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Abstract. Plaque analysis in IVUS planes needs accurate intima and
adventitia models. Large variety in adventitia descriptors difficulties its
detection and motivates using a classification strategy for selecting points
on the structure. Whatever the set of descriptors used, the selection stage
suffers from fake responses due to noise and uncompleted true curves.
In order to smooth background noise while strengthening responses, we
apply a restricted anisotropic filter that homogenizes grey levels along
the image significant structures. Candidate points are extracted by means
of a simple semi supervised adaptive classification of the filtered image
response to edge and calcium detectors. The final model is obtained
by interpolating the former line segments with an anisotropic contour
closing technique based on functional extension principles.

1 Introduction

IVUS clinical interest feeds development of image processing techniques address-
ing detection of arterial structures [1], [2], such as lumen/intima segmentation or
plaque characterization. However, although adventitia modelling is crucial for a
reliable plaque quantification, the topic has been hardly approached. Regardless
of low quality in IVUS images, adventitia detection adds the difficulty of a large
variety of descriptors, which include image edges points of maximum variance
(calcium) and tissue region segmentation. Deterministic strategies presented in
previous works on adventitia detection exclusively basing on contour extraction
are not reliable enough and need of either manual intervention [6] or laborious
special treatment of sequences [7]. We argue that a robust adventitia segmenting
algorithm should rely on learning strategies.

In this paper we address adventitia detection in two stages: a statistical ex-
traction of points laying on the adventitia and a deterministic recovery of a
closed model of the extracted points. At the first step, we define the quantities
that best characterize the adventitia, that is, in the framework of classification,
we should determine the optimal feature space of image descriptors. In such rep-
resentation space, the adventitia should lie on a region isolated from other image
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structures response, so that the problem of point selection reduces to determin-
ing the borders of such regions. Within this framework, there are several point
selection strategies. On one side, we have statistical approaches [13] searching
for a criterion to discriminate the target object representation in the feature
space. On the other side, we apply a deterministic criterion of image smoothness
to choose pixels achieving extreme values of the functions (filters) that deter-
mine the feature space. Still, even in this case, thresholding values should take
into account the probability distribution of the image response to the describing
filters. Therefore, whatever the decision criterion we adopt, the selection step
nature is essentially statistical. Because the selected set of points is prone to
be unconnected, contour completion is a compulsory second step. Usual tech-
niques rely on deterministic principles: active models (parametric [4], geodesic
[5] or region-based [14]) solve an energy minimizing problem and contour closing
techniques [8] base on interpolation/functional extension methods.

The deterministic-statistical strategy for adventitia detection we propose is
the following. For a better handling of the classifying problem, our feature space
reduce to adventitia and calcium detectors, the latter to discard sectors with
ambiguous information. In order to enhance significant structures while remov-
ing noise and texture response, we use a Restricted Anisotropic Diffusion [9]
(RAD). For adventitia points selection, we search for the feature space partition
(thresholds) achieving the best classification rate for a training set. For segment
closing we suggest using an Anisotropic Contour Closing (ACC) [8] that bases
on image local geometry for curve segment interpolation. Parametric B-spline
snakes yield the final compact explicit model.

The topics are presented as follows. In Section 2 we thoroughly describe the
way adventitia points are selected. Explanations about the main detection steps
are given in Section 3. Section 4 is devoted to validation of the method and
Section 5 to conclusions and further research.

2 A Deterministic Statistical Strategy

There are two main points in the segmentation process:

2.1 Statistical Selection of Adventitia Points

Since in an IVUS plane, the adventitia is a circular-wise structure (fig.1 (a)), we
work in polar coordinates (see Section 3.1 for details). Let AdvPol(i, j) denote
images in polar form (fig.1 (b)) with radius i = 1, . . . , Rmax, and angle j =
1, . . . , 360. The selection stage summarizes in the next steps:

Set of Descriptors. The feature space for adventitia detection we propose
reduces to the following two characteristics:

1. Horizontal Edges (X)
Since in the coordinate system chosen (fig. 1(b)), the adventitia layer is an
horizontal dark line, horizontal edges constitute our main descriptor (see fig.
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(a) (b)

Fig. 1. IVUS images in cartesian (a) and polar (b) coordinates

2). Edges are computed by convolving the image with the y-partial derivative
of a 2 dimensional gaussian kernel of variance ρ:

X = ey(i, j) = gy ∗ AdvPol for gy(x, y) = − y

2πρ4
e−(x2+y2)/(2∗ρ2)

Although intima and adventitia correspond to negative edges (fig.2), with a
suitable (intima removing) strategy [10], this detector achieves optimal ac-
curacy in the absence of calcium. Because at angles of calcium the adventitia
does not appear and the detection is misled towards the intima, we discard
those sectors. We base on calcium outstanding brightness to detect it by
means of:

2. Radial Standard Deviation (Y )
Striking brightness corresponds to an outlier of the pixel gray value in the
radial distribution. We measure it by means of the difference between the
pixel gray value and the radial mean. For each pixel (i, j), we define it as:

σ(i, j) = (AdvPol(i, j) − ν(j))2

where ν(j) is the radial (i.e. column-wise) mean of the polar image:

ν(j) =
1

Rmax

i=Rmax∑

i=1

AdvPol(i, j)

Point clouds in fig. 2(b) show the feature space corresponding to the images in
fig. 2(a). Adventitia corresponds to large negative X values an a small Y negative
range, while calcium yields in the extreme positive values of the pair (X,Y ).

Statistical Thresholding. In a classification framework, determining the
threshold values of the pair (X,Y ) that characterize each structure reduces to
finding a partition of the feature space separating adventitia and calcium from
other vessel structures. Supervised techniques learn regions enclosing most of the
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Fig. 2. Feature Space of Vessel Structures: X and Y responses, (a), and (X,Y) plane,(b)

training set, while ’ad-hoc’ unsupervised clustering bases on the class instances
structure given in a particular image. Although classical strategies exclusively
follow either a supervised or an unsupervised approach, we adopt an adaptive
criterion since mixed approaches [3] have proven to work better in IVUS images.

Because, in the feature space proposed, points of calcium correspond to ex-
treme values, a supervised approach based on the Mahalanobis distance would
work fine. However, by their spatial distribution, we have further reduced the
decision criterion to choosing the threshold for Y values achieving the best com-
promise between true and fake classifications. On the other hand, if we consider
all training images as a whole, adventitia points response presents a within class
variability significant enough as to discard a fixed supervised criterion. By us-
ing a gaussian mixture [13] to model the training set density function, we have
a misclassification error of 47.09% of fake detections for a test set. An unsu-
pervised clustering is not sensible either since low dimensionality of the feature
space introduces an overlapping between adventitia and other structures. What
we propose is using an image sensitive classification based on searching for ra-
dial outliers in X negative values. That is, the thresholding value corresponds
to the 5/6% percentile of the X values along each angle (columns in the polar
image). This simple image adaptive criterion drops misclassification to 42.18%
false positives corresponding to points on the intima layer.

2.2 A Restricted Diffusion Determined by Image Geometry

In order to smooth textures and strengthen response to the describing functions
given in (2.1), we evolve the polar image under the following structure preserving
filtering:
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Vector Field Original RAD

(a) (b) (c)
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Fig. 3. RAD smoothing for calcium (1st row) and adventitia (2nd row)

Restricted Anisotropic Diffusion (RAD). Most filtering techniques based
on image gray level modification [11] use the heat diffusion equation:

ut(x, y, t) = div(J∇u)

The time dependent function u is the family of smoothed images and J
is a 2-dimensional metric (i.e. an ellipse) that locally describes the way gray
levels distribute. The diffusion tensor J is thoroughly described by means of its
eigenvectors (ξ, η = ξ⊥) and eigenvalues (λ1, λ2). If the latter ones are strictly
positive, gray values spread on the whole image plane and the family u converges
to a constant image. On the other side if we degenerate J (i.e. we admit null
eigenvalues), then the final image [9] is a collection of curves of uniform gray level.
Smoothing effects depend on the suitable choice of the eigenvector of positive
eigenvalue. Let us consider a metric J̃ with eigenvalues λ1 = 1 and λ2 = 0, and
ξ the eigenvector of minimum eigenvalue of the Structure Tensor [12]. If u0 is
the image to be denoised, then the Restricted Heat Diffusion we suggest is given
by:

ut = div(J̃∇u) with u(x, y, 0) = u0(x, y) (1)

Figure 3 illustrates the way restricted diffusion works. Around the image
significant structures (calcium in fig.3(a)), ξ represents the tangent space to a
closed model of such structures. Meanwhile at noisy areas (textured tissue in
fig.3(d)), it is an irregular vector with random orientation. The result is that
gray levels homogenize along image regular level sets and solutions to (1) con-
verge to a smooth image that enhances the main features of the original image,
in the sense that their response to standard detectors is uniform. Figure 3 shows
the improvement of calcium (first row) and edges (second row) responses after
applying RAD. Background spurious edges due to noise in fig.3(e) have been
removed, in a similar fashion a gaussian smoothing would do, while edges cor-
responding to the vessel adventitia and calcium are continuous closed curves in
the RAD images of fig.3(c),(f).
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Fig. 4. Straighten adventitia layer procedure

Anisotropic Contour Closing (ACC). Heat diffusion has also the property
of smoothly extending a function defined on a curve in the plane, provided
that boundary conditions are changed to Dirichlet [15]. By using restricted heat
operators this property can be used to complete unconnected contours [8] as
follows. Let γ be the set of points to connect, χγ its characteristic function (a
mask) and define J̃ as in RAD, then the extension process given by:

ut = div(J̃∇u) with u|γ = u0 (2)

converges to a closed model of γ. Intuitively, we are integrating the vector field ξ,
that is, we are interpolating the unconnected curve segments along it. This fact
not only ensures convergence to a closed model, but also yields closures more
accurate than other interpolating techniques (such as geodesic snakes [5]).

3 Adventitia Modelling Steps

The characterization strategy of Section 2 serves to model the adventitia layer
in the following three step procedure.

3.1 Polar Coordinates Origin

Polar coordinates with a fixed origin at the center of the cartesian image present
two main artifacts produced by cardiac movement and the artery geometry. In
cartesian coordinates, heart movement induces a translation followed by a rota-
tion. This motion converts into an angular translation (rotation) and a radial
dynamic wave (translation). The latter is a main artifact for the set of descrip-
tors given in Section 2.1 and it is removed by taking as origin of coordinates
the mass center of the image (fig. 4(a)). In such coordinates, the adventitia still
presents a slight static wavy shape because image mass centers do not coin-
cide with geometric centers. We correct this deformation by means of a set of
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points extracted using the strategy described in Section 2. The impact of noise
is minimized by considering the average of the energy ey in the sequence tem-
poral direction (fig. 4(b)). In order to endow further continuity to the extracted
edges, we use the statistical distribution of their position in angular sectors of
the cartesian image. For each sector we only consider edge points within the
central percentile computed for a given number of frames (fig. 4(c)). The mass
center of the cartesian transform of the former radial values serves as geometric
center of the adventitia layer and is the origin of our polar transform. Fig. 4 (d)
shows the final polar coordinates.

3.2 Adventitia Selection

The classification of the filtered images given by RAD yields a calcium and ad-
ventitia masks. Small structures in the adventitia image are removed by applying
a length filtering, so that only segments of length above the 75% percentile are
kept. In order to remove intima points, we consider that an edge connected com-
ponent is on the adventitia layer if it corresponds to an edge of maximum radius
in a longitudinal cut of the sequence.

3.3 Adventitia Closing

We split interpolation of the selected curve segments into computation of an
implicit closed representation and explicit encoding with parametric B-splines.

For adventitia completion we will use ACC with the Structure Tensor defining
the vector ξ computed over the edge map used in the selection step. In order to
obtain models as accurate as possible, the vector ξ is weighted by the coherence
of the Structure Tensor:

coh =
(λ1 + λ2)2

(λ1 − λ2)2

where λ1 ≥ λ2 are the eigenvalues of the tensor. At regions where ξ is a contin-
uous vector, λ2 is closed to zero, so coh is maximum, meanwhile, at noisy areas,
since ξ is randomly oriented, λ1 compares to λ2 and coh ∼ 0. In this manner we
avoid wrong interpolations at side branches and sensor shadows sectors.

The final model discards angles presenting response to calcium and uses B-
splines to smoothly interpolate the adventitia at side branches and calcium sectors.

4 Results

Objective quantitative validation of the method has been based on the following
assessment protocol. A total number of 3300 frames extracted from 9 different
patients, including 4 sequences with calcium, have been analyzed. The measures
used to quantify accuracy of the automated detections are the mean and maxi-
mum distance error (in mm) and area differences (in percentages) between our
model and an expert manual segmentation. The sequences have been manually
segmented by 3 different physicians every 10 frames in order to analyze inter-
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observer variation. Figure 5 shows adventitia snake models for soft plaque (fig.5
(a), (d)), calcium (fig.5 (b), (e)) and at a side branch (fig.5 (c), (f)).

(a) (b) (c)

(d) (e) (f)

Fig. 5. Segmentations (a), (b), (c) for different plaque (d), (e) and at a side branch (f)

(a) (b)

(c) (d)

Fig. 6. Whisker Boxes for Automated Error and Inter-Observer Variation
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4.1 Statistical Measurements

Figure 6 shows whisker boxes for mean distance absolute errors and inter-
observer variations for soft plaque (1st row) and calcium segments (2nd row).
They summarize the statistics for each patient and for the total population at
the last box on the right. An analysis of the whisker boxes reflects robustness
of segmentations: the smaller the boxes are, the more reliable the method is.
First note that, lack of reliable information at large angular sectors, significantly
increases errors variability in calcified segments (fig.6(c), (d)), especially for man-
ual segmentations, due to the subjectivity of manually traced curves. Still, our
strategy is highly stable as, in most cases, graphics present a smaller variability
than manual models. Only subject 5 has a large variability, but, comparing, with
manual errors (fig.6(b)), we observe that this subject is also the one presenting
the largest box. Average relative and absolute errors in distances and percent-
age of area difference for the total number of patients (excluding the outlier
case 5) are summarized in table 1. Mean distances compare to inter-observer
variability and maximums, although above it, are less than 1% of the vessel
radius.

Table 1. Statistics on Errors

Max. Dist. (mm) Mean Dist. (mm) Area Dif.
Abs. Error Rel. Error (%) Abs. Error Rel. Error (%) (%)

INT-OBS. 0.560 ± 0.326 0.5 ± 0.28 0.284 ± 0.222 0.247 ± 0.203 8.294 ± 3.914

AUT. 0.655 ± 0.349 0.619 ± 0.4 0.273 ± 0.131 0.243 ± 0.120 10.287 ± 4.369

5 Conclusions

Using an integrated approach of statistic classification and anisotropic filtering
to detect the adventitia layer presented in this paper is a new trend in medical
imaging with a straightforward clinical application to plaque area and vessel
diameter measurements. The strategy proposed combines statistical classifica-
tion and deterministic energy based techniques into a two step algorithm. On a
first stage, a set of adventitia and calcium descriptors are proposed as a feature
space. A supervised analysis of such 2-dimensional space serves to determine
those regions enclosing target points. Feature extraction is optimized by apply-
ing a response regulating restricted diffusion operator to polar IVUS images.
The second step involves computation of a closed model of the selected curve
segments. An anisotropic contour closing is used for obtaining an implicit rep-
resentation that captures all geometric features.

Statistics show that automated errors are comparable to inter-observer vari-
ability as far as adventitia can be detected by means of the proposed descriptors.
Since accuracy exclusively relies on such features, our future research will focus
on adding some a priori knowledge on vessel tissue.
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