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Abstract. For the analysis of shape variations of the heart and the cardiac 
motion in a clinical environment it is necessary to segment a large amount of 
data in order to be able to build statistically significant models. Therefore it has 
been the aim of this project to find and develop methods that allow the creation 
of a fully automatic segmentation pipeline for the segmentation of endocardium 
and myocardium in ECG-triggered MRI images. For this purpose a combination 
of a number of image processing techniques, from the fields of segmentation, 
modeling and image registration have been used and extended to create a 
segmentation pipeline that reduces the need for supplementary manual 
correction of the segmented labels to a minimum. 

1   Introduction 

The analysis of shape and shape variations of organs and anatomical structures in 
general has become an important field of medical image processing. Detailed shape 
analysis gives the possibility to identify typical variations among healthy individuals 
in order to be able to distinguish them from pathological variations and improve the 
early diagnosis of diseases, which result in pathological variations of shape. Since the 
heart is a dynamic organ, not only the analysis of the cardiac shape, but also the 
analysis of the cardiac motion is a major topic in medical image analysis. For this 
purpose, the heart has to be segmented not only at one particular time, but during one 
cardiac cycle, which is typically consisting of 15-20 images using ECG-triggered 
MRI images. Due to the fact that such large amounts of data are needed in order to 
perform analysis of shape and shape variations, it has been the objective of this 
project to develop a pipeline that is providing methods, which allow fully automated 
and at the same time robust and effective segmentation of cardiac MRI-images. 

In the last decade, deformable models [1] emerged as a well established method for 
medical image segmentation. Beside of parametric deformable models [1] also known 
as “snakes”, introduced by Kass and Terzopoulos, geometric deformable models 
based on level sets [2, 3] became one of the  most used methods in medical 
segmentation pipelines. The fact, that geometric deformable models can easily handle 
topological changes and are easily expandable from two to three dimensions made 
them a frequent choice for a number of extensions to the geometric deformable 
models originally introduced by Sethian and Osher [2, 3]. 

One characteristic of deformable models is that the segmentation process has to be 
started by providing an initial surface, which will be deformed and adapted to the 
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image data by minimizing an energy functional. One possibility to generate such an 
initial surface, which is ideally already a good approximation of the structure to be 
segmented is to use user defined seed points and take them as a basis for e.g. fast 
marching segmentation [4]. The disadvantage of using these methods is, that they 
need user interaction to set the seed points and the resulting initial surface is very 
dependent on the location of the seed points. Therefore a better solution is to use a 
pre-defined initial surface to start the level set segmentation. One possibility to fulfill 
this task is to create a common shape template the from a number of segmented data 
sets by using principal component analysis [5].  The term common shape template is 
used, since we are only using the mean shape for initialization and not to guide the 
segmentation process, where the whole common shape model – including the 
principal components – would be used.  

Having an initial surface, this surface has to be positioned - ideally - as near as 
possible to the boundaries of the structure to be segmented. For this purpose a 
registration of the dataset to be segmented, with the common shape template has to be 
performed. This can be done by registering the individual dataset and an atlas, 
containing the common shape template and a grayscale image that has once been 
aligned to the common shape template. A good choice for performing this task is to 
use mutual information  metric [6]. 

For the segmentation of the whole cardiac cycle the segmented label from one 
point in time of the cardiac cycle can be used as initial template for the next point in 
time. The initial template for the myocardium segmentation is generated by creating 
distance maps of the segmented endocardium to produce initial templates for the 
myocardium. The final myocardium segmentation is again performed using level set 
segmentation. 

Summing up, the objective of this project was to generate a pipeline for automatic 
segmentation of the endocardium and myocardium for a whole cardiac cycle, by using 
a common shape template for the initialization of the segmentation. For this purpose 
two main tasks had to be fulfilled 

1. Building a common shape template of the four chambers of the heart in order to 
initialize the segmentation process. 

2. Generating a segmentation pipeline that uses this template for initialization and 
succeeds in automatically generating labels of the cardiac endocardium and 
myocardium, which need no or minimal manual correction. 

2   Methods 

2.1   Geodesic Snakes/Geometric Deformable Models 

Although parametric deformable models are quite intuitive to implement, they are 
also having some weaknesses, which are partially limiting the usability of this type of 
models: Firstly, realizing topologically adaptive parametric models, means to do some 
major modifications of the parametric deformable models, since any change in 
topology need new parameterization. During the evolution of a contour in the 
segmentation process, interfaces may change connectivity and split, thereby 
undergoing a topological transformation which is often very difficult to follow using 
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traditional approaches. Moreover adapting parametric models to 3 or 4 dimensions is 
a very challenging task and requires computationally expensive methods [7]. 

In order to overcome these problems, geometric deformable models have been 
introduced in the field of image analysis by Caselles and Malladi [8, 9]. They are 
based on curve evolution theory and level set methods [4]. 

Being more independent from initialization than parametric deformable models, 
level sets are also designed to handle problems in which the evolving interfaces can 
develop sharp corners and cusps and change topology. Hence in order to provide a 
method, which is on the one hand capable of handling topological changes and on the 
other hand allow the usage of statistical shape models to guide the segmentation 
process in the future, geometric deformable models have been preferred to parametric 
deformable models in the course of this project.    

In this project geometric deformable models have been used in two different 
concepts: Boundary driven geometric deformable models for the endocardium 
segmentation and region-competition snakes for myocardium segmentation. 

Boundary-Driven Geometric Deformable Models.  As posted in [10], geometric 
deformable models are defined as the zero level set of an implicit function φ, defined 
on the entire image. The evolution of the surface is defined via partial differential 
equation on the implicit function φ. Following the approach used by Caselles et al. [9] 
we are using the following formula  

 0( )( ) ( ) ( ( ) ( ))c x V P
t

δφ κ φ β φ
δ

= + ∇ + ∇ ⋅∇ . (1) 

( ( ) ( ))Pβ φ∇ ⋅∇ is the projection of an attractive force vector to the surface. P is the 

gradient of a potential field, given as 

 ( , , ) ( ( ( , , )))P x y z G I x y zσ= ∇ ∗ . (2) 

β denotes the strength of the attractive force and κ is the curvature dependent 
speed. ( )c x is the stopping term based on the image gradient and 0V is a constant. 

The curvature dependent stopping term adds some robustness concerning leakage 
through object boundaries and prevents the evolving contour from leaking through 
small gaps.  

Region-Competition Snakes. In contrast to boundary driven snakes, geometric 
deformable models can also be governed by local probabilities that determine if the 
snake is inside or outside of the structure to be segmented. In this implementation of 
geometric deformable models, the propagation term is controlled in a way, that it 
shrinks, when the boundary encloses parts of the background and grows, when the 
boundary is inside the wanted regions [11]. 

In our implementation, based on the itkTresholdSegmentationLevelSetImageFilter 
of the Insight Segmentation and Registration Toolkit (ITK) [12] a speed term (feature 
image) with positive values inside an intensity window (between a low and high 
threshold) and negative values outside that intensity window is constructed. The 
evolving level set front will lock onto regions that are at the edges of the intensity 
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window. In detail the feature image is calculated as follows (L…lower threshold, 
U…upper threshold). 

 ( ) ( ) ( ) / 2
( )

( )

g x L if g x U L L
f x

U g x otherwise

− < − +⎧= ⎨ −⎩
. (3) 

In our application the thresholds can be calculated by calculating the mean grey 
value and standard deviation of the pixels, which are at the position of the template 
image in the original grayscale image. The thresholds are set by taking the mean grey 
value of the template region ± 1 standard deviation.  

Furthermore, a Laplacian calculation on the image to the threshold-based speed 
term can be added. The Laplacian term causes the evolving surface to be more 
strongly attracted to image edges.  
Identically to boundary driven snakes, an additional curvature based smoothing term 
adds robustness concerning leakage through object boundaries.  

2.2   Model Building 

Signed Distance Maps. For the purpose of building models of already segmented 
label data, we were choosing distance maps as a representation of shape following the 
approach of Leventon et al. [5]. A curve C which should be represented is embedded 
as the zero level set of a higher dimensional surface u, whose height is sampled at 
regular intervals. Each sample encodes the distance to the nearest point on the curve, 
with negative values inside the curve. The unsigned surface u is defined as 

 ( ) min ( )
q

u x C q x= − . (4) 

Distance maps have the property, that the gradient magnitude of the image is 
constant across the image and equal to one.  The direction of the gradient is equal to 
the outward normal of the nearest point on the curve C. From any point x in space the 
nearest point on the curve can be computed by 

 ( ) ( )x u x u x− ∇ . (5) 

A distance map provides the propagation of the boundary information without loss 
of fidelity and the redundancy of information over a region in space provides stability 
in many types of computation. 

Alignment of Distance Maps. In order to rigidly align the distance map 
representations of the individual labels, we were using mutual information (MI) 
independently introduced by Viola and Wells [6].  

Given two variables U and V, mutual information is defined as 

 MI(U,V) = H(U)+H(V)-H(U,V). (6) 

Already applied to a wide range of applications for multi modality registration, MI 
turned out to be also very useful for the global alignment of distance functions and 
provided very reasonable results for the alignment of our signed distance maps.  



 Automatic Cardiac 4D Segmentation Using Level Sets 117 

 

Principal Component Analysis on Signed Distance Maps. Having a training set of 
signed distance maps, Principal Component Analysis can be used to derive a shape 
model [13]. A mean surface can be computed by taking the mean of the signed 
distance functions. The matrix of eigen-vectors and the diagonal matrix of 
corresponding eigen-values is computed from the co-variance matrix using Single 
Value Decomposition. 

An estimate of a novel shape, u, can be represented by k principal components in a 
k-dimensional vector of coefficients, α : 

 ( )
T

k
uUα µ= − . (7) 

Uk is a matrix consisting of the first k columns of the matrix of eigen-vectors U, 
which is used to project a surface into the eigen-space. Given the coefficientsα , an 
estimate of the shape u is reconstructed from Uk and µ : 

 !
ku U α µ= + . (8) 

Since distance transforms do not form a linear vector space, !u will in general not 
be a true distance function. However, the surfaces still have the properties of 
smoothness and local dependence, which is sufficient for our purposes [5]. 

2.3   Model to Image Registration 

In order to register the common shape template to a new image, we are also using 
mutual information by rigidly aligning the grey-scale image, on whose segmented 
label data all other label data sets have been registered, and the image to be 
segmented.  

For this purpose a multi-resolution registration approach has been used. This 
means that the images are registered in an iterative process, using different resolutions 
of the images. This fact adds robustness to the registration process and increases 
speed and accuracy. 

3   Results 

In the course of this project, we have been developing a C++ software-pipeline for 
fully automatic segmentation of 4D heart MRI datasets. This pipeline is implementing 
the methods described above, by using and extending some of the functionality of the 
Insight Segmentation and Registration Toolkit (ITK) and the Visualization Toolkit 
(VTK) [14].  

As a first step we had to create a common shape template out of 10 segmented 
heart datasets. Since we also wanted to have the possibility to segment the four 
chambers of the heart separately, we have not only been creating a common shape 
template of the whole endocardium, but also of each chamber of the heart.  For this 
purpose we created distance maps of the datasets, and rigidly aligned them by using 
mutual information. Fig. 2 is showing the results of the registration of the whole 
endocardium and of the left ventricle each with 5 datasets. 
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Fig. 1. Result of the rigid alignment of 5 labeled heart datasets. Left: Registered endocardium, 
Right: Registered left ventricles 

Of course rigid alignment does not provide perfect correspondence, however, for 
the task of building a model/template to initialize the segmentation process and using 
signed distance maps, which are robust to slight misalignment as a representation of 
shape, we did not necessarily need perfect correspondence.  

Using the methods described in section 2.2 we were calculating the common shape 
template and its principal components. Note, that the main variations of the model 
represented by the principal components are not involved in the segmentation process 
up to now, however, this might be part of our future work. Moreover, at this point of 
time the principal components are an additional important criterion to evaluate the 
validity of the model for our purposes. Fig. 2 is showing the common shape templates 
of the 4 chambers of the heart. 

  

  

Fig. 2. Common shape templates of the four heart chambers. Top row: left atrium (left), right 
atrium (right), bottom row: left ventricle (left), right ventricle (right) 
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Having these initial templates the image to be segmented has been registered to the 
grayscale image containing the label data on which the distance maps have been 
registered, using mutual information. Another possibility would have been to directly 
register the new image to the distance map of the common shape template, however, in 
this case, the results turned out to be less robust and less correct, than in the first case. 

The active geodesic level set segmentation process itself is started by using the 
common shape templates as initial templates and setting predefined parameters for the 
level set algorithm. As stopping criteria a threshold for the amount of change of the 
zero level set between two segmentation iterations has been used. Additionally a 
maximum number of iterations has been set. Due to the fact, that the segmentation is 
initialized very near to the object boundaries, the propagation scaling (~balloon force) 
can be set rather low. This brings the advantage that leaking through boundaries is 
less likely and the geometric deformable model is guided by the advection force, 
pulling the contour to edges in the image and the curvature term, preventing the 
contour from leaking and resulting in more robust convergence.  

Fig. 3 is showing the initial templates and the results of endocardium segmentation. 
Note that the borders between atria and ventricles have not been manually corrected. 

 

Fig. 3. Endocardium segmentation. Comparison of initial state and segmentation result of a 
endocardium segmentation in 2D (first two images) and 3D (third and fourth image) 

  

Fig. 4. Example for a template of the myocardium segmentation of the left ventricle generated 
via distance maps (left) and the final segmentation result for the left ventricle myocardium 
(right) 
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For the segmentation of the cardiac cycle, the segmentation results of the initial 
point in time have been used as initial templates [15]. For this purpose, the same 
transformation as for the first image has to be applied to the whole dataset of the 
cardiac cycle. An initial template for the myocardium segmentation can be generated 
by thresholding a signed distance map of the endocardium labels, for each chamber. 
Using this as an initial template, the thresholds for the region-competition snakes are 
computed by calculating the mean grey value of the pixels covered by the label. The 
thresholds are set by adding ±1 standard deviation to this mean value. 

In this work the correctness of the segmentation has been evaluated for two 
different heart datasets: One dataset of the ten datasets, which have been used for the 
model building process (1) and one new dataset (2). In order to evaluate the 
correctness of the segmentation for the datasets, the generated labels have been 
compared with the labels after manual correction of the segmentation results, 
considering this as the gold standard. For endocardium and myocardium segmentation 
a similarity index for three different points in time of the cardiac cycle has been 
calculated by using 

 
2 A B

S
A B

∩
=

+
. (9) 

A and B are the non-zero pixels in the first and second input images. Operator i  

represents the size of a set and ∩  represents the intersection of two sets. 
Table 1 is showing the results for the similarity indexes:  

Table 2 is showing the undirected Hausdorff distances, comparing the 
automatically segmented endocardium and the manually corrected labels. 

Table 1. Similarity indexes for automatic segmentation results and manually corrected 
segmentation results for two heart data sets (0, 60 and 110 ms after the R-peak in the ECG) 

000 ms 060 ms 110 ms 
Similarity index 

Heart 1 Heart 2 Heart 1 Heart 2 Heart 1 Heart 2 
Endocardium  0.980 0.992 0.970 0.980 0.971 0.976 
Left ventricle  0.991 0.991 0.998 0.992 0.998 0.976 
Right Ventricle  0.946 0.988 0.933 0.976 0.927 0.918 
Left atrium  0.975 0.984 0.988 0.976 0.979 0.930 
Right atrium  0.986 0.990 0.989 0.961 0.948 0.953 
Myocardium  0.950 0.964 0.952 0.958 0.940 0.936 

Table 2. Hausdorff distances in mm between automatic segmentation results and manually 
corrected segmentation results for two heart data sets (0, 60 and 110 ms after the R-peak in the 
ECG) 

000 ms 060 ms 110 ms Hausdorff 
distance Heart 1 Heart 2 Heart 1 Heart 2 Heart 1 Heart 2 

Endocardium  2.3 2.0 2.7 2.5 2.7 2.5 
Myocardium  5.1 4.8 5.3 5.2 5.8 6.1 
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4   Discussion 

Using mutual information to register the distance maps of the individual labels and 
the grayscale images to the atlas resulted in a precise rigid alignment and provided 
very satisfying results. Calculating a mean model resulted in a meaningful and 
feasible common shape template, which proved to be an adequate tool for the 
initialization of the level set segmentation process. Using geodesic level sets for the 
segmentation of the endocardium turned out to be an adequate choice and resulted in 
good segmentation results compared to the gold standard. Note that no manual 
correction has been performed between the segmentation of the different phases of the 
cardiac cycle. Performing minimal manual correction - especially the correction of the 
valve plane level - after segmenting the first point in time of the cardiac cycle would 
of course mean another improvement of the segmentation results.  

The usage of ITK and VTK to implement the segmentation pipeline turned out to be 
an adequate choice for programming the software pipeline. 

A detailed and comprehensive evaluation of the presented pipeline and an 
extension of the pipeline, which is using a modified template created out of more 
datasets and using other forms of shape representation in order to implement 
knowledge about shape variations in the segmentation process itself is currently under 
development. 
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