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Abstract. This paper presents the Cognitive Symbol Grounding frame-
work for modeling language in neural networks and adaptive agent sim-
ulations. This approach is characterized by the hypothesis that symbols
are directly grounded into the agents’ own categorical representations,
whilst at the same time having syntactic relationships with other sym-
bols. The mechanism of grounding transfer is also introduced. This is
the process by which the grounding of basic words, acquired via direct
sensorimotor experience, is transferred to higher-order words via linguis-
tic descriptions. Various simulations are briefly reviewed to demonstrate
the use of the Cognitive Symbol Grounding approach.

1 The Cognitive Symbol Grounding Framework

The grounding of symbols in computational cognitive systems requires that the
simulated cognitive agent is able to access the meaning of its symbols (words)
directly, without the intervention of an external viewer such as the experimenter.
This has been a significant shortcoming of cognitive models only based on sym-
bolic architecture. Such a limit is commonly referred to as the Symbol Grounding
Problem [6].

Recent cognitive models based on connectionist agents and robots use the
Cognitive Symbol Grounding framework to intrinsically link symbols to the
agents’ own cognitive system [1]. This approach is characterized by the hy-
pothesis that symbols are directly grounded into the agents’ own categorical
representations, whilst at the same time having logical/syntactic relationships
with other symbols. First, each symbol is directly grounded into internal cate-
gorical representations. These representations include perceptual categories (e.g.
the concept of blue color, square shape, and male face), sensorimotor categories
(the action concept of grasping, pushing, carrying), social representations (indi-
viduals, groups and relationships) and other categorizations of the agent’s own
internal states (emotions, motivations). Secondly, these categories are connected
to the external world through our perceptual, motor and cognitive interaction
with the environment.

Two main modeling approaches to the symbol grounding are presented here:
(1) the connectionist approach, based on artificial neural network simulations of
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categorization and linguistic tasks, and (2) the embodied agent modeling method
based on multi-agent simulations and robotic studies. Both approaches share an
integrative view of the cognitive systems, in which vision, action and language
are intrinsically linked with one another. This permits the design of cognitive
systems where language is directly grounded in the agent’s own sensorimotor
and cognitive abilities.

The use of an integrated language/cognition/action system is particularly
important for the mechanism of grounding transfer. This is the process by
which the grounding of basic words, acquired via direct sensorimotor experi-
ence, is transferred to higher-order words via linguistic descriptions (i.e. indirect
grounding). For example, I can learn by direct experience that the word horse
is grounded on my sensorimotor experience of seeing (and/or riding) a horses
and that the word horn is grounded on the vision of the horn of an animal. Sub-
sequently, via the linguistic description ”The unicorn is an animal similar
to a horse with a horn” I can learn the new word, and concept, unicorn and
indirectly ground it in my experience of horses and horns.

The following sections will briefly review some modeling work on the Cogni-
tive Symbol Grounding hypothesis developed by the author and collaborators.
These examples will demonstrate the use of connectionist and adaptive agent
models for the direct grounding of symbols and the transfer of grounding from
low level words to higher-level symbols.

2 Connectionist Simulations

The connectionist approach to symbol grounding is based on simulations of artifi-
cial neural networks for category learning and naming tasks. In particular, this has
been possible through the use of dual-route neural networks architectures [8] that
permit the link (a) between perceptual and sensorimotor representations and (b)
between these sensorimotor representations and symbolic knowledge. Typically,
a neural network will have visual and linguistic input units indirectly link, via
hidden units, to motor and linguistic output units. The process of language un-
derstanding can be simulated with the link from linguistic input to motor outputs,
while language production links visual input to linguistic output units.

A seminal paper on categorization and symbol grounding with neural net-
works is that proposed by Harnad et al. [7]. This specifically focused on grounding
symbols in categorical perception. The authors used a multi-layer perceptron to
categorizing lines according to their length. Training consisted of two sequential
backpropagation learning tasks. The first was an autoassociation task to train
networks to discriminate between different stimuli. In the second task, the net-
works were trained to categorize stimuli by sorting lines into three categories:
short, middle, long. The comparison of the pre- and post-categorization hid-
den activations showed the well known categorical perception effects, i.e. within-
category compression and between-category expansion of category members. The
hidden categorical representations constituted the grounding of categorization
names (labels).
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Subsequent symbol grounding models have focused on the mechanisms of
grounding transfer. For example, Riga et al. [9] proposed a connectionist models
in which basic symbols, such as names of shapes and colors, are first intrinsically
connected to the categories being acquired through direct interaction with the
environment. These basic symbols are successively used to construct descriptions
of new categories of stimuli consisting of individual objects made by specific
combinations of a shape and color). New categories (and their symbols) are in
this way defined without the need of a direct experience of their referents. This
process of grounding transfer enables the system to express meanings that go
beyond immediate experience. New symbols, acquired exclusively from symbolic
descriptions, are ultimately grounded in the interaction of the system with its
environment.

The simulation consisted of three sequential training stages and a grounding
transfer test phase. During the first training stage, an unsupervised network
learns to discriminate between different stimulus categories by constructing a
feature self-organizing map of different shape and color categories. The network
acquires analogue sensorial representations of their environment that enables
it to categorize the stimuli along the dimensions of shapes and colors. In the
second training phase, symbolic stimuli (the names of the colors and shapes) are
presented to the network, together with the images. These symbols are directly
grounded in the sensorial representations acquired during the first phase. In
the third training phase, the training input is exclusively symbolic. Linguistic
descriptions of new higher-order categories are presented. These contain the
previously acquired symbols in combination with a new symbol that denotes a
new category (e.g. Red + Square = DAX). Finally, in the test phase, the network
is presented with images of the previously unseen objects, such as DAX, to check
if these are recognized and named. The successful naming of these previously-
unseen images would demonstrate that the grounding transfer has occurred.
Simulation results consistently showed that networks are able to recognize and
name the images of new objects, therefore demonstrating that the grounding has
been transferred from basic order categories to higher order concepts. Thus, the
proposed connectionist simulation provides the basis of a working model for the
implementation of an autonomous cognitive system able to use combinations of
previously-grounded symbols to expand its knowledge of the world.

Other neural network models of language have focused on the grounding of
special types of symbol, that is function words. These includes linguistic terms
such as spatial prepositions (e.g. in, on, over, under) and quantifiers (e.g. few,
some, many). Recently, Coventry et al. [5] have developed a neural network model
of the spatial prepositions over, under, above, below. The model addresses the
integration of functional and object knowledge factors (”what”) with geometric
factors such as the relative position of objects (”where”). The model processes
movies of a located object (teapot) pouring a liquid (water) into a reference
object (cup). The task of the network is to name the objects and to select the
most appropriate spatial preposition describing the scene. The model consists of
three modules: (1) a neurally-inspired vision module to process the visual scenes,
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(2) a simple recurrent neural network to learn compressed representations of the
dynamics of interacting objects, and (3) a dual-route network for producing the
names of objects and the spatial prepositions. The dual-route network plays the
core function of the grounding process by integrating visual and linguistic knowl-
edge. The activation values of the linguistic output nodes correspond to rating
values given by subjects in language comprehension experiments. The multi-
layer perceptron is trained via error backpropagation, by converting the rating
data into stimulus presentation frequencies. Simulation results consistently show
that the networks produce rating values similar to that of experimental subjects.
It can also accurately predicts new experimental data on the ratings of scenes
where only the initial frames are shown and the subjects must ”mentally replay”
the scene and predict its end frame (i.e. where the liquid ends). Such a model is
currently being extended to deal with further linguistic terms, such as the vague
quantifiers few, a few, some, many, a lot of. The underlying hypothesis is that this
grounded connectionist approach will permit the identification of the main mech-
anisms responsible for quantification judgment and their linguistic expression.

3 Adaptive Agent Simulations

The adaptive agent approach includes multi-agent simulations of the evolution
of language and cognitive robotics experiment on communication and language
learning. The multi-agent approach uses populations of simulated agents that
interact with each other to develop a shared set of symbols (lexicon) to describe
their interaction with the world. The robotic studies uses embodied evolutionary
and/or epigenetic robotic agents that interact in a simulated (or real) physical
environment and build a linguistic representation of this interaction.

In a grounded multi-agent model of language evolution [2], neural networks
were used to simulate learning and the genetic algorithm to simulate evolution.
The model considers two ways of acquiring categories and language which are
in direct competition with one another: In ”sensorimotor toil,” new categories
are acquired through feedback-corrected, trial and error experience in sorting
input stimuli. In ”symbolic theft,” new categories are acquired by hearsay from
propositions (i.e. language) based on boolean combinations of symbols. In com-
petition, symbolic theft always beats sensorimotor toil. This is hypothesized to
be the basis of the adaptive advantage of language, after basic categories are
learned by toil, to avoid an infinite regress (the symbol grounding problem).
Changes in the internal representations of categories must take place during the
course of learning by toil. These changes were analyzed in terms of the com-
pression of within-category similarities and the expansion of between-category
differences. Such compression/expansion effects, called Categorical Perception,
have previously been reported with categories acquired by sensorimotor toil.
This simulation also shows that they can also arise from symbolic theft alone.

Studies with adaptive robotic agents include simulations of robots that learn
to imitate actions and to communicate linguistically about such motor abilities.
For example, in an epigenetic robotic model [4], agents learn to perform actions
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on objects using imitation and grounding transfer mechanisms. The model is
based on a simulation of two robots embedded in a virtual environment that
accurately models physical constraints present in real-world situations (using
the physics software engine Open Dynamics Engine). Each robot has twelve De-
grees of Freedom (DoF) and consists of two 3-segment arms attached to a torso
and a base with 4 wheels. The teacher robot has preprogrammed behavior to
manipulate objects. The imitator agent learns to perform the same actions by
observing the teacher executing them and using an on-line backpropagation al-
gorithm. This effectively enables the agent to mimic a movement in real-time and
provides the agents with a mechanism to approximate movements without need
for prior learning. The robot’s neural network memorizes action patterns related
to objects and enables the autonomous execution of the movement associated
with an object in absence of the teacher agent. The neural controller receives
in input sensorial data on the object’s visual properties and the proprioceptive
information on the imitator’s joint angles. In output it produces the motor force
applied to each joint. Overall, the simulation results show that it takes just few
online training epochs to obtain a satisfactory performance. Typically, the agents
produce a movement that is very similar to the original after having mimicked
it once, and optimize it during successive training cycles.

Agents simultaneously learn the words corresponding to actions, whist they
are are taught to perform the basic actions by mimicking them. Robot learn the
basic actions of opening and closing their left and right arms (upper arms and
elbows), lifting them (shoulders), and moving forward and backward (wheels),
together with the corresponding words. They also learn higher-level compos-
ite behaviors by receiving linguistic descriptions containing these previously ac-
quired words (grounding transfer). After basic grounding, the robot receives 1st
level linguistic descriptions of combined actions, consisting in a new word and
two known words referring to basic actions. For example, the action of grab-
bing the object in front of them was described as: ”CloseLeft + CloseRight
= Grab”. Grounding is successfully transferred from the basic words CloseLeft
and CloseRight to the higher order symbol Grab. In a test phase, when the agent
is given the command Grab it successfully executes the combined action of push-
ing its arms towards the object and grabbing it. Robots can also receive further
higher-level descriptions, in which a defining word is itself learned exclusively
from a linguistic description. For example, the grabbing and moving forward
actions were combined into the higher-order action of carrying: ”MoveForward
+ Grab = Carry”. Grounding transfer was successfully transferred to the new
word, enabling the agent to correctly perform the action of carrying on hearing
the word Carry. The system learned several of these combined actions simulta-
neously, and also four-word definitions and grounding transfers of up to three
levels have been realized. In addition to demonstrating the grounding transfer
mechanism in robotic agents, this model also highlights the role of language as
a cognitive enhancer tool, i.e. a means through which new behaviors can be ac-
quired quickly and effortlessly, building on experience accumulated by previous
generations of agents.
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4 Conclusions

Overall,these studies demonstrate the feasibility of theCognitive SymbolGround-
ing approach in which neural networks are used to deal with the symbol ground-
ing problems and the grounding transfer. The ”embodiment” of such connec-
tionist architectures in either simulated agents or robots permits a deeper un-
derstanding of the relationship between linguistic/symbolic abilities and other
sensorimotor and cognitive capabilities. For example, adaptive agent models of
verb and noun learning have shown that linguistic and sensorimotor represen-
tations share common neural structures. In these simulations, the same hidden
units are involved or the processing of nouns and sensorimotor representations,
whilst separate hidden units specialize for verb and motor processing [3]. This
approach also has important practical and technological implications. For exam-
ple, in robotics and artificial intelligence, language grounding models can provide
novel algorithms and methodologies for the development of effective interaction
between humans and autonomous computer and robotic systems. As demon-
strated in the epigenetic robotic model of the symbol grounding transfer, the
imitation and language instruction modalities can be integrated to form a situ-
ated learning process in which higher-order linguistic representations can be au-
tonomously grounded into the agents’ own sensorimotor and cognitive abilities.
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