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Istituto di Matematica Applicata e Tecnologie Informatiche,

Via Ferrata 1, 27100 Pavia, Italy
colli@imati.cnr.it

2 Dipartimento di Matematica, Universitá di Milano,
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Abstract. Large scale simulations of an anisotropic and heterogeneous
cardiac model in three dimensional myocardial blocks are presented. The
Monodomain tissue representation used includes orthotropic anisotropy,
intramural fiber rotation and homogeneous or heterogeneous intramural
Luo-Rudy I membrane ionic models. Simulations of the entire QT inter-
val for epicardial and endocardial pacing show that the effect of intra-
mural heterogeneity on the dispersion of the action potential duration
is mostly discernible along the epi- endocardial direction, while in the
orthogonal directions the dispersion patterns have the same qualitative
features of the homogeneous model.

1 Introduction

During a normal heartbeat, the ventricular transmembrane potential displays
two main phases having different time and space scales: depolarization and
repolarization. Repolarization exhibits a short rapid downstroke, a plateau
and final, slower downstroke. While the excitation phase has been exam-
ined in considerable detail both experimentally and numerically much less is
known concerning the recovery phase (see [8, 16, 7, 4]). Both phases are in-
fluenced by the fiber direction through which excitation is spreading and
by the anisotropy of the intra and extracellular media. The study of these
phases can be greatly enhanced by the use of computational models based
on systems of differential equations. Previous studies considered simulations
of the entire excitation and repolarization sequences mainly in 1D cables
[10, 15, 17, 14] and 2D sheets, see e.g. [4]; only few simulation studies of a
normal beat in 3D slabs are available in the literature, see e.g. [7, 9], even
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if reentry dynamics have been largely studied. This is mainly due to the
high computational costs involved in large scale simulations of a full car-
diac cycle in three dimensions, which require adaptive and parallel numeri-
cal techniques. In [5], we implemented an efficient parallel simulator and per-
formed several numerical experiments in 3D on parallel architectures with
both the Monodomain and the Bidomain models. In [6], a detailed compari-
son between the excitation and the repolarization sequences elicited by a lo-
cal stimulus showed that the Monodomain model is adequate for a quali-
tative investigation of the repolarization sequences and of the patterns dis-
played by the action potential duration (APD) distributions. Recently, the
electrophysiological consequences of the intramural heterogeneity of the APD
have generated considerable interest and some controversy. A subpopulation
of cells (M cells) has been discovered, displaying a longer APD than epi-
cardial and endocardial ventricular cell types, mainly in “in vitro” experi-
ments, see e.g. [18]. On the other hand, high degrees of intramural hetero-
geneity have not been detected in “in vivo” studies of normal hearts, see
e.g. [1], where it is noted that the intercellular coupling in cardiac tissue
is a factor affecting APD modulation. However, controversy still exists over
the extent to which heterogeneity in repolarization is expressed across the
normal ventricular wall. In this work, we use our parallel simulator to in-
vestigate the influence of intramural heterogeneity of the intrinsic properties
of the cellular membrane on the repolarization sequences and on the APD
dispersion.

2 Mathematical Models

From a macroscopic point of view, the cardiac tissue is conceived as the su-
perposition of two averaged continuous media, the intra and the extracellular
medium, whose anisotropy is characterized by the conductivity tensors Di(x)
and De(x). These tensors are anisotropic related to the direction of the cardiac
fibers that rotates counterclockwise (CCW) from epicardium to endocardium
and to the laminar organization of the heart muscle (see [11]). Therefore, at
any point x, it is possible to identify a triplet of orthonormal principal axes
al(x), at(x), an(x), with al(x) parallel to the local fiber direction, at(x) and
an(x) tangent and orthogonal to the radial laminae respectively and both be-
ing transversal to the fiber axis. Denoting by σi,e

l , σi,e
t , σi,e

n the conductivity
coefficients measured along the corresponding directions, then the conductivity
tensors Di(x) and De(x) related to orthotropic anisotropy of the media are given
by: Di,e = σi,e

l alaT
l + σi,e

t ataT
t + σi,e

n anaT
n .

The intra and extracellular electric potentials ui, ue in the Bidomain model
are described by a reaction-diffusion system, coupled with a system of ODEs for
ionic gating variables w ∈ RQ and for the ions concentration c ∈ Rp. Denoting
by v = ui − ue the transmembrane potential and by Itot = −Di∇ui − De∇ue

the total current flowing in the two media, then, for an insulated cardiac domain
H, (v, ue, Itot, w, c) satisfy the system:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cm∂tv − div(DeD
−1Di∇v) + Iion(v, w) − div(DeD

−1Itot) = 0,
∂tw − R(v, w) = 0, w(x, 0) = w0(x),
∂tc − S(v, w, c) = 0, c(x, 0) = c0(x),
nT Dm∇v = 0, v(x, 0) = v0(x),
Itot = −Di∇ui − De∇ue,
−div(D∇ue) = div(Di∇v), −nT D∇ue = nT Di∇v,

where ∂t = ∂ /∂t, cm = χ∗Cm, Iion = χ∗iion, with χ the ratio of membrane area
per tissue volume, Cm the surface capacitance and iion the ionic current of the
membrane per unit area. Disregarding applied currents, from the current conser-
vation law, we have divItot = 0. It is well known that, assuming equal anisotropy
ratio of the two media, the Bidomain system reduces to the Monodomain model.
If we disregard the source term div(DeD

−1Itot), then a Monodomain model is
derived as a Relaxed Bidomain system without assuming that the two tensors
are proportional. Therefore, we obtain the anisotropic Monodomain model by
solving first a single parabolic reaction-diffusion equation for the transmembrane
potential v with the conductivity tensor given by Dm = DeD

−1Di and coupled
with the same gating and concentration system

⎧
⎪⎪⎨

⎪⎪⎩

cm∂tv − div(DeD
−1Di∇v) + Iion(v, w) = Iapp,

∂tw − R(v, w) = 0, w(x, 0) = w0(x),
∂tc − S(v, w, c) = 0, c(x, 0) = c0(x),
nT Dm∇v = 0, v(x, 0) = v0(x),

and then solving an elliptic problem for the extracellular potential

−div(D∇ue) = div(Di∇v), −nT D∇ue = nT Di∇v.

We remark that the first equation is coupled with the system of ordinary differen-
tial equations in w, c and uncoupled from the elliptic equation in ue; the system
uniquely determines v, while the potential ue is defined only up to an additive
time-dependent constant related to the reference potential, chosen to be the
average extracellular potential in the cardiac volume by imposing

∫

H
ue dx = 0.

3 Numerical Discretization

The cardiac volume H is discretized by a structured grid of hexahedral isopara-
metric Q1 elements. A semidiscrete problem is obtained by applying a standard
Galerkin procedure and choosing a finite element basis.

The time discretization is performed by a semi-implicit method using for the
diffusion term the implicit Euler method, while the nonlinear reaction term Iion

is treated explicitly. The implicit treatment of the diffusion terms is essential in
order to allow an adaptive change of the time step according to the stiffness of
the various phases of the heartbeat. The ODE system for the gating variables is
discretized by the semi-implicit Euler method and the explicit Euler method is
applied for solving the ODE system for the ions concentration. We decouple the
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full system by solving the gating and ions concentration system first (given the
potential vn at the previous time-step)

wn+1 − ∆t R(vn,wn+1) = wn, cn+1 = cn + ∆t S(vn,wn+1, cn)

and then solving for vn+1

A∆tvn+1 = M
[cm

∆t
vn − Ihion(vn,wn+1, cn+1) + Im,h

app

]
,

where A∆t = cm

∆t M + A, with A the stiffness matrix, M the mass matrix and
Ihion, I(m,e),h

app the finite element interpolants of Iion and Im,e
app , respectively. We

employed an adaptive time-stepping strategy based on controlling the trans-
membrane potential variation ∆v = max(vn+1−vn) at each time-step, see [12].
The linear system at each time step in the discrete problems is solved iteratively
using the PETSc parallel library [2] and a preconditioned conjugate gradient
solver with block Jacobi preconditioner and ILU(0) on each block. The parallel
machines employed are an IBM SP RS/6000 Power4 with 512 processors Power
4 - 1300 MHz, (www.cineca.it), and a Cluster Linux with 72 Xeon 2.4 GHz
processors. More details on the parallel solver can be found in [5].

4 Results

The cardiac domain considered is a cartesian slab of dimensions 5 × 5 × 1 cm3

modeling a portion of the left ventricle. A structured grid of hexahedral isopara-
metric Q1 elements of size h = 0.1 mm was used in all computations. In the
numerical tests, we have used the following parameters: χ = 103 cm−1, Cm =
10−3 mF/cm2, {σe

l , σ
i
l , σ

e
t , σ

i
t} = {2, 3, 1.35, 0.315} mΩ−1cm−1 and σe

n =
σe

t /2, σi
n = σi

t/10. These conductivity coefficients of the orthotropic anisotropy
have been calibrated so that the associated propagation velocities (θl, θt, θn) of
ideal plane wavefronts can be conservatively estimated as (60, 25, 10) cm sec−1,
respectively. These estimates are in accordance with the histological findings of
[11]) supporting the idea that the cardiac tissue anisotropy could be orthotropic.
The fibers rotate intramurally linearly, proceeding counterclockwise (CCW) from
epicardium (−45o) to endocardium (75o), for a total amount of 120o. In this pa-
per, we consider the phase I Luo-Rudy (LR1) model (see [12]), since it is one of
the complex gating systems mostly used in recents 3D simulations. The initial
conditions are at the rest and we apply an appropriate stimulus on a small area
at the center of the slab (3 or 5 mesh points in each direction). Other than po-
tentials and gating variables, at each time-step, we compute also the activation
(ACTI) and the repolarization (REPO) times, defined as the times when the
action potential (AP) crosses −60 mV during the upstroke and the downstroke,
respectively; hence, the APD is defined as the difference APD = REPO - ACTI.
. When homogeneous intrinsic properties of the cellular membrane are assumed,
the slow inward current in the LR1 model is reduced by a factor 2/3, yield-
ing an APD of about 266 msec. We also consider simulations with intramural
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heterogeneity of the cellular membrane. In order to reproduce qualitatively the
APD transmural behaviour measured in wedge preparations, see [18], Fig. 4 and
[13] Fig. 5, we performed 1D simulations using a suitable subdivision of the wall
thickness with different membrane properties. More precisely, we subdivided the
slab into four layers of thickness (0.1, 0.1,0.7 0.1) cm, respectively, proceeding
from the endo- to epicardium and by multiplying the slow inward current Isi

of the LR1 model by (7.66, 8.66,7.86.6.66), corresponding to intrinsic APDs of
(295,324,301,266), respectively. Hence we assume that sub-endocardial and mid-
myocardial layers display a longer APD than the epi- and endo-cardial cells.
The piecewise constant line in Fig. 1 (dashed) displays the intrinsic intramural
APD distribution of the cells. We first consider a one-dimensional model having
uniform conductivity equal to the intramural cross-fiber conductivity σt with ho-
mogeneous or heterogeneous intrinsic properties of the cellular membrane. In the
homogeneous case (left panel of Fig. 1), the excitation and recovery fronts reach
a quasi-stationary propagation, apart from the acceleration during the starting
phase of the propagation and also during the subsequent collision with the en-
docardium. The total times for activation and recovery are about 39 and 32
msec, respectively, and the APD dispersion amounting to about 7 msec, mostly
concentrated around the stimulus and collision sites. Notice that repolarization
moves slightly faster than activation in the homogeneous model.

In the heterogeneous case (central panel of Fig. 1), the activation time results
practically unchanged, while we have a higher repolarization time of about 54
msec. The APD dispersion, amounting to 21 msec, is three times larger than
the homogeneous case. Due to current conduction, the intrinsic APD differences
between the four cell layers are strongly smoothed and reduced. We have also
applied an endocardial stimulus to the heterogeneous 1D model (right panel
of Fig. 1). The sequence of excitation results the same as the one elicited by
the epicardial stimulus, while the repolarization process is completed in 19 msec
and the APD dispersion amounts to 28 msec. Therefore, an endocardial stimulus
in the heterogeneous case brings about a significant shortening of the recovery
sequence and a higher APD dispersion than an epicardial stimulus. In other
words, epicardial stimulation increases the dispersion of the recovery time. We
remark that these simulations are limited to an action potential elicited by a
single stimulus, a condition that emphasizes the APD dispersion, since it is well
known that a periodic stimulation, at an increasing rate, results in shortening
of APD with a reduced dispersion.

We consider now 3D simulations of the excitation and repolarization pro-
cesses elicited by an epicardial central stimulation in an orthotropic slab, homo-
geneous in Fig. 2, heterogeneous in Fig. 3. In both cases, we show the spread
of excitation (ACTI), the sequence of recovery (REPO) and the APD on the
whole slab (bottom) and on 5 plane sections parallel to the epicardial face, lo-
cated at z = 0 (endo), 0.25, 5, 0.75, 1 (epi) cm, respectively. We now briefly
describe some common features of the homogeneous and heterogeneous models.
The spread of excitation and recovery exhibit an acceleration in the direction
across fibers and dimple-like inflections appear in the isochrone profiles, due to
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Fig. 1. Simulations along a fiber with conductivity coefficient σt of the intramural

slab thickness. Activation, repolarization times and APD are displayed by dashed-

dotted, continuous and dashed lines, respectively. Activation time has been shifted by

the value of the repolarization time at the stimulus site. The piecewise constant line

indicate the intrinsic APD of the cell layers. Left and Central Panels are related to an

epicardial stimulation assuming homogeneous and heterogeneous intrinsic properties of

the cellular membrane, respectively; the Rigth Panel refer to an endocardial stimulation

for the heterogeneous case

the faster propagation of the fronts in deeper layers where the fiber direction
rotates CCW relatively to the upper planes. The recovery isochrones on the
epi, intramural and endocardial planes exhibit a somewhat smoother shape and
slightly faster propagation compared with the excitation sequence. In particu-
lar, epicardial repolarization propagates across fibers faster than the excitation
sequence, yielding a progressively APD shortening across fibers, as shown by
Figs. 2,3. The APD patterns in both models are characterized by the following
features: i) The APD distributions on the epicardial and intramural planes, ex-
hibit a maximum located at the epicardial stimulation site or at the intramural
points firstly reached by the excitation front, respectively; the level lines, sur-
rounding these maxima, are elongated along the local fiber direction and display
dog-bone shaped profiles. This indicates that APD decreases more rapidly when
moving away from the center of the face in the cross-fiber direction than along
fibers. ii) On the intramural sections (from subepicardial to midwall ones), two
finger-shape valleys of decreasing APD values occur. These narrow valleys of
relative APD shortening are located in the regions where excitation isochrones
exhibit a dimple-like inflections. iii) On the endocardial plane the APD distribu-
tion displays a saddle point at the endocardial breakthrough; the APD increases
reaching a maximum when moving away from the breakthrough point in a di-
rection parallel to the endocardial fibers of 75o CW. On the other hand, on
the transmural sections displayed in Fig. 4 we see considerable differences be-
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Fig. 2. Homogeneous tissue, orthotropic Monodomain slab 5×5×1cm3. Isochrone lines

of the depolarization time (first column ACTI ), repolarization time (second column

REPO) and action potential duration (third column APD) on 5 horizontal sections
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Fig. 4. Homogeneous tissue, orthotropic Monodomain slab 5 ×5 × 1cm3. Isochrones

of depolarization (first column ACTI ), repolarization (second column REPO) times,

action potential duration (third column APD) displayed on the transmural diagonal

section perpendicular to the epicardial face and to the epicardial fiber direction. Left

(right) three Panels refer to the homogeneous (heterogeneous) slab. Reported below

each panel are the maximum, minimum and step in msec of the displayed map

tween the homogeneous and heterogeneous case. In both models the excitation
isochrones on the transmural section show the presence of returning pathways,
i.e. pathways that, starting from the epicardial stimulation site, proceed toward
the endocardium but, about midway of the wall thickness, return toward the epi-
cardial side. These pathways accelerate the propagation in epicardial areas where
the excitation proceeds mainly across fibers. Return pathways of repolarization
appear in the homogeneous slab whereas more complex recovery isochrone pro-
files are present in the heterogeneous model. In the heterogeneous model, the
APD pattern shows parallel level lines stretched horizontally as opposed to the
complex transmural APD pattern observed in the homogeneous slab. In planar
sections parallel to the epicardial face, excitation and repolarization sequences
and the spatial APD patterns elicited by endocardial pacing shared the same
qualitative features as those described above for epicardial pacing in both the
homogeneous and heterogeneous slab.

5 Conclusions

Our results show that, in spite of the homogeneous cellular membrane properties
(i.e., all individual cells have the same intrinsic transmembrane action potential),
the anisotropy of the media produces a spatial variation of the APD throughout
the slab and the APD distribution exhibits anisotropic patterns strongly corre-
lated with the excitation wave front motion and the front-boundary collisions.

The introduction of an intramural variation of the intrinsic cellular APD
yields excitation and repolarization sequences and APD patterns which, on lay-
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ers parallel to the epicardium, unexpectedly share the same main anisotropic
spatial features encountered in the homogeneous slab, although recovery times
and APDs exhibit a different range of values. The differences between the ho-
mogeneous and heterogeneous model remain confined transmurally for the repo-
larization and APD patterns while the excitation sequence does not change.

Anisotropic spatial variations of the APD along and across fibers were ob-
served experimentally in 2D myocardial laminae in e.g. [8] and on the epicardium
of dog hearts [3, 16]. We remark that simulation studies and experimental data
have shown that excitation return pathways, proceedings toward the pacing level,
have been observed for pacing sites located at any intramural level, from epi-
to endo-cardium. Our simulated results show that clear repolarization return
pathways are expected for the homogeneous slab.

In experimental studies in exposed and isolated dog hearts, the observed
transmural dispersion of APD in the left ventricular wall is 30 msec at most,
see e.g. [1]. Our unpublished experimental results confirm these findings, since
during ventricular pacing with cycle length of 350 or 400 msec we observed 15-
20 msec APD dispersion. In these preparations, the repolarization sequence was
qualitatively similar to the activation sequence. When the pacing site was epi-
cardial, both the excitation and the the repolarization ”wave front” returned
toward the epicardium in a transmural plane perpendicular to the epicardial
fiber direction. However, further studies are needed to determine whether these
findings occur consistently in varying experimental conditions. In this study, we
have considered simulated beats by a single stimulus, a condition that empha-
sizes the APD difference and dispersion. Thus, our results show that transmural
heterogeneities of APD cannot be detected from the epicardial pattern of the
APD distribution.
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