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Abstract. In this paper, a new technique (SPASM) based on a 3D-
ASM is presented for automatic segmentation of cardiac MRI image data
sets consisting of multiple planes with different orientations, and with
large undersampled regions. SPASM was applied to sparsely sampled
and radially oriented cardiac LV image data.

Performance of SPASM has been compared to results from other
methods reported in literature. The accuracy of SPASM is comparable
to these other methods, but SPASM uses considerably less image data.

1 Introduction

Nowadays, cardiac MRI and CT are increasingly used for cardiac functional
analysis in daily clinical practice. Both modalities yield dynamic 3D image data
sets. With CT, images are acquired in an axial orientation and for cardiac anal-
ysis, usually short-axis (SA) views are reconstructed from the axial image data.
With MRI, images can be acquired in any spatial orientation. Commonly used
orientations are short-axis and long-axis (LA) views (2-chamber and 4-chamber),
and radial stacks. The SA acquisitions consist of a full stack of typically 8 to
12 (parallel) slices covering the heart from apex to base. However, there is an
ongoing debate on potential improvement of functional measurements by using
LA views or radially scanned long-axis (RAD) image slices, since they appear
to give better volume quantification due to better definition of the apex and
base [1].

For quantitative analysis of cardiac function, typically a cardiologist or radiol-
ogist manually segments the images. After segmentation, measurements of global
and regional functional parameters can be performed, such as wall thickening
or wall thinning, LV volume and Ejection Fraction (EF). Due to the increasing
amount of data, the amount of work for manually delineating the image data
has become prohibitively large, and automated segmentation is highly desired.
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Recent work has shown that integration of prior knowledge into medical
image segmentation methods is essential for robust performance. Many recent
methods utilize a statistical shape model, and the seminal work of Cootes [2, 3]
on 2D Active Shape Models (ASMs)- and Active Appearance Models (AAMs)
has inspired the development of 3D ASMs [4, 5], 3D AAMs [6], 3D Spherical
Harmonics (SPHARM) [7], 3D Statistical Deformation Models (SDMs) [8,9,10,
11] and 3D medial representations (m-reps) [12]. However, all these statistical
models are only applicable to densely sampled 3D volume data, because the
modeling mechanism is either based on a dense volumetric registration [6, 8, 9,
10, 11] or the matching mechanism is based on a dense set of updates along
the model surface [4, 5, 12]. Therefore they typically assume a near isotropic
resolution and parallel image planes. The main goal of this work is to avoid the
need for these requirements on data sampling by developing a 3D active shape
model that:

– is applicable to sparsely sampled data sets without making assumptions
about voxel isotropy or parallel slices.

– is extensible to other modalities without retraining the shape model

To accomplish this, we present a 3D-Active Shape Model (3D-ASM) of the
cardiac left ventricle (LV). The underlying statistical shape model was based on
a 3D atlas that was constructed using non-rigid registration [9, 13]. Matching
of the model to sparse, arbitrarily oriented image data is accomplished through
a deformable mesh that enables propagation of image updates over the model
surface. Independence of a trained gray level model is achieved through a Takagi-
Sugeno Fuzzy Inference System (TSFIS) [14] for determining iterative model
updates based on relative intensity differences [4].

2 Background

Active Shape Models were introduced by Cootes et al. [2, 15] and consist of a
statistical shape model (often referred to as Point Distribution Model (PDM))
and a matching algorithm. The PDM is trained from a population of typical
examples of the target shape, and models shape variability as a linear combina-
tion of a mean shape, i.e. a mean set of (pseudo-)landmarks, and a number of
eigenvariations. For an elaborate introduction to ASMs, the reader is referred
to [2, 15,16].

2.1 Atlas Construction

A critical issue to achieve extension of PDMs to three and more dimensions is
point correspondence: the landmarks have to be placed in a consistent way over a
large database of training shapes, otherwise an incorrect parameterization of the
object class would result. The methodology employed to automatically achieve
this point correspondence of the heart was described in detail in [9]. The general
layout of the method is to align all the images of the training set to a mean at-
las (Fig. 1). The transformations are a concatenation of a global rigid registration
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Fig. 1. Atlas construction, a set of final global (Tg) and local (Tl) transformations can

take any sample shape of the training set, to the atlas coordinate system. On the left,

there is landmark propagation. Once the final global and local transformations are

obtained, they are inverted and used to propagate any number of arbitrarily sampled

landmarks on the atlas, to the coordinate system of the original samples

with nine degrees of freedom (translation, rotation, and anisotropic scaling) and a
local transformation using non-rigid registration. After registration of all samples
to the mean shape, the transformations are inverted to propagate a topologically
fixed point set on the atlas surface to the coordinate system of each training shape.
While it is still necessary to manually segment each training image, this technique
reliefs from manual landmark definition. The method can easily be set to build ei-
ther 1- or 2-chamber models; in this work we have used a 1-chamber model. To
build the statistical shape model, the auto-landmarked shapes are aligned using
Procrustes alignment [17]. Principal Component Analysis (PCA) can then be per-
formed on the remaining differences, which are solely shape related.

2.2 Matching Algorithm

The model described above was extended with a matching algorithm to apply
it to image segmentation. A key design criterion behind this matching approach
was applicability to data acquired with arbitrary image slice orientations, from
different modalities (MR and CT), and even to sparsely sampled data with
arbitrary image slice orientations. This implies that:

– only 2D image data may be used for updating the 3D model, to ensure
applicability to arbitrarily oriented sparse data

– generation of update points is performed based on relative intensity differ-
ence to remove the dependence on training-based gray-level models.

To accomplish this, the landmark points are embedded in a surface triangu-
lar mesh. During the matching, this mesh is intersected by the image planes,
generating 2D contours spanned by the intersections of the mesh triangles. To
remove dependencies on image orientation or limited resolution, model update
information is represented by 2D point-displacement vectors. The 2D update
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vectors located at the intersections of the mesh with the image slices are first
propagated to the nodes of the mesh, and projected onto the local surface nor-
mals. Scaling, rotation, and translation differences between the current state of
the model and the point cloud representing the candidate updates are eliminated
by alignment. The current model state is aligned with the candidate model state
(i.e., current model state with nodes displaced by the update vectors inferred
from image information) using the Iterative Closest Point algorithm [18]. Suc-
cessively, the parameter vector b controlling model deformation is calculated.
An adjustment to b with respect to the previous iteration is computed, using
both the candidate model state, x̂n+1, and the current model state, xn

b̂n+1 = bn + ∆b = bn + ΦT (x̂n+1 − xn) (1)

with xn representing the aligned current state of the mesh, and bn representing the
parameter vector describing the current shape of the model within the statistical
bounds. The vector x̂n+1 is the proposed model shape for the next iteration, and
b̂n+1 its shape parameter vector before statistical constraints have been applied.

2.3 Update Propagation to Undersampled Surface Regions

In densely sampled data, a 3D data volume can be reconstructed that enables
generation of a 3D update in each model landmark. However, in sparsely sam-
pled data containing large undersampled regions, a (dense) 3D data volume
cannot be reconstructed: interpolation between sparse image slices with differ-
ent orientations (e.g., a radial stack of cardiac LA views) is non-trivial, if at
all possible. In void locations, no information can be extracted from the image
data to contribute to a new model instance. However, for the calculation of new
model parameters, updates for the complete landmark set are required: setting
updates of zero displacement would fixate the nodes to their current position,
thus preventing proper model deformation.

Paulsen et al. [19] applied Gaussian smoothing of a mesh surface in combina-
tion with a Markov Random Field for restoration of point correspondences for an
ear canal ASM. During the deformation of a mesh to presegmented shapes of ear
canals and projection of the mesh nodes on the target shape, swapping of mesh
vertices could occur. Instead of the training stage, we apply a similar method
to the matching stage of SPASM. To overcome large void areas without update
information, we propose a node propagation mechanism that distributes the up-
dates from non-void update locations towards the void regions (see Fig. 2(a)).
This mesh update propagation is weighted with the geodesic distance to the
origin of the update using a Gaussian kernel (see Fig 2(b)):

w(x) = e−
‖x−ω‖2

2σ2 (2)

where w(x) is the weight at the location of the receiving node in the mesh x, ω
is the source node, ‖x− ω‖ is the geodesic distance to the origin of the update,
σ is the width of the kernel. Therefore, if multiple paths exist from source node
to receiving node, only the shortest path is used. Thus, a receiving node accepts
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(a) (b)

Fig. 2. (a) Propagation of single model updates at the intersection with an image

plane (solid line). Propagation from the update sources surrounded with a circle is

illustrated here. From a source, an update vector originates (short arrow). Updates are

first propagated (longer solid arrows) to the nearest nodes in the mesh (marked with

squares). Updates are further propagated to adjacent nodes weighted with a Gaussian

kernel. Secondary updates (dotted lines) and tertiary updates (dashed lines) are also

shown. (b) Gaussian propagation with σ = 4mm (right) of two model updates (left)

propagated updates from any source only once. To avoid propagation updates
over the entire surface, propagation is stopped when the geodesic distance ex-
ceeds a fixed threshold (χ ≡ 3σ). After all propagations stopped, a pruning of all
node updates is performed. Each node has a list of weighted contributions from
source nodes, and a list of weights that were used to calculate each contribution.
A total update per node is computed by summing over all contributions and
normalizing with the sum of the weights.

2.4 Edge Detection Using Fuzzy Inference

The mesh structure combined with the update propagation enables applications
to sparsely and arbitrarily oriented data. To apply the model to different modal-
ities without retraining, the matching algorithm should not employ any trained
intensity model to generate the updates. Instead, we have developed an update
mechanism based on a Takagi-Sugeno Fuzzy Inference System (TSFIS) [14],
which uses Fuzzy C-Means clustering (FCM) on the gray values of a 3D vol-
ume patch surrounding the current instance of the model (see Fig. 3(c)). This
approach has been described in detail in [4], and can be summarized as follows:

1. Input
For each intersection point between the mesh and each of the 2D images, an
image patch, centered in this point, is considered. Patch size was selected
such that multiple tissues were included in the patch.
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2. Sectorization
To overcome possible inhomogeneities in the gray value distributions due to
surface coil effects, the ventricle shape is divided in multiple sectors. Patches
are pooled following this sectorization, enabling application of different rule
sets for different anatomical sectors the LV.

3. Fuzzification
To locate tissue transitions, gray values are classified per sector based on
relative intensity differences between blood, myocardium and air using stan-
dard Fuzzy C-Means (FCM) [20] clustering. In this work, the classes in the
FCM are bright, dark, and medium bright, representing blood pool, air and
myocardium respectively.

4. Inference of model updates
For each pixel, three fuzzy membership degrees (FMDs) result from fuzzy
clustering, above. Based on the FMDs, a mesh update is inferred as follows:
(a) defuzzification for each pixel

if (gray value is bright) then pixel is blood pool
if (gray value is medium) then pixel is myocardium
if (gray value is dark) then pixel is air
However, pixels are only classified if they clearly belong to one tissue class.
If a pixel does not reach a preset minimum membership degree for any
tissue class (seeTable 1), it is not classified andnot considered for inference.

(b) transition inference
endocardial border: from outside to inside, find the first transition from
myocardium to blood pool
epicardial border:

a at the septum
from inside to outside, first transition from myocardium to blood pool

b at the lung, anterior and posterior wall
from inside to outside, first transition from myocardium to another
tissue

(a) (b) (c)

Fig. 3. (a) Radial cardiac image stack. (b) Radial slice acquired with the Turbo Field

Echo (TFE) protocol. (c) Classified set of image patches. (A=LV blood pool, B=RV

blood pool, C=myocardium, D=air, E=outside image patches)
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Table 1. Parameters of the SPASM and their values

Defuzzification [21] ASM

Air cut-off proport. (See [4]) -0.20 Modes of variation 60
Blood pool mem.ship thresh. 0.20 Max variation per mode 2σ
Myocardium mem.ship thresh. 0.05 Propagation
Air mem.ship thresh. 0.50 Gauss. kern. width σ (Eq. (2)) 8mm

3 Experimental Setup

3.1 Test Data and Protocol

To test the performance of the sparse data model, a group of 15 volunteers was
scanned with a Philips Gyroscan NT5 (1.5T) scanner, using the Steady State
Free Procession (SSFP) and the Turbo Field Echo (TFE) protocols. For all
scans and protocols, the QBody coil was used. A number of acquisitions with
different slice orientations were performed during breath hold in end expiration.
First, SA images were acquired, yielding a stack of typically 10-12 parallel image
slices. Next, a radial scan was performed comprising four LA image slices, with
inter-slice angle of 45◦ (see Fig. 3(a)). To avoid breathing-induced slice shifts,
every slice was acquired with the TFE protocol, acquiring all four slices in the
same breath hold. Image slices had a 2562 matrix and covered a field-of-view of
300 − 400mm, slice thickness and slice gap for the SA acquisitions were 8mm
and 2mm respectively. For the RAD TFE acquisitions, the slice thickness was
8mm. LV contours were manually drawn in all data sets. The manual contours
in the radial stack were used to compensate for slice shifts in the SA volume
due to differences in inspiration level. To assess inter-observer variability with
respect to manual delineation, contours on all subjects were drawn by two ob-
servers.

3.2 Matching

Initialization of the model in the target data set was performed manually. Initial
pose and scale were calculated from manual delineations on the image data from
the SA acquisition. Due to the rotational symmetry of the model with respect
to the long-axis and the sectorization, special attention was paid to initialize
the model such that the myocardial sectors corresponded to the approximately
correct anatomical location in the image data.

Parameter settings for the membership thresholds for the FIS used to define
model updates at locations where the model is intersected by image planes were
taken from previous work [21]. Best settings for the propagation parameters were
determined in an exhaustive search on a computer cluster with 50 processors,
using point-to-surface (P2S) error measures of the final state of the model with
respect to manual segmentation as criterion for evaluation. The optimal settings
for the parameters are listed in Table 1.
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3.3 Quantitative Evaluation

To quantify the performance of the SPASM on the sparse radial image data,
point-to-surface (P2S) error measurements were performed (see Fig. 5. Manually
delineated surfaces in the SA image data were selected as gold standard. In
addition, a comparison was performed between volumes of the final model states
and volumes derived from the manual segmentations on the SA acquisition data.

(a) (b) (c) (d)

Fig. 4. Final segmentation result of one of the subjects in the test population. (a-d)

Result shown on slice 1 through 4, respectively

Fig. 5. Point-to-surface error measurement. Distances are measured from points on

the automatic surface (solid) to the manually segmented surface (mesh). Note that the

largest errors are made at the apical region

4 Results

Results from the tuning of the update propagation parameters are shown in Ta-
ble 1. Results from the P2S evaluations between the final model instance and

1 These are the best obtained results by Lötjönen et al [11] with a 4-chamber ASM
based on a probabilistic atlas. Other models were built using normalized mutual
information, landmark probability distribution, PCA, and ICA.

2 Mitchell et al. compute errors of the automatic segmentation results slightly different
than in this work. Mitchell et al compute (2D) distances in the image slices along lines
perpendicular to the centerline between automatic and manual segmented contours.
This does not guarantee shortest point-to-curve or point-to-surface distances, and
may thus overestimate errors with respect to the method used in this paper and by
Lötjönen et al.
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Table 2. Point-to-surface distances measured per subject between manual and au-

tomatic surfaces in mm, averaged over the total population (14 subjects). Maximum

distances are maximum distances per subject averaged over the total population.(all

values are average ± standard deviation in mm)

Average Maximum
endocard epicard endocard epicard

Inter observer 1.27 ± 0.30 1.14 ± 0.29 4.34 ± 0.88 3.93 ± 0.79
Lötjönen et al. (aut. ref.) [11]1 2.01 ± 0.31 2.77 ± 0.49 n.a. n.a.
Mitchell et al. [6]2 2.75 ± 0.86 2.63 ± 0.76 n.a. n.a.
Kaus et al. [5] 2.28 ± 0.93 2.62 ± 0.75 13.82 12.35
SPASM 2.24 ± 0.54 2.83 ± 0.78 11.1 ± 2.54 15.7 ± 5.06

Table 3. Volume regression numbers. Volumes were calculated per subject (14 sub-

jects), separately for endocardial volume and epicardial volume. Volume calculated

from SA reconstruction was taken as the reference volume (ground truth)

Correlation coefficient (R)
endocardium epicardium

Manual volume (radial image slices) 0.74 0.71
Automatic volume 0.78 0.74

manual segmentations in SA views are presented in Table 2. Correlation coef-
ficients between manual volumes from SA views and automatic volumes from
the final model instance are shown in Table 3. For comparison, the correlation
coefficients between manually segmented volumes from SA views and from RAD
views are presented in Table 3 as well. In the results, one subject was excluded
due to a mismatch for almost all the runs in the tuning process on this subject.
A final segmentation result of one of the subjects is shown on all four slices in
Figure 4. Matching for Nmax = 100 iterations took 727 ± 134 seconds (mini-
mal 522 seconds, maximal 915 seconds) on a 2.8 GHz Xeon computer machine
running Linux Redhat 9.

5 Discussion and Conclusion

In this paper SPASM is presented, a new technique based on a 3D-ASM, that is
able to automatically segment cardiac MRI image data sets consisting of multiple
planes with different orientations, and having large undersampled regions.

Because SPASM does not include a statistical gray level model, it is poten-
tially applicable to both MRI and CT data sets without fully retraining the
intensity model. For segmentation, it does not require image slices with equal
orientations as present in the training data. SPASM was applied to radially ori-
ented cardiac LV image data, which contains undersampled regions with larger
sampling density at the apex than at the base.
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Performance of SPASM was evaluated against manual delineations on an SA
data set of the same subjects. In the SA data set, the heart can be displaced
between different slice acquisitions, due to different breath hold levels. Although
this displacement is minimized by acquisition during end expiration, correction
of slice positions was necessary.

The maximum errors presented in Table 2 are mainly observed at the apical
regions (see Fig. 5). This is due to the closed apex in SPASM, while the manual
segmentation at the apex is open.

Performance of SPASM has been compared to results from other methods
reported in literature [6, 11, 5] (see Table 2). The accuracy of SPASM is com-
parable to these other methods. However, SPASM is the only method that can
be applied to a set of arbitrarily oriented and sparsely sampled image slices: it
was applied to only four image slices, whereas the other models required a stack
of 8-12 parallel slices, yielding comparable accuracy. Segmentation errors of all
methods are substantially larger than the inter-observer variability (see Table
2). This may be caused by too rigid statistical constraints on the allowed defor-
mation of statistical shape models in general. Further evaluation of SPASM is
ongoing with respect to the minimally required sampling density, different com-
binations of LA and SA image slice orientations, and the sensitivity of the final
segmentation results to model initialization.
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