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Abstract. Segmentation of the fetal heart can facilitate the 3D assessment of the 
cardiac function and structure. Ultrasound acquisition typically results in drop-
out artifacts of the chamber walls. This paper presents a level set deformable 
model to simultaneously segment all four cardiac chambers using region based 
information. The segmented boundaries are automatically penalized from 
intersecting at walls with signal dropout. Root mean square errors of the 
perpendicular distances between the algorithm’s delineation and manual 
tracings are within 7 pixels (<2mm) in 2D and under 3 voxels (<4.5mm) in 3D. 
The ejection fraction was determined from the 3D dataset. Future work will 
include further testing on additional datasets and validation on a phantom. 

1   Introduction 

Congenital heart disease affects about 8 in every 1000 births [1] and its signs can be 
diagnosed with prenatal echocardiography [2]. As with the adult heart, functional 
volume estimation of the left ventricle provides quantitative information about the 
state of the myocardium. However, in the fetus the blood flow in both sides of the 
heart is allowed to mix and so both ventricles are important for clinical assessment. 
One important application of fetal cardiac segmentation is for measurement of the 
absolute size of the chambers. This can be used for evaluation of the function of the 
heart, compromised either by cardiac malformations or by non-cardiac diseases such 
as immuno-haemolysis. In this condition the maternal immune system can kill fetal 
blood cells and so the fetal heart grows larger to compensate. 

The prenatal heart has very thin chamber boundaries particularly in the areas 
consisting of the atrial septum, the membranous segment of the ventricular septum, 
and the valvular leaflets. Often the resolution of the ultrasound beam perpendicular to 
its axis is insufficient to resolve these structures and so these walls suffer from signal 
dropout and appear as holes in the endocardium. These dropouts can also be 
misleading for clinical diagnosis since the fetal heart contains septal holes which 
normally close at birth. Artefacts such as these complicate the automated functional 
volume quantification of each chamber for determining useful cardiac indices such as 
ejection fraction. In some cases it is difficult for fetal cardiologists to manually trace 
the endocardiac structures because of the missing image greyscale information. 



124 I. Dindoyal et al. 

 

Automated volume quantification in fetal cardiology is relatively new since it is 
difficult to acquire datasets without significant shadowing. Fetal body and cardiac 
motion artefacts are most noticeable when using slice-reconstruction 3D methods. 
Recent advances in volumetric acquisition have allowed the fetal heart to be imaged 
in 3D with considerably reduced motion artifacts [3], [4]. 

In the past Navaux and co-authors have published their work on segmentation of 
the 2D fetal heart by classification via neural networks [5], [6]. There has been 
relatively little use of deformable models to segment fetal cardiac data – only two 
papers in the literature currently exist:  Lassige et al [7] used a level set snake to 
measure the size of the septal defects in echocardiographic images. This snake had a 
constant speed term that frequently overshot boundaries. In 2003 Dindoyal and co-
workers presented an explicit 2D Gradient Vector Flow (GVF) snake algorithm with 
rigid body motion constraints to segment and track ventricles in 2D motion-gated 
fetal cardiac data [8]. Recently Esh-Broder et al [3] have collected over 20 3D fetal 
heart datasets. In this study the ejection fraction was estimated from the manual 
segmentation as well as comparison of both left and right ventricular volumes.  

Section 2 outlines the proposed method to automatically segment the fetal cardiac 
chambers of two echocardiographic datasets after placement of manual seed points; 
one dataset was acquired from conventional 2D ultrasound slices and the other by 
Live 3D. The next section presents a selection of the images segmented with manual 
tracings for comparison as well as measurement of the accuracy. We then conclude 
the work and present further directions for study. 

2   Method 

2.1   Data Acquisition 

3D acquisition of the fetal heart by serial slices was carried out by an online motion 
gated method pioneered in our group [9] using paired Acuson scanners (25 frames per 
second and a square pixel spacing of 0.26mm). True 3D acquisition of the fetal heart 
was performed with the Live 3D ultrasound scanner from Phillips [4]. This imaging 
system is capable of capturing about 24 volumes per second and can output a 
resampled cubic voxel resolution of 1.47mm3 for the penetration depth required. 
Although the 2D images from the paired scanners were stacked in 3D with motion 
gating, there was parts of the volume with noticeable motion artifacts that caused 
misalignment between slices. For this reason the volume dataset from the Acuson 
scanners was treated as separate 2D images. The Live 3D dataset did not suffer from 
this problem due to the volumetric acquisition method. Motion gating was 
unnecessary for this dataset since it was acquired with the probe kept immobile during 
no apparent fetal body movement. 

2.2   Level Set Deformable Model 

The level set method is defined implicitly compared to many adaptations of the snake 
model first introduced by Kass in 1988 [10] which track explicit markers. Level set 
methods can behave like the explicit case by chopping the level set function at the 
zero level (refer to Fig. 1). These implicit models have attractive properties in image 
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segmentation such as automatic interpolation of the propagating front for irregular 
shaped boundaries and the ability to handle topological changes with ease. 

 

Fig. 1. Illustration of the level set function and zero levels for a 2D image 

The generic level set equation for image processing can be written in the form 

 (1) 

where φ is the level set function and F is a problem dependent speed function. 
The level set used in this paper was solved using a first order iterative scheme 

because of its low computational complexity 

 1n n nNFϕ ϕ ϕ+ = + ∆  . (2) 

where n is the iteration number and ∆N is the timestep. Upwind differencing schemes 
were used where appropriate to maintain numerical stability around the propagating 
front as well as a small timestep.  A form of narrow banding was used to speed up the 
level set propagation and to prevent nucleation of new fronts. The front is tracked on 
each iteration and its intersection with the edge of the narrow band can be predicted. 
When this occurs a new band is grown from the current zero level front by isotropic 
diffusion. 

The front was manually initialized as a circle or sphere in each chamber. Each 
chamber contained a different snake which was stored in separate memory space to 
the others. This was implemented to prevent the level set merging of neighboring 
fronts. The distance transform for each snake was defined as a cone with negative 
values inside the front and positive elsewhere. This can be computed very quickly for 
such simple geometry in a single pass by computing the distance between voxel 
positions from the radius of the front. For non primitive initializations it may be 
necessary to use more general efficient distance transforms such as chamfering. The 
usual criterion of normalizing the distance transform was enforced. 

Sarti et al 2002 [11] developed a level set algorithm with mean curvature and edge 
flow diffusion properties to segment datasets with missing boundaries. In this paper a 
new term was added to this evolution equation proposed by Sarti to incorporate region 
growing based on local deviations from the interior and exterior regions using the 
image part of the Mumford Shar (MS) functional. This term is useful in images 
without clear boundaries [12]. In the implementation proposed here the MS force is 
heavily penalized by curvature and inter-snake collision detection to reduce inter-

Fϕ ϕ= ∇�  . 
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chamber leakage. This is shown in equation (3) where Sarti’s geometric model for 
boundary completion is enclosed in curly braces. 

Where g = (1+|∇GF |)-1 is an edge detector that returns a value between 0 and 1, 
with G denoting Gaussian filtering and F is the image. In the implementation for this 
paper image prefiltering to reduce noise was unnecessary for the volumetric data 
since the images were already at very low spatial resolution, but was necessary for the 
2D sliced data due to the high speckle content.    

In equation (3) ϕ is the level set function, I is the current voxel intensity under 
investigation. µi, and µo are the means of the internal and outside regions of the dataset 
defined by the level set front. ξ is a function that tests if any of the enclosed regions 
from individual snakes overlap. If there is overlap ξ returns 1 and 0 otherwise. β is a 
function to penalize edge advection in the presence of local edges and is defined as β = 
exp(-γ |∇GF |).  In Sarti’s original formulation β is a unitary constant.  The factors α, 
γ, λ1, λ2, κ  are empirically determined weighting coefficients for the respective terms. 

In Sarti’s equation the first term is standard mean curvature flow weighted by an 
edge stopping coefficient. It serves to regularize the curve where the data is sparse 
and propagation can be further reduced by the presence of edges.  The advection term 
drives the front towards image edges that have been defined from a pre-computed 
edge diffusion field. The main weakness of this term is the presence of many edges at 
various strengths as is often found in sonography. Edge flow by advection is heavily 
dependent on the quality of the edgemap and so may fail to propagate the front 
towards the edges sufficiently to overcome the mean curvature flow. 

The proposed term aims to provide some expansion or contraction forces 
dependent on the local tissue type in the absence of a strong edge field, e.g. when the 
front is in homogeneous regions. Unlike the constant advection term in Lassige’s 
algorithm [7] this force can propagate the front in either direction according to the 
position of the boundaries and so would be less prone to overshoot. The MS factor 
models the foreground and background of the image and tries to minimize its energy 
by separating these two regions. The foreground was estimated from a small 
circle/sphere placed inside the chamber prior to evolution and the background was 
assumed to be the remainder of the dataset. Since the appropriate λ1 and λ2 could 
potentially vary significantly between datasets, the images were normalized to reduce 
the dependence on these coefficients. 

The exponential factor contains a second mean curvature component and its 
presence is mostly required where there is extensive shadowing to the chamber. The 
collision detection component is heavily penalizing and tends to stop two intersecting 
fronts immediately upon contact so that a steady wall is formed where the two 
interfaces meet. Although open valves cause blood from atria and ventricles to mix 
cardiac function in clinical use is measured by treating each chamber in isolation. 
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From preliminary experiments it was discovered that for the collision to occur at the 
right place (where part of the chamber wall has suffered signal dropout due to the 
beam resolution); the two snakes should be started from as close to the centers of their 
respective chambers as possible. This prevents one snake from invading the adjacent 
chamber due to its arrival at the missing boundary first. 

3   Results and Discussion 

Fig. 2 illustrates the effect of the added term to Sarti’s equation. Without the presence 
of a clear edgemap from the data Sarti’s snake fails to propagate appreciably towards 
the desired boundary. To overcome this restriction we used the bidirectional MS term 
in conjunction with Sarti’s algorithm which yielded a closer segmentation to the 
expert’s delineation. We used manual expert tracings by a fetal cardiologist as a gold 
standard. Full interactive segmentation of the images proved to be both challenging 
and tedious in particular for areas with partial volume artifacts of the papillary 
muscles and the missing atrial septum. 

 

 

Fig. 2. Segmentation by the algorithm proposed in this paper (left) and segmentation by Sarti’s 
algorithm (middle). The white contours are automatically generated and grey denotes manual 
tracings. Atria appear at the top of the image and ventricles at the bottom. The right image 
shows the edgemap  

 

Fig. 3. Effect of the collision penalization term (enabled in left image and disabled in right 
image) 
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Fig. 3 shows the effect of the collision penalization term. The left image shows the 
atrial boundary reconstructed at approximately the location of the true boundary and 
the right image illustrates overgrowth of the fronts. 

 

Fig. 4. Segmentation results of the algorithm on the 2D slice data (white) superimposed on 
manual tracings (grey) 
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Fig. 5. 3D segmentation on the Phillips Live 3D data (only central slices are shown for clarity). 
Space varies horizontally and time vertically in this figure. White contours were generated by 
the algorithm and grey ones are manual tracings 

The algorithm was applied to 32 2D images from the Acuson scanner and a 3D 
dataset from the Phillips Live 3D scanner. Inter-operator variability of manual 
segmentation was not measured for comparison with the automated delination in this 
paper. It was assumed that the repeatability of manual tracing to within an error of 2 
voxels would be sufficient for clinical use. To access the accuracy of the algorithm 
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root mean square (rms) errors were computed from point-wise distances between the 
automatic boundaries and the manual tracings. The segmentation results in 2D can be 
seen in Fig. 4 and 3D analysis is displayed in Fig. 5.  

Frequency analysis of the rms errors is shown in the bar charts in Fig. 6. The rms 
errors are within 7 pixels (<2mm) in 2D for the chambers excluding the right atrium. 
In Fig. 6 the scale was truncated to empathize the distribution of 2D rms errors 
excluding outliers of the right atrium.  The outliers stretch out to 15 pixels.  Fig. 4 
shows several examples where the snake is attracted to regions of echo enhancement 
in the ultrasound image above the right atrium.  The algorithm appears to be 
influenced by strong intensity inhomogeneity artifacts and this pulls the contour away 
from the desired endocardiac boundaries.   

 

 

 

Fig. 6. Top row: rms errors of segmentation for each chamber. Bottom left: sensitivity analysis 
of the weighting coefficients in the 3D segmentation. Bottom middle: example volume 
rendering of segmented Live 3D dataset (during ventricular diastole and atrial systole, posterior 
view). Bottom right: volume-time curves for all frames 

In 3D the rms errors were between 1-2 voxels (4.5mm). The graphs show that the 
spread of rms errors is greater in the 2D case although the overall errors from the 3D 
algorithm are larger when expressed in mm units. We attribute the cause of this to the 
lower spatial resolution in direct volumetric acquisition which increases the partial 
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volume effect. Strong echo enhancement effects would further increase the spatial 
rms errors but these were absent in this dataset. 

In many of the 2D segmented images the front stopped short of the desired 
boundary and this shows up in the high rms errors (refer to Fig. 6). Whilst high 
curvature penalization was partially responsible, premature stopping of the level set 
front was also due to contributions from the type of image forces used. The MS term 
models unchanging mean intensities both inside and outside of a small sphere or 
circular seed placed inside the chamber. If the mean was updated as the snake evolved 
the front could come to rest closer to the boundary. The edge flow term requires a 
diffusion equation to be applied to an edge map and so broadens edges. The Gaussian 
prefiltering used a large kernel of width 9 pixels and this could contribute to the edge 
broadening. 

To assess the dependence of the segmentation on the weighting coefficients, these 
parameters were varied independently within a range of 50-140% of their appropriate 
values for this application. The test was arbitrarily run on the 1st frame of the Live 3D 
dataset and for this range of parameter values, rms errors in the segmentation 
remained below 3.5 voxels for all chambers.  Fig. 6. shows that the MS region term  is 
most strongly affected by choice of weighting coefficients. 

The left and right ventricular ejection fractions were computed as 61% and 59% 
respectively from the automatic segmentation (frames 0 and 6 were identified as the 
necessary cardiac time points to perform this calculation). These values are 
comparable to the ranges found in a study by Esh-Broder [3] (57.5±14.6% and 
54±11.2% respectively), who also measured a non-significant variation between the 
left and right ventricles. A volume-time graph of all four cardiac chambers is shown 
in Fig. 6 as well as a volume rendering of the level set front.  

4   Conclusion 

To our knowledge this is the first time non manual segmentation techniques have 
been applied on 3D prenatal heart data to measure volumes and cardiac indices. The 
automated method provides a segmentation that is far quicker and more repeatable 
than manual tracings; but has problems in delineating fine intra-cavity structures and 
is strongly affected by enhancement of echogenic regions. The 2D data appears to be 
easier to automatically segment than the new Live 3D possibly due to the smaller 
pixel size which allows better definition of thin walls and intra-cavity structures. 
However, fetal cardiac volumetric imaging simplifies the gating process and will be 
the method of choice for acquiring future datasets. 

Future work will involve validation of the accuracy of the automated volume 
determination from a phantom as well as further testing on additional datasets. 
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