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Abstract. Multi–slice computed tomography image series are a valu-
able source of information to extract shape and motion parameters of the
heart. We present a method how to segment and label all main chambers
(both ventricles and atria) and connected vessels (arteries and main vein
trunks) from such images and to track their movement over the cardiac
cycle. A framework is presented to construct a multi–surface triangular
model enclosing all blood–filled cavities and the main myocardium as well
as to adapt this model to unseen images, and to propagate it from phase
to phase. While model construction still requires a reasonable amount of
user interaction, adaptation is mostly automated, and propagation works
fully automatically. The adaptation method by deformable surface mod-
els requires a set of landmarks to be manually located for one of the
cardiac phases for model initialisation.

1 Introduction

The aim of our work is a comprehensive model of the geometry of the human
heart contraction as well as its inter–individual variations. Such a model in-
troducing a priori knowledge about typical properties of a beating heart will
be highly beneficial in the whole chain of image–based cardiac diagnostics, as
well as in many cardiac treatment procedures. The model covers landmarks, the
coronary tree, and the surfaces of the large vessels [1]. The latter is the subject
of the work reported here. The most valuable and practically unique source of
information for the modelling process are cardiac images from clinical practice.
In this paper the use of multi–slice computed tomography (MSCT) images is
reported that have a voxel size of about 0.5 mm in each direction and a tempo-
ral resolution of 10 volumes per cardiac cycle. Mostly, cardiac MRI were used
previously for this purpose [2, 3, 4, 5, 6]. MSCT may provide even better insight
into the morphology of the human heart [7]. Extracting the relevant informa-
tion from these images is hardly feasible without a priori knowledge [8]. Many
approaches to cardiac segmentation were based on manually segmented images,
which is a good means to both tune parameters by automated supervised learn-
ing, and to finally prove their performance in comparison to human expertise.
However, manually segmenting an MSCT series means delineating each object
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of interest in about two thousand images. This dilemma led us to a bootstrap
approach with a consecutive refinement of the model during successive analysis
of new images.

2 Model Construction

The model covers the blood pool of both the left and the right heart. The blood
pools of the ventricles should be distinguishable from those of the atria. All at-
tached vessels should also be modelled, i.e. the aorta, the pulmonary artery, the
vena cava, and the pulmonary vein trunks. As it is clearly visible, and diagnos-
tically relevant, also the left myocardium should be represented in the model.
Including adjacent volumetric entities required a surface modelling scheme be-
yond two–dimensional manifolds. In the discrete case with triangular faces this
means that there are faces with more than three neighbours wherever multiple
surfaces share an edge. In order to enable multi–scale / multi–resolution ap-
proaches or to just find an ideal trade–off between accuracy and complexity, a
multi–resolution representation of the surface discretisation was desired.

The initial step was the construction of single basic shapes like spheres (atria),
tubes (attached vessels), and opened ellipsoids (ventricles). Each one modelled
an anatomical entity. These shapes were then positioned in the training image
and adapted to the corresponding entities. A re–sampling closed this step to get
a defined level of granularity. The third step was the most important one that
combines the single basic two–dimensional manifolds to form the multi–surface
model. The method used in this third step is explained in some detail below.
In the resulting model, each face should be assigned a label that indicates the
anatomical structure it belongs to. This information was derived by storing which
of the initial basic shapes a face originates from. The basic shapes were left atrium
al, left ventricle endocardium (inner part vi), left ventricle epicardium (outer part
vo), aorta a, vena cava superior vs, vena cava inferior vl, right atrium ar, right
ventricle vr, pulmonary artery ap (right branch only), and the pulmonary vein
trunks (v1, v2, v3, v4,) that drain into the left atrium.

2.1 Building a Multi-surface Model

The combination step was made by successive application of a handful of basic
operations on surface meshes, starting with the basic meshes. There are volu-
metric set operations that consider the enclosed volume of two meshes, apply
the union (∪) or the difference (\) operation on them, and yield the resulting
surface mesh. A similar approach but with implicit surface models was proposed
in [9]. Each of the present operations was defined as B×B → B, where m ∈ B
is a two–dimensional manifold mesh. As a further constraint on theses opera-
tions, the intersection line between both meshes had to be closed polygons. This
required open basic meshes to fully overlap with their neighbours (e.g. ventricle
with atrium). The join operator (�) was defined as B × B → M, where m̄ ∈ M
may be a non–two–dimensional manifold mesh. The join operator just unites



Multi-surface Cardiac Modelling, Segmentation, and Tracking 3

Fig. 1. A basic (a), some intermediate (b to d), the final (e), and a derived (f) sub mesh,

all seen from left anterior. a: left atrium al, b: left blood pool pl, c: left myocardium a1,

e: whole heart h̄, f: blood pool of the left ventricle only pvi . The colour–coding denotes

face labels. All shown meshes are just subsets of the complete multi–surface model h̄

both sets of faces and unifies corresponding faces that occur in both meshes.
The unary operator cl (M → M) removes all edges smaller than given by pa-
rameter l and preserves the triangles’ labels. It was needed to replace auxiliary
triangles created by volumetric set operations. The left blood pool pl ∈ B was
build by

pl = cl (v1 ∪ v2 ∪ v3 ∪ v4 ∪ al ∪ vi ∪ a) . (1)

In order to construct the complete multi–surface model h̄, first the intermediate
meshes a1 and a2 were constructed by

a1 = cl (vo \ pl) (2)
a2 = cl (vo ∪ pl) , (3)

where a1 now exactly enclosed the left myocardium. The complete left heart
model h̄l was built by

h̄l = a1 � a2, (4)

and the right blood pool was built by

pr = cl(ar ∪ vr ∪ ap ∪ vl ∪ vs) \ a1. (5)

Left and right part were fused to

h̄ = h̄l � pr. (6)

In Figure 1 some basic, intermediate, and the final mesh h̄ are rendered from
the same viewing position. The edge size was set to range between 2.5 mm and
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5 mm. Also other sub meshes than those required to build the final mesh may
be constructed, for instance the blood pool of the left ventricle excluding the left
atrium by

pvi
= vi \ al. (7)

3 Model Adaptation

For adaptation of the multi–surface model to a cardiac CT image, a shape–
constrained deformable surface model approach was followed as previously de-
scribed in [10, 4]. The model with given vertex positions v̂ taken from a training
image both served for the initialisation of the initial mesh v0 and as constraint
during its adaptation to v1···n. The number of triangles remained unchanged in
this process.

3.1 Affine Pre-registration

In order to pose the initial mesh into the image as accurately as possible, 25
anatomical landmarks were manually located both for the image the model was
built from and for each target image [1]. These landmarks are mainly centre
locations of chambers, valves, and ostia. A point–based affine registration [11]
was applied on the two sets of landmarks. The resulting affine matrix A and
translation vector t were then used to pre–register the initial mesh by v0 =
Av̂ + t.

3.2 Model Deformation

In the optimisation scheme the vertex positions of the triangular surface mesh
were the parameters to be varied. Mesh deformation was done by minimizing
the energy term

E = Eext + αEint. (8)

The external energy Eext drives the mesh towards the surface points obtained
in a surface detection step. The internal energy Eint restricts the flexibility by
maintaining the vertex configuration of a shape model. The parameter α weights
the influence of both terms. A fixed number n of such minimisation steps is
performed on the mesh. The different components of the deformation algorithm
are described below.

Surface Detection. Surface detection was carried out for each triangle barycen-
tre xi. Within a sampling grid of points ck, defined in a local co-ordinate system,
that point c̃i is chosen that maximizes the objective function

c̃i = argmaxk=−l,...,l

{
Fi(xi + Mick) − δ ‖ck‖2

}
. (9)
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Mi is a rotational matrix that rotates the z–axis of the local co–ordinate
system to the triangle surface normal ni and

x̃i = xi + Mic̃i (10)

is the new surface point for xi. The parameter δ controls the trade–off between
feature strength and distance. The sampling grid

ck ≡ GL = (0, 0, kε) : k = −l, . . . , l (11)

was used, that results in (2l + 1) equidistant sampling points along the triangle
surface normal.

Feature Function. The feature function

Fi (x) =

{
−ni

t∇I(x) gmax(gmax+‖∇I(x)‖)
g2

max+‖∇I(x)‖2 : Imin < I(x) < Imax

0 : otherwise
(12)

was used that projects the image gradient ∇I(x) onto the face normal ni and
damps its value so that surface points with image gradients stronger than gmax do
not give higher response. The restriction to a dedicated intensity range may make
the feature function more specific and thus makes adaptation less vulnerable to
adjacent false attractors (see below).

External Energy. The external energy

Eext =
∑

i

wi (e∇I c̃i)
2
, wi = max

{
0, Fi(xi + Mic̃i) − δ ‖c̃i‖2

}
(13)

drives each triangle barycentre xi towards the detected surface point x̃i. e∇I is
the unit vector in the direction of the image gradient at the surface point x̃i.
Since only the projection onto e∇I is penalized, this allows the triangle centre to
locally slide along an iso–contour. This method proved to be superior to direct
attraction by the candidate in [10] in case of intermediate false attractions.

Internal Energy. The internal energy

Eint =
∑

j

∑
k∈N(j)

((v̂j − v̂k) − sR(vj − vk))2 (14)

preserves shape similarity of all mesh vertices vi to the model vertices v̂i. N (j) is
the set of neighbours of vertex j. The neighbouring vertices are those connected
by a single triangle edge. The scaling factor s and the rotational matrix R
are determined by a closed–form point–based registration method based on a
singular value decomposition [11] prior to calculation of (14).

Optimisation. As only interdependences between neighbour vertices exist (14)
and the energy terms are of a quadratic form, the conjugate gradient method
[12] could be used for minimisation of (8) with a sparsely filled matrix.
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Multi-surface Parameterisation. The labels assigned to each face of the
multi–surface model may be used to parameterise interfaces between different
anatomical entities specifically. However, dedicated parameter tuning was re-
stricted to the epicardium border towards the lung parenchyma that differs in
its appearance significantly from the other surfaces that enclose the blood pool.
Thus, gmax was set to 60 HU

mm here instead of 120 HU
mm elsewhere. and the in-

tensity range (Imin · · · Imax) was adjusted to 350 · · · 800 HU instead of 1000 HU
and up. The other parameters were globally set to α = δ = 1, ε = 1 mm, l = 10.

4 Surface Tracking

In order to capture tissue trajectories one has to find corresponding tissue land-
marks in images from different cardiac phases. This was mainly done previously
either by non–linear registration [13] or by active appearance models [14]. With
some modifications that rather belong to the second category and that are ex-
plained below, the adaptation method presented above was also applied for a
surface tracking approach that utilizes point correspondence.

Surface detection is carried out following equation (9). In order for a surface
point not only to be attracted along the surface normal, a sampling grid is used
that extends into all direction. A multi–icosahedron grid

ck=1···37 ≡ GI = {(0, 0, 0), P2, P4, P8} (15)

was used where each Pn is a set of 12 icosahedron surface points with a radius
of nε mm around the origin of the local coordinate system. Individual feature
functions are required for each surface point in this case to take the local image
properties into account. The feature function

Fi(x) =
2l + 1∑

k=−l...l (I (x + Misk) − ĝi,k)2
(16)

that replaces (12) thus evaluates similarity of local appearance samples to the
once learnt model ĝi. The linear sampling grid sk = GL from equation (11) is
taken. It is applied at each sample point. The external energy is calculated by

Eext =
∑

i

c̃2
i (17)

instead of (13), and the internal energy is taken from (14).
In order to demonstrate the general feasibility of surface tracking with de-

formable models and appearance models a simple test study was carried out. A
cylindrical surface mesh was posed into a cardiac CT image to roughly fit the
left myocardium. The image appearance ĝ was learnt and the mesh was rotated
around its main axis by r = ± π

16 ,±π
8 ,±π

4 , and ±π
2 afterwards in a number of tri-

als. An adaptation with n = 80 iterations was performed for each rotation angle.
Up to r = ±π

4 the mesh successfully recovered the initial position. This simple
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test showed that the tracking method has a remarkable capture range, and that
with the rotationally symmetric shape model, appearance alone is sufficient as
driving force.

The propagation through all cardiac phases started with a phase to which
the shape model was adapted successfully. From the image of this phase 1 the
appearance ĝ1 was learnt at positions given by v1. This shape v1 was used as
initial mesh and further on v0

i = vn
i−1. The same holds for the shape model

v̂i = vn
i−1. This was repeated until all phases were processed. For each phase

the initial appearance model ĝ1 was used.

5 Results

5.1 Model Construction

A multi–surface mesh with a total number of about 7, 000 vertices and 13, 000
triangle faces was constructed with edge lengths ranging between 2.5 mm and
5 mm. Its shape is shown in Figure 1. The basic meshes this model was con-
structed from, were adapted to the anatomical entities of the end–diastolic phase
of the training image. The resulting multi–surface model was then adapted to a
set of five other cardiac MSCT images from different hospitals but all acquired
with a Philips MX8000 IDT 16–line CT scanner. The images were contrast–
enhanced as they were acquired for the purpose of coronary assessment.

5.2 Pre-registration

The affine pre–registration led to a mean (± standard deviation) residual land-
mark distance of 7.5 ± 4.3 mm, 7.0 ± 3.3 mm, 8.3 ± 3.5 mm, 5.6 ± 2.6 mm,
and 13.0 ± 12.1 mm for the five images. The latter resulted in an unaccept-
able pre–registration, both visually and with respect to the subsequent adapta-
tion result. An alternative rigid registration with an isotropic scale parameter

Fig. 2. Left: Pre–registration (dark mesh) and subsequent automatic adaptation (light

mesh) of the multi–surface model to an unseen image. The arrow marks a local mis–

adaptation. Right: Mean end–diastolic model of the five patients with colour–coded

standard deviation (dark:0.8 mm, light:7.8 mm)
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(13.0 ± 14.4 mm) resulted in an acceptable pre–registration for further process-
ing. A typical affine pre–registered model is shown in Figure 2 in comparison to
the automatic deformable adaptation based on this pre–registration.

5.3 Adaptation

The adaptation by model–based deformation significantly improved on the re-
sults of the affine pre–registration (Figure 2). Automatic adaptation with n = 10
iterations took about 15 seconds on a 2.6 GHz PC including real–time surface
rendering. The majority of surface parts could be considered well–adapted. The
reasons for remaining local mis–adaptations were mainly adaptations to false
attractors e.g. of the epicardium mesh to the endocardium (see Figure 2) or to
coronaries, and of the aorta mesh to the vena cava. Using the methods described
in [15] manual corrections that survive subsequent automatic adaptation steps
could be applied to these mis–adapted parts.

5.4 Calculating a Mean Model

The resulting individualized models were mutually registered (rigid plus isotropic
scale) using a procrustes analysis of their corresponding anatomical landmarks.
A mean model of the five subjects was calculated (Fig. 2).

5.5 Surface Tracking

The surface tracking method was applied to the training image sequence. The
initial mesh v1 was the one that resulted from model construction and that was
fit to the end–diastolic phase image of the training sequence. Each propagation
step vi−1 → vi was done with n = 12 iterations. Propagation was done for all
nine images of subsequent phases and back to the initial image with v0

1 = v12
9 .

This allows for a comparison of the round–trip adaptation result v12
1 with the

initial mesh v1. The mean (± standard deviation) distance of corresponding
vertices between both was 1.4±0.7 mm. The meshes are shown in Figure 3. The
mean distance of all corresponding vertices in all phases between the forward
(vi−1 → vi) and the backward (vi+1 → vi) propagation was 2.1± 1.3 mm. The
propagation from the initial mesh (v1 → vi) differs from forward propagation by

Fig. 3. Result of the consistency test: Initial mesh (white) and result of a round–trip

adaptation (black) to the end–diastolic initial image
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Fig. 4. Left: Trajectories of each vertex through the cardiac cycle. For visibility reasons

they were scaled down by a factor 4 with respect to their initial (end–diastolic) vertex

position. Centre: end–diastolic mesh. Right: end–systolic mesh

1.6 ± 1.0 mm and from backward propagation by 1.5 ± 0.9 mm. A visualisation
of the moving model by a surface rendering loop gives a very natural impression
of contraction (ventricles), parallel displacement (valve plane), and rather stable
parts (atria). Figure 4 tries to show the results in a printed form.

6 Discussion

A method was presented that enables a widely automated construction of a
multi–surface triangular mesh of cardiac chambers and vessels, mostly automatic
adaptation to individual MSCT images, and automatic propagation of such an
individualized model through the cardiac phases. For model construction a set of
single basic shapes was adapted each to its anatomical entity. The multi–surface
model resulted from their automatic combination. Some anatomical landmarks
were manually located in order to pre–register this model to an unseen image by
either affine or rigid registration. The subsequent deformation to fit the image
boundaries was mainly gradient–based. All parameters were set explicitly during
an explorative test phase resulting in a small knowledge base. Some individual
surfaces of the model were parameterised specifically, which was well supported
by the anatomical labels given in the multi–surface model. The surface tracking
however used individual grey value profiles for each surface location learnt from
the initial phase’s mesh. This method was chosen in order to closely approximate
the real tissue trajectories. Due to the large data volume (up to two thousand
slices for a cardiac cycle) and the difficulties in manually finding reliable trajec-
tories there was no high quality expert data available for validation. We were
able to perform a capture range test and a consistency test of the method with
good results. Also the animated visualisation gave a realistic impression. Only
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the rotational component and the twist of the left ventricle seemed to be under-
estimated, which we suppose to be due to the too rigid regularisation in (14).
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