
A Method to Reconstruct Activation Wavefronts
Without Isotropy Assumptions Using

a Level Sets Approach

Felipe Calderero1, Alireza Ghodrati2, Dana H. Brooks2, Gilead Tadmor2,
and Rob MacLeod3

1 Department of Signal Theory and Communications,
Technical University of Catalonia (UPC), Barcelona, Spain

2 Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA, USA

3 Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI),
University of Utah, Salt Lake City, Utah, USA

Abstract. We report on an investigation into using a Level Sets based
method to reconstruct activation wavefronts at each time instant from
measured potentials on the body surface. The potential map on the epi-
cardium is approximated by a two level image and the inverse problem
is solved by evolving a boundary, starting from an initial region, such
that a filtered residual error is minimized. The advantage of this method
over standard activation-based solutions is that no isotropy assumptions
are required. We discuss modifications of the Level Sets method used to
improve accuracy, and show the promise of this method via simulation
results using recorded canine epicardial data.

1 Introduction

Inverse electrocardiography (ECG) estimates the electrical activity of the heart
from potential measurements on the body surface. Because of smoothing and at-
tenuation in the body, the measured potentials on the body surface can obscure
significant detail about the heart’s electrical activity. Thus conventional electro-
cardiography fails to detect heart problems in many situations [1]. A possible
improvement is to model the electrical properties of the torso volume conductor
and attempt to explicitly estimate features of cardiac electrical behavior; this is
known as inverse electrocardiography. This problem is considered by many re-
search groups [1, 2, 3, 4, 5]. However, the inverse problem of ECG is ill-posed and
we need to add constraints to get a stable solution. The single most important
feature of the heart’s electrical activity is the activation wavefront, which passes
through the heart muscle once per cardiac cycle and triggers, after some delay,
the mechanical contraction of the muscle. The time that this wavefront passes
through any given point in the heart is called the activation time. The problem
of finding activation time has been studied using both activation-based models
[3, 4, 5] and potential-based models [6].
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The advantage of activation-based models is the reduction of the unknowns
to the arrival time of the wavefront at each point on the epicardial and endocar-
dial surfaces. Potential-based models instead treat the value of the potential at
each point on the relevant surface at each time instant as a free variable. How-
ever, activation-based models depend on isotropy / homogeneity assumptions
and a fixed shape of the temporal waveform in order to form a tractable forward
model. Potential-based models are less restrictive but imply a high-order param-
eterization and thus require considerable smoothing (regularization). A method
that is used frequently in inverse ECG is Tikhonov regularization, which indeed
smooths the solution because of the type of 2-norm constraints employed. It is
difficult to include the physical and geometric constraints imposed by the cen-
tral physiological feature, namely wavefront behavior, except via indirect and
somewhat coarse models [7, 8].

Our goal here is to investigate the possibility of estimating the activated
region on the epicardium at each time instant using a Level Sets based inverse
solution [9, 10]. The forward model we use is potential-based, with a very simple
two-level model to characterize the potential distribution given the wavefront.
The potential advantage is that we maintain some benefits of activation-based
solutions without requiring isotropy assumptions.

In this work we use two constraints. The first assumes that the potentials
on the heart can be effectively approximated by two values, representing the
activated and inactivated regions respectively. This assumption is of course a
rather crude approximation in both the activated and non-activated regions,
and ignores the transition area between the two regions. But since we are look-
ing for activation time this assumption may be useful, and we follow similar
assumptions used in activation-based solutions [3, 4, 5]. The second constraint
is a spatial constraint applied by the Level Sets method. Level Sets were first
proposed in [9] to solve inverse problems when a constant-value inhomogene-
ity is enclosed in a constant-value background by evolving a boundary, starting
from an initial region, such that the residual error is minimized. Modifications
of the original Level Sets method were needed to improve reconstruction quality.
New constraints were added to the Level Sets evolution to improve the shape of
the recovered wavefront and to enhance sensitivity to regions of the epicardium
whose effect on the residual error was otherwise too weak. In addition, we filtered
the residual error to reduce the effect of the error introduced by the two-level
quantization on the wavefront evolution.

Section 2 introduces the Level Sets Method applied to the inverse problem
of electrocardiography. We first present the formulation of linear inverse prob-
lems in terms of Level Sets, as proposed in [9]. Second, we discuss practical
problems implementing this method for inverse electrocardiography. In Section
3, we report on improvements obtained by adding new spatial constraints to
the evolution and by filtering the residual error. Finally, Section 4 discusses
our results, summarizes our conclusions, and gives some suggestions for future
research.
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2 Level Sets Method

2.1 Level Sets Formulation

The Level Sets Method, as described in [10], is a curve/surface evolution tech-
nique, based on a function whose dimension is one higher than the boundary of
interest. The zero level set of this function is iteratively guided by a well designed
speed function to evolve to an unknown desired contour. It naturally provides
an opportunity for geometrical and spatial constraints. A particular set of in-
verse problems, known as obstacle reconstruction problems, can be formulated
in terms of Level Sets [9]. In these problems, the solution consists of an unknown
region, simply or multiply connected, with some characteristic that differs from
the surrounding background. The solution only has two possible reconstruction
values: one for the unknown region and another for the background. Applying
Level Sets, the zero level set will evolve to the boundary of this region. Hence,
Level Sets evolution adds geometrical and spatial constraints, without any a pri-
ori assumption about the connectedness of the region. Besides that, the Level
Set boundary can split and merge naturally and provide multiple connectivity
without any additional complexity. On the other hand, it turns a possibly linear
problem into a decidedly nonlinear problem (although non-linearity is common
to all activated-based inverse methods in ECG). In addition, there is no the-
oretical proof on convergence (only practical results, see [9]), and the solution
depends on the algorithm initialization.

We use the approach described in [9]. Let φ, be the function whose level set
φ = 0 is taken as the contour of interest (here the activation wavefront location).
The general Level Sets evolution equation is:

φt + F |∇φ| = 0 (1)

where F is the speed in the outward normal direction and φt is the time derivative
of φ. The key issue in using Level Sets in most problems is determining the speed
function F . In inverse problems F should be defined such that the solution moves
toward minimizing the norm of the residual [9].

Our forward model for ECG is:

y = Ax + n (2)

where A is a forward matrix, obtained here by the boundary element method
(BEM), x holds the heart potentials, y holds the body surface potentials and n
is white Gaussian noise. It is shown in [9] that the residual error is monotonically
descending if the speed is defined as follows:

F = −AT (Ax − y). (3)

This evolution can be seen as a flow in the steepest descent direction of the
residual error ||Ax − y||22.
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Thus, the Level Sets evolution equation for inverse problems at iteration n+1
is:

φ(n + 1) = φ(n) − ∆t · (AT (A · x(n) − y) · |∇φ(n)|) (4)

where x is initialized and then updated in each iteration as the zero level of φ.
To approximate the inverse problem in electrocardiography as an obstacle

reconstruction problem formulated in terms of Level Sets, we divide the heart
surface in two regions: activated and inactivated areas. The potential in each
area is assumed to be constant with two different values, obtained independently
for each time instant from a dataset of cardiac mapping ECG data. The zero
level set is evolved to estimate the boundary between activated and inactivated
regions.

2.2 Level Sets Practical Implementation and Initial Results

An inverse ECG Level Sets implementation has to overcome some practical prob-
lems. First, an accurate heart geometry model is needed. In this work we used the
Utah Cardiovascular Research and Training Institute (CVRTI ) Heart Geome-
try Model (a 3D, non-uniform triangulated grid). We further interpolation the
surface to improve the model, and thus, the Level Sets solution, removing large
triangles in the superior region and near the apex and some non-differentiable
points in the original.

Another practical problem was the initialization of the Level Sets function,
because of the solution’s dependence on the starting value. Our solution ensured
that the activated area was included inside the initial guess, and we centered it
on the activated area recovered by Tikhonov regularization at each time instant.
To obtain the activated area from the Tikhonov solution, the potential histogram
was computed and the middle point of its two first maximums was used as a
threshold (ensuring that the maxima were different enough that one belong to the
activated potentials and the other to the inactivated set). Finally, we chose the
value of evolution step size to ensure that the evolution didn’t stop prematurely,
but rather remained sensitive to the curve boundaries.

We first applied the Level Sets method in this straight-forward manner. We
used an epicardial electrocardiogram dataset recorded during tank experiments
by our collaborators at CVRTI in Utah [12]. From these epicardial potentials we
computed the potentials on the torso surface using the linear model in Eq. 2,
and added Gaussian white noise to achieve a 30dB signal to noise ratio (SNR). A
realistic homogeneous torso volume conductor forward model matrix was com-
puted by the BEM method with dimension 711 × 620: 620 nodes in the heart
geometry model mapped to 711 electrodes on the torso.

The results obtained were not satisfactory. Although the algorithm provided
some information about the location of the activated area, the shape of the wave-
front was not geometrically reasonable. A lack of geometric constraints (causing,
for instance, non-physiological aberrations such as inactivated nodes inside the
depolarized region) and, a lack of sensitivity (few activated nodes, in general, on
the side and back of the heart) were obvious.
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3 Improvement of the Level Sets Method Performance

To improve on these results, we made several modifications to the standard
Level Sets algorithm. The first two modifications were rather straight-forward
attempts to reinforce the spatial constraints and improve the sensitivity of the
Level Sets approach. First, we adopted a “restart” method, reinitializing the
Level Sets function every 10 iterations to avoid excessive deformation. In ad-
dition, to improve the sensitivity, a new constraint was added, which at each
restart pushed the zero level set inwards. In other words, assuming that the next
activated region would be inside the current activated region, the zero level set
was forced to evolve even when the error was small at a specific node. Specifi-
cally, the Level Sets function was rebuilt as equal to a signed distance function
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Fig. 1. Top panel: Time signal of the pacing site. Bottom: Activated and inactivated

areas of the original data, and of the Level Sets and thresholded Tikhonov reconstruc-

tions. Time instants 50, 60 and 70ms, as seen on the top panel’s waveform, are shown
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Fig. 2. Same format as bottom panel of previous figure, except that two views (Ante-

rior, top, and Posterior, bottom) are shown for the same time instant, 110ms (using

the time markings on the waveform shown in previous figure), later in QRS

(a) (b) (c)

Fig. 3. (a) Front view of the residual error of the Tikhonov solution. (b) Front view of

the residual error induced only by the two-level approximation of the original potentials.

(c) Front view of Level Sets residual error. Time instant 70ms.

from each node to a zero level set. We shrank the zero level set first by simply
taking the inward values at the border between positive and negatives points as
the zero level set for the reinitialization.

In Fig. 1 and 2, we show the inverse solutions for different time instants of
the electrocardiogram dataset described in Section 3. The time waveform at the
pacing site is shown in the top panel of Fig. 1. The bottom panel of this figure
contains maps at three time instants. Fig. 2 shows the same comparison for an-
terior and posterior views at a later time instant in QRS. From these results,
we can conclude that Level Sets solution, after these modifications, is slightly
better than Tikhonov in terms of shape information, capturing the anisotropy of
the propagating front. This improvement is especially visible in the earlier time
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(a) (b) (c)

Fig. 4. (a) Front view of the first singular vector of the matrix U , from the Singular

Value Decomposition: A = UΣV T . (b) Front view of the second singular vector of the

matrix U . (c) Front view of the third singular vector of the matrix U . Time instant

70ms
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Fig. 5. Original activated and inactivated areas, Level Sets and filtered Level Sets

(k = 3) activated and inactivated areas. Data from ECG dataset, time instant 90ms

from front and side views, respectively

instants, when the propagating front has a characteristic elliptical shape. The
solution also preserves some physiological behavior of the depolarization wave-
front: closed activated area and no isolated activated or inactivated nodes inside
inactivated or activated regions respectively. In this sense, Tikhonov fails for
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later time instants, as seen in Fig. 2. In addition, Tikhonov is more sensitive to
threshold level variation than Level Sets, due to its smoothing. A small threshold
variation can cause a large change in the area of the Tikhonov-estimated acti-
vated region, while the Level Sets solution would hardly change. On the other
hand, the Level Sets method was rather insensitive to some regions, especially in
the back and sides of the heart. The Tikhonov solution behaved slightly better
in those areas, as it can be seen in the posterior view of Fig. 2.

Studying this effect, we noted that the residual error was highly spatially
correlated, unlike the Tikhonov error. This is due to the systematic error intro-
duced by the two-level approximation. We illustrate this effect for one time in-
stant in Fig. 3 [13]. We can see that the Level Sets residual error varies smoothly
and slowly in space, so that it is mainly a low spatial frequency phenomenon.
We decreased the effect of this error on the inverse solution by minimizing a
filtered version of the residual error, where the low spatial frequencies of the
residual error were removed. The idea is to concentrate the Level Sets iterations
on matching the components of the data that are in a subspace orthogonal to
these low-frequency components, since this is the error due to mismatch of the
activation region rather than simply the effect of the thresholding itself.

In Fig. 4 [13], the three singular vectors of A corresponding to the three largest
singular values are shown as torso maps. We observe that the dominant residual
error components are similar to these first singular vectors. Hence, we can apply
the Level Sets method by projecting the residual error onto the subspace spanned
only by the singular vectors corresponding to indices higher than some small
value k, i.e., calculating the speed function of the Level Sets evolution equation
with a filtered version of the forward matrix, where the first k singular values of
A have been set to zero.

In Fig. 5 we show the results for one time instant when we filter the residual
to remove components in the subspace spanned by the first 3 singular vectors.
We note that the activated area, especially in the right view, more closely ap-
proximates the original. We believe this is because of enhanced sensitivity to
regions of the heart farthest from the anterior electrodes due to removal of the
low-frequency threshold-induced residual error.

4 Discussion, Conclusions, and Future Work

The purpose of this work was to develop and evaluate an initial attempt at a
Level Sets method that can be applied to non-invasive electrocardiography to
reconstruct activation wavefronts on the epicardium. The principle attractive
features are that we avoid any isotropy assumptions and develop a framework
within which we can use spatial and geometric information that the physiol-
ogy of the problem might provide. Essentially, our method is close to standard
activation-based methods in terms of how we model the source. However, those
methods depend on isotropy assumptions that Level Sets skips because it calcu-
lates a coarse model of epicardial potentials and uses that in a potential-based
forward model.
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As we describe, we introduced some modifications to improve the initial per-
formance of the Level Sets algorithm. Adding new geometrical constraints in-
creased spatial consistency and sensitivity. We also introduced a high-pass fil-
tering of the residual error to remove part of the two-level quantization error,
which helped to improve the sensitivity in the side and back areas of the heart.
The geometrical constraints are visible in the results: evolution of the boundary
and a closed activation area. Moreover the anisotropy of the wavefront is gen-
erally captured better than with a thresholded Tikhonov solution. The shape
of the activated area recovered is better at some time instants than others but
generally reflects the anisotropy induced by fiber direction. Finally, the method
here uses the actual data to obtain the threshold levels; an independent method
needs to be developed to estimate these values without a priori knowledge or to
allow them to remain constant in time.

We are currently looking at several remaining aspects of this study. The
residual filtering approach we used was just a first attempt, and we believe that a
more careful study can lead to a more effective implementation. In addition there
is a tradeoff between enhanced sensitivity and loss of robustness when filtering
more singular vectors; thus we need an algorithm to estimate an appropriate
number of singular vectors to remove. An idea of primary interest is to introduce
more geometric physiological information into the model by incorporating fiber
direction information, even from a different heart. The Level Sets speed function
provides a perfect vehicle to include this a priori information. Relaxing the
quantization of the heart potentials by defining a transition area (dividing the
epicardial surface in three regions instead of only two), and/or modeling this
region as an analytical function such as an arc-tangent [3], and anchoring the
evolution around breakthrough’s calculated using the Critical Point Theorem [4],
are some other approaches to better incorporate known physiological constraints.
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