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Abstract. Magnetocardiographic (MCG) mapping measures magnetic fields 
generated by the electrophysiological activity of the heart. Quantitative analysis 
of MCG ventricular repolarization (VR) parameters may be useful to detect 
myocardial ischemia in patients with apparently normal ECG. However, manual 
calculation of MCG VR is time consuming and can be dependent on the 
examiner’s experience. Alternatively, the use of machine learning (ML) has 
been proposed recently to automate the interpretation of MCG recordings and to 
minimize human interference with the analysis. The aim of this study was to 
validate the predictive value of ML techniques in comparison with interactive, 
computer-aided, MCG analysis.  

ML testing was done on a set of 140 randomly analysed MCG recordings 
from 74 subjects: 41 patients with ischemic heart disease (IHD) (group 1), 32 of 
them untreated (group 2), and 33 subjects without any evidence of cardiac 
disease (group 3). For each case at least 2 MCG datasets, recorded in different 
sessions, were analysed.  

Two ML techniques combined identified abnormal VR in 25 IHD patients 
(group 1) and excluded VR abnormalities in 28 controls (group 3) providing 
75% sensitivity, 85% specificity, 83% positive predictive value, 78% negative 
predictive value, 80% predictive accuracy This result was for the most part in 
agreement, but statistically better than that obtained with interactive analysis. 

This study confirms that ML, applied on MCG recording at rest, has a 
predictive accuracy of 80% in detecting electrophysiological alterations 
associated with untreated IHD. Further work is needed to test the ML capability 
to differentiate VR alterations due to IHD from those due to non-ischemic 
cardiomyopathies. 

1   Introduction 

Magnetocardiographic mapping measures magnetic fields generated by the 
electrophysiological activity of the heart, and is a promising imaging technology 
developed for the rapid, non-invasive detection of ventricular repolarization 
abnormalities.  MCG data are usually mapped, simultaneously or sequentially, from 
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33-60 locations above the frontal torso, using superconducting quantum interference 
devices (SQUIDs).   

Previous research1 has shown that, compared to standard ECG, multichannel MCG 
provides non-invasive evaluation of cardiac electrogenesis, with similar investigation 
time, but higher spatial and temporal resolution.  

The diagnostic potential of MCG mapping ranges from three-dimensional 
electroanatomical localization of arrhythmias, to the identification of VR 
abnormalities in patients with myocardial ischemia and non-diagnostic ECG1,2.  

The analysis of VR from MCG mapping can be done visually and/or 
quantitatively. Quantitative VR parameters can be calculated from the ST interval 
and/or the T wave3-10. Interactive computer-aided analysis of MCG parameters, 
especially of the ST interval, can be influenced by low signal to-noise ratio (SNR) and 
by the examiner’s experience. Therefore, automatic analysis procedures are needed to 
speed-up the procedure and to minimize human input.  

The aim of this study was to validate automatic classification of 
Magnetocardiograms using a Machine Learning (ML) approach, developed under the 
NSF SBIR phase I grant #0232215 and described by Szymanski et al11. The 
performance was compared to computer-aided interactive analysis of MCG mapping, 
independently performed by two expert cardiologists.  

As the ST-segment has usually a low SNR in magnetocardiograms, whereas the T-
wave is most likely to show primary abnormalities due to ischemia and has a high 
SNR, ML was applied to the magnetic field data of the T-wave only.  

2   Methods 

2.1   Instrumentation and Data Pre-processing 

MCG mapping was performed at rest in supine position, with a 36-channel MCG 
system (CardioMag Imaging Inc., USA)12 based on DC-SQUID sensors coupled to 
second order gradiometers (baseline: 50-70 mm) with pick-up coils diameter of 19 
mm and sensor-to-sensor spacing of 40 mm. The distance between the measuring 
sensors, kept at liquid helium temperature and arranged in a horizontal plane, and 
the flat bottom surface of the cryostat is 19 mm2.  With a built-in automatic 
electronic noise suppression system (ENSS), the instrumentation reaches a 
sensitivity of about 20 fT/Hz½ at 1 Hz, with balance stability of gradiometers better 
than 0.01%. 

All MCG signals and one reference 12-lead ECG were simultaneously recorded for 
90 seconds, at a sampling rate of 1 kHz, in the bandwidth from DC to 100 Hz.  

All recordings were performed without electromagnetic shielding, in a room fully 
equipped for cardiac catheterization and intensive care. Digital low pass filter at 20 
Hz was used before ML was applied. To eliminate stochastic noise components, all 
signals were averaged.  For automatic classification, data from a time window 
between the J point and T peak were used.  
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Fig. 1.  MCG signal processing 

2.2   Signal Processing 

To eliminate stochastic noise components, all signals were averaged using the 
maximum of the R peak as a trigger point (Figure 1).  

VR was analyzed according to specific preset parameters, and two ML scores 
automatically calculated for each subject resulting in an MCG classification of either 
normal or abnormal (Figure 2). 

The tool used for ML is called Direct Kernel partial least squares (DK-PLS). Partial 
least squares (PLS) are one of the standard analysis methods in QSAR and chemo 
metrics14. Kernel PLS (K-PLS) is a recently developed nonlinear version of PLS, 
introduced by Rosipal and Trejo15. K-PLS is functionally equivalent to support vector 
 

 

Fig. 2. Time intervals (indicated by T3 and T4 bars) from which the two ML scores were 
calculated  
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machines (SVMs) and is currently used to predict binding affinities to human serum 
albumin. The difference between K-PLS and DK-PLS is that the feature (data) kernel 
matrix is used in K methods while this matrix is replaced by the (non-linear) kernel-
transformed matrix in DK methods16. DK-PLS reached a convincing performance in a 
preliminary preclinical test11. The algorithm was trained on data from 73 cases 
considering MCG patterns of ischemic and non-ischemic patients. Two diagnostic 
scores were calculated: 

1) The “ML extrema” score, based on wavelet transformed MCG patterns of the 
upslope of the T-wave as shown in Figure 2a (abnormal if > 50). 

2) The “ML Dipole” score, based on parameters delivered by the solution of an 
inverse problem. This approach assumes that the electrical processes in the heart 
during repolarization can be approximated by a so-called Effective Magnetic 
Dipole (EMD), (see Figure 2b, abnormal if > 34). 

2.3   Validation 

To validate ML automatic analysis, two expert cardiologists independently performed 
interactive computer-aided analysis on the same data sets.  The interactive analysis 
of MCG mapping was based on: 

! The T-wave “extrema” Magnetic Field (MF) dynamics analysis”, which 
calculates cardiac magnetic field parameters, in a moving time window of 30 
msec duration during the T- wave. Said time window starts at MF strength of 
1/3 of that at the Tpeak and ends at the Tpeak. For each millisecond a color 
contour plot is calculated from the MF and displayed as shown in figure 1. In 
each map two points are marked indicating the extreme values of the 
magnetic field. The point indicating the location of the maximal magnetic 
field strength is labeled “+” (“+ pole”), and the point indicating the location 
of the minimal magnetic field strength is labeled “-” (“- pole”). Parameters 
calculated within this time interval are: 

1) Change of angle between + pole and - pole (abnormal if  > 45°); 
2) Change of distance between + pole and - pole (abnormal if  > 20 mm); 
3) Ratio between the strength of + pole and - pole (abnormal if  > 0.3)10; 

! The Quantitative Dipole score (Q score), also based on analysis of EMD 
parameters calculated at 20 points of the T-wave in the same T3-T4 interval 
used for the ML Dipole (Figure 2 b), (abnormal if > 0) 8, 9.  

! The magnetic field gradient (MFG) orientation (  angle angle), computed at two 
time-intervals: 1) the integral of the second quarter from the J-point to the T-
wave apex, representing ST-segment, and 2) the T-wave apex3. The MF α 
angle was then calculated as the angle between the direction of the largest 
gradient and the patient’s right-left line. The α angle values were considered 
normal when in the range between 0-90° (Figure 3). 
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Fig. 3. Example of normal MFG orientation (α angle), at the second quarter of the ST interval 
(a) and at the apex of the T-wave (b) 

2.4   Patients 

All MCG studies were performed, after written informed consent, mainly on 
outpatients, as an additional simultaneous procedure during ECG control.  

ML testing was done on a set of 140 randomly analysed MCG recordings 
belonging to 74 subjects:  

41 patients (Group 1), 26 males and 15 females; 26 with previous MI and 22 with 
stable class 1 or class 2 angina. Patients were classified as ischemic based on clinical 
criteria, and on results of exercise ECG testing, nuclear stress testing and/or coronary 
angiography (CA). CA was available in 31 (29 abnormal). Nuclear stress testing   was 
available in 33 (abnormal in 30). In 9 patients MCG was performed after CA and 
successful therapy with PTCA.  In the 10 patients without CA, nuclear stress testing 
was abnormal.  

All patients were chest pain free at the time of testing, and 27 (67.5%) had a 
normal or non-specific 12-lead ECG. As 9 patients were studied only after CA, the 32 
patients who were studied with MCG before CA were also analysed as a separate 
group (Group 2).  

33 subjects, without any evidence of cardiac disease at clinical history, normal 
physical examination and echocardiography, were included as normal controls 
(Group 3). The mean age of the investigated subjects was 64.2  ± 9.9 years for group 
1 versus 44.4 ± 9.3 years for group 3 (p<0.0005).  

For each case at least 2 MCG datasets, recorded in different sessions were analysed. 

2.5   Statistics 

Data are reported as mean ± S.D. Statistical analysis was performed with the unpaired 
two-tails Student t-test, to evaluate the significance of differences among males and 
females parameters. A value of p  < 0.05 was considered significant. 
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3   Results 

3.1   Automatic Classification of MCG 

ML classification of MCG mapping was highly reproducible. In Group 1, the 
combination of two ML scores, obtained by considering “pathological” any patient 
with at least one of the two scores abnormal, gave: 61% sensitivity, 85% specificity, 
83% positive predictive value, 64% negative predictive value, and 72% predictive 
accuracy  (Table 1). However, if only patients of Group 2 were considered (Table 2), 
the predictive accuracy of the combined ML scores increased to 80%. 

Table 1. ML results of 41 IHD patients (Group 1) vs 33 Normals (Group 3) 

 ML extrema ML Dipole 
Combination of  

2 ML scores 

41 IHD patients 46,4 ± 36,1 46 ± 32,3 - 

33 Normals 12,9 ± 17,2 8,8 ± 16,3 - 

p value < 0.001 < 0,001 - 

Sensitivity 41,4 54 61 

Specificity 94 88 85 

Positive PV 89 85 83 

Negative PV 56 60 64 

Predictive Accuracy 65 69 72 

Table 2. ML results of 32 IHD patients (Group 2) vs 33 Normals (Group 3) 

 ML extrema ML Dipole 
Combination of the 

2 ML scores 

32 IHD patients 53,6 ± 36,8 53,5 ± 31 - 

33 Normals 12,9 ± 17,2 8,8 ± 16,3 - 

p value < 0.001 < 0,001 - 

Sensitivity 47 63 75 

Specificity 94 88 85 

Positive PV 88 83 83 

Negative PV 65 71 78 

Predictive Accuracy 71 75 80 

3.2   Validation by Comparison with Interactive Quantitative Analysis 

For comparison the predictive values of computer-aided interactive estimate of VR 
parameters (T-wave extrema MF dynamics analysis, Q score analysis and MFG 
orientation) were calculated. 
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Fig. 4. Examples of typical MF distribution and of average values of MF field gradient 
orientation (α angles), computed during the ST interval and at the T-wave peak, are shown for 
Group 1 patients and for controls (Group 3) 

 

Fig. 5. Example of interactive computer-aided analysis of the MF dynamics during the 
ascending phase of the T-wave (vertical bars on the ECG). In A, abnormal pattern of an IHD 
patient. In B, a normal subject is shown for comparison 
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An example of typical MF distribution during the ST interval and at the T-wave 
peak in IHD patients and in normal controls is shown in Figure 4, where the average 
values of MF gradient orientation (α angles) are also included. 

An example of MF dynamics analysis is shown in Figure 5. 
Interactive computer-aided quantitative estimate of VR parameters (Table 3) was 

in good agreement with the results of automatic classification, although none of the 
calculated parameter reached the same predictive accuracy obtained with a 
combination of the two ML scores, especially in Group 2 patients. 

Table 3. Interactive computer-aided analysis  

 41 IHD patients (Group 1) 32 IHD patients w/o PTCA (Group 2) 

%  
ST  

α angle 
T-wave 

extrema * 
Q 

 score 
ST 

 α angle 
T-wave  

Extrema * 
Q  

score 

Sensitivity 69 22 39 46 56 81 25 47 50 66 

Specificity 70 100 91 79 79 70 100 91 79 79 

PPV 74 100 84 73 77 72 100 83 70 75 

NPV 64 51 55 59 59 79 58 64 62 70 

Pred Acc 69 57 62 61 66 75 63 69 65 72 

* T-Wave extrema parameters: Change of angle between + pole and - pole; Change of 

distance between + pole and – pole; Ratio between the strength of + pole and - pole (see 

page 4). Pred Acc: Predictive accuracy. 

4   Conclusions 

The possibility of accurate, rapid, and no risk diagnosis of ischemia in an emergency 
room setting may have a great impact on health care. Truly ischemic patients would 
benefit from a significant reduction of time for diagnosis while in non-ischemic 
subjects unnecessary admissions and more invasive testing could be avoided. 

This study was performed in an unshielded hospital room fully equipped for 
intensive cardiac care and interventional cardiology. The MCG data and mapping 
quality was sufficiently high to detect ventricular repolarization abnormalities in IHD 
patients. 

Automatic classification of rest MCG recording provided quick detection 
of electrophysiological alterations associated with ischemic heart diseases, with 
sensitivity ranging between 60 and 70%, specificity of about 85% and predictive 
accuracy higher than 70%, thus better than that of rest ECG, which was 50 % in 
Group 1 patients (Table1). Interestingly, when patients successfully treated with 
PTCA before MCG mapping were excluded from the statistic evaluation (Group 2), 
the sensitivity, specificity, and predictive accuracy improved to 75%, 85%, and 80%, 
respectively (Table 2). Thus, although the number in investigated patients is limited, 
our results confirm that, as for patients with acute chest pain and normal or non-
specific 12-lead ECG and normal troponin8-10 magnetocardiographic imaging is a  
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promising alternative with the capability of detecting repolarization abnormalities at 
rest in patients presenting with class 1 and 2 angina, in the absence of significant ECG 
alteration. The predictive accuracy of the ML method was comparable with that 
obtained blindly with interactive computer-aided analysis by two expert cardiologists, 
or even better in untreated patients (Group 2) (Tables 2–3).  

In order to improve the predictive accuracy of the method one could incorporate 
so-called domain knowledge into the machine learning process. Information about the 
patient, e.g. history, risk factors, results from other tests, could be considered as 
additional parameters if available.  An interesting challenge will be the automatic 
differentiation of magnetocardiographic abnormalities due to different cardiac 
diseases by solving a non-ordinal multi-class classification problem13. 
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