear how to define a Schnorr-type version of packing dimension. However, we will
see in the next section that Schnorr dimension allows an elegant characterization
in terms of martingales, building on Theorem 7. This will also make it possible
to define a Schnorr version of packing dimension.

4 Schnorr Dimension and Martingales

In view of his unpredictability paradigm for algorithmic randomness, Schnorr [18]
suggested a notion of randomness based on computable martingales. According
to this notion, nowadays referred to as computable randomness, a sequence is
computably random if no computable martingale succeeds on it.

Schnorr [18] himself proved that a sequence is Martin-Löf random if and
only if some left-computable martingale succeeds on it. Therefore, one might be
tempted to derive a similar relation between Schnorr null sets and computable
martingales. However, Schnorr [18] pointed out that the increase in capital of
a successful computable martingale can be so slow it cannot be computably
detected. Therefore, he introduced orders (“Ordnungsfunktionen”), which allow
to ensure an effective control over the capital.

In general, any positive, real, unbounded function g is called an order. (It
should be remarked that, in Schnorr’s terminology, an “Ordnungsfunktion” is
always computable.)

Schnorr showed that Schnorr nullsets can be characterized via computable
martingales successful against computable orders.
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Theorem 13 (Schnorr). A set X ⊆ 2N is Schnorr 1-null if and only if there
exists a computable martingale d and a computable order g such that d is g-
successful on all B ∈ X .

Schnorr calls the functions g(n) = 2(1−s)n exponential orders, so much of
the theory of effective dimension is already, though apparently without explicit
reference, present in Schnorr’s treatment of algorithmic randomness [18].

If one drops the requirement of being g-successful for some computable g,
one obtains the concept of computable randomness. Wang [26] showed that the
concepts of computable randomness and Schnorr randomness do not coincide.
There are Schnorr random sequences on which some computable martingale
succeeds. However, the differences vanish if it comes to dimension.

Theorem 14. For any sequence B ∈ 2N,

dimS
H B = inf{s ∈ Q : some computable martingale d is s-successful on B}.

So, in contrast to randomness, the approach via Schnorr tests and the ap-
proach via computable martingales to dimension yield the same concept.

Besides, we can build on Theorem 14 to introduce Schnorr packing dimension.

Definition 15. Given a sequence A ∈ 2N, we define the Schnorr packing di-
mension of A, dimS

P A, as

dimS
P A = inf{s ∈ Q : some comp. martingale is strongly s-successful on A}

Schnorr packing dimension is implicitly introduced as a computable version
of strong dimension in [1]. It follows from the definitions that for any sequence
A ∈ 2N, dimS

H A ≤ dimS
P A. We call sequences for which Schnorr Hausdorff and

Schnorr packing dimension coincide Schnorr regular (see [24] and [1]). It is easy
to construct a non-Schnorr regular sequence, however, in Section 6 we will see
that such sequences already occur within the class of c.e. sets.

5 A Machine Characterization of Schnorr Dimension

One of the most powerful arguments in favor of Martin-Löf’s approach to ran-
domness is the coincidence of the Martin-Löf random sequences with the se-
quences that are incompressible in terms of (prefix free) Kolmogorov complexity.

Such an elegant characterization via machine compressibility is possible nei-
ther for Schnorr randomness nor Schnorr dimension. To obtain a machine char-
acterization of Schnorr dimension, we have to restrict the admissible machines
to those with domains having computable measure.

Definition 16. A prefix free machine M is computable if
∑

w∈dom(M) 2−|w| is
a computable real number.

Note that, as in the case of Schnorr tests, if a machine is computable, then
its domain is computable (but not vice versa). To determine whether M(w) ↓,
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enumerate dom(M) until
∑

w∈dom(M) 2−|w| is approximated by a precision of
2−N , where N > |w|. If M(w) ↓, w must have been enumerated up to this point.

Furthermore, we sometimes assume that the measure of the domain of a
computable machine is 1. This can be justified, as in the case of Schnorr tests,
by adding superfluous strings to the domain.

The definition of machine complexity follows the standard scheme. We restrict
ourselves to prefix free machines.

Definition 17. Given a Turing machine M with prefix free domain, the M -
complexity of a string x is defined as

KM (x) = min{|p| : M(p) = x},

where KM (x) = ∞ if there does not exist a p ∈ {0, 1}∗ such that M(p) = x.

We refer to the books by Li and Vitanyi [8] and Downey and Hirschfeldt [5]
for comprehensive treatments on machine (Kolmogorov) complexity.

Downey and Griffiths [4] show that a sequence A is Schnorr random if and
only if for every computable machine M , there exists a constant c such that
KM (A �n) ≥ n − c. Building on this characterization, we can go on to describe
Schnorr dimension as asymptotic entropy with respect to computable machines.

Theorem 18. For any sequence A it holds that

dimS
H A = inf

M
KM (A) def= inf

M

{

lim inf
n→∞

KM (A�n)
n

}

,

where the infimum is taken over all computable prefix free machines M .

One can use an analogous argument to obtain a machine characterization of
Schnorr packing dimension.

Theorem 19. For any sequence A it holds that

dimS
P A = inf

M
KM (A) def= inf

M

{

lim sup
n→∞

KM (A�n)
n

}

,

where the infimum is taken over all computable prefix free machines M .

6 Schnorr Dimension and Computable Enumerability

Usually, when studying algorithmic randomness, interest focuses on c.e. reals
(i.e. left-computable real numbers) rather than on c.e. sets. The reason is that
c.e. sets exhibit a trivial behavior with respect to most randomness notions,
while there are c.e. reals which are Martin-Löf random, such as Chaitin’s Ω.

As regards c.e. reals, we can extend the result of Downey and Griffiths [4]
that every Schnorr random c.e. real is of high Turing degree.
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Theorem 20. Every sequence of positive Schnorr Hausdorff dimension has high
Turing degree. That is, if dimS

H A > 0, then S′ ≡T 0′′.

Using the fact that every noncomputable c.e. set contains an infinite com-
putable subset, and the fact that, for all n, λ{A ∈ 2N : A(n) = 1} = 1/2, it is
not hard to show that no c.e. set can be Schnorr random.

It does not seem immediately clear how to improve this to Schnorr dimension
zero. Indeed, defining coverings from the enumeration of a set directly might not
work, because due to the dimension factor in Hausdorff measures, longer strings
will be weighted higher. Depending on how the enumeration is distributed, this
might not lead to a Schnorr s-covering at all.

However, one might exploit the somewhat predictable nature of a c.e. set
to define a computable martingale which is, for any s > 0, s-successful on the
characteristic sequence of the enumerable set, thereby ensuring that each c.e. set
has Schnorr Hausdorff dimension 0.

Theorem 21. Every computably enumerable set A ⊆ N has Schnorr Hausdorff
dimension zero.

On the other hand, concerning upper entropy, c.e. sets may exhibit a rather
complicated structure, in sharp contrast to the case of effective (constructive)
dimension, where Barzdin’s Theorem [2] ensures that all c.e. sets have effective
packing dimension 0. As the proof of the following theorem shows, this is due
to the requirement that all machines involved in the determination of Schnorr
dimension are total.

Theorem 22. There exists a computably enumerable set A ⊆ N such that

dimS
P A = 1.
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