
Identifying and Exploiting Problem Structures
Using Explanation-Based Constraint

Programming

Hadrien Cambazard and Narendra Jussien

École des Mines de Nantes – LINA CNRS FRE 2729,
4 rue Alfred Kastler – BP 20722 – F-44307 Nantes Cedex 3, France

{hcambaza, jussien}@emn.fr

Abstract. Recent work have exhibited specific structure among com-
binatorial problem instances that could be used to speed up search or
to help users understand the dynamic and static intimate structure of
the problem being solved. Several Operations Research approaches apply
decomposition or relaxation strategies upon such a structure identified
within a given problem. The next step is to design algorithms that adap-
tatively integrate that kind of information during search. We claim in
this paper, inspired by previous work on impact-based search strategies
for constraint programming, that using an explanation-based constraint
solver may lead to collect invaluable information on the intimate dy-
namic and static structure of a problem instance. We define several im-
pact graphs to be used to design generic search guiding techniques and
to identify hidden structures of instances. Finally, we discuss how ded-
icated OR solving strategies (such as Benders decomposition) could be
adapted to constraint programming when specific relationships between
variables are exhibited.

1 Introduction

Generic search techniques for solving combinatorial problems seems like the Holy
Grail for both OR and CP communities. Several tracks are now explored: dynam-
ically analyzing and adapting the way the solver actually solves a combinatorial
problem, identifying specific structures in a given instance in order to speed
up search, etc. The key point is to be able to identify, understand and use the
intimate structure of a given combinatorial problem instance [7, 17, 18].

Refalo [16] recently defined impact-based solving strategies for constraint
programming that dynamically use the structure of a solved problem. In this
paper, we attempt to investigate the relationships between the variables of the
problem. We intend to identify, differentiate and use both dynamic (created
by the search algorithm) and static (relative to the instance) structures of the
problem being solved. We focus on structures intended as subsets of variables
that play a specific role within the problem. We define to this end several fine
grained impact measures and induced impact graphs between variables to:

R. Barták and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 94–109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Identifying and Exploiting Problem Structures 95

– identify hidden structures in problems;
– design generic search guiding techniques;
– pave the way of possible use of the impact analysis into decomposition based

methods such as, for example, Benders decomposition.

Our new impact measures are made possible by the use of an explanation-
based constraint solver that provides inside information about the solver embed-
ded knowledge gathered from the problem.

The paper is organized as follows: Section 2 introduces the basis and motiva-
tions of our work. Several impact measures and associated graphs are presented
in Section 3 distinguishing their respective ability to reflect dynamic and static
structures on a concrete example. Finally, as we believe that the detection of
hidden structures can be explicitly used into CP, we start to show the interest of
those such structures as a guide for searching as well as the design of a dedicated
resolution strategy inspired from a logic based decomposition.

2 The Idea of Exploiting Problem Structures Within
Search Strategies

Efficient constraint programming search strategies exploit specific aspects or
characteristics of a given (instance of a) problem. In Operation Research, relax-
ation or decomposition strategies exploit the fact that part of the problem can
be treated as a classical problem (such as compatible or optimal flow problems,
shortest path problems, knapsack problems, etc.). This is often called structure
in the constraint programming community.

A problem is more generally said to be structured if its components (vari-
ables1 and/or constraints) do not all play the same role, or do not have the
same importance within the problem. In such a problem, the origin of the com-
plexity relies on the different behavior (or impact) for specific components of
the problem. One of the main difficulty in identifying structure in problems is
that this structure is not always statically (at the instance level, before solving)
present. The interplay between a given instance and the search algorithm itself
may define or help to exhibit a hidden structure within the problem. We call it
a dynamic structure. It is related to bad initial choices as well as new relation-
ships due to the addition of constraints during the search. This does not make
things easy when willing understand the complexity of a problem and use this
information to speed up search techniques.

Backdoors, recently introduced in [18], are an interesting concept to charac-
terize hidden structure in problem instances. They are informally defined as sub-
sets of variables that encapsulate the whole combinatorics of a given instance of a
problem: once this core part completely instantiated, the remaining subproblem
can be solved very efficiently. Numerous search strategies are based, knowingly

1 In the following, we will focus our study only on variables as components inducing
a structure.

96 H. Cambazard and N. Jussien

or not, upon this principle. The following two were the most influential for our
work:

– Branching heuristics in CP attempt to early guide the search towards the
backdoors variables as they try to perform choices that simplify the whole
problem as much as possible. They are based on a simple idea: select a
variable that lead the possibly smallest search space and that raises con-
tradictions early as possible. This principle (often referred to the first fail
principle [8]) is often implemented by taking the current domain and degree
of constraindness (see [3] for variants) of the variables into account. More
recently, [16] proposed to characterize the impact of a choice and a variable
by looking at the search space reduction caused by this choice in average (an-
other way of identifying a backdoor) and used this information as a guiding
strategy.

– Benders decomposition [2] falls exactly within the range of backdoors tech-
niques. It is a solving strategy based on a partition of the problem among
its variables into two sets x, y. A master problem provides an assignment
x∗, and a sub-problem tries to complete this assignment over the y vari-
ables. If this proves impossible, it produces a cut2 (a constraint) added to
the master problem in order to prune this part of the search space on the
x side. The interesting cuts are those who are able to prune not only the
current x∗ solution from the search space (this is mandatory) but also the
largest possible class of assignments that share common characteristics with
x∗ which make them suboptimal or inconsistent for the same reason. This
technique is intended for problems with special structure. The master prob-
lem is based on a relevant subset of variables that generally verifies the two
following assumptions:
1. the resulting subproblem is easy. In practice, several small independent

subproblems are used, making it easy to perform the required exhaustive
search in order to produce the Benders cut.

2. the Benders cut is accurate enough to ensure a quick convergence of the
overall technique.

In such a decomposition, the master problem can be considered as a back-
doors because, thanks to condition 1, once completely instantiated the re-
maining problem can be solved efficiently. Moreover, if the remaining sub-
problem can be actually solved polynomially (this is referred as strong back-
doors), a powerful cut based on the minimal conflict can often be computed.

For the latter technique, structure needs to be identified before search starts.
Classical structure identification is made through an analysis of the constraint
network. For example, it is common for solving graph coloring problems to look
for maximal cliques in order to compute bounds or to add all-different constraint
to tighten propagation on the problem. But, such an analysis only provides infor-
mation on visible static structures. Nevertheless, hidden structure and dynamic

2 This cut is often referred as the Benders cut.

Identifying and Exploiting Problem Structures 97

one seems to be of very high interest for a lot of search strategies. Of course,
their identification is at least as costly as solving the original problem. We believe
that the propagation performed by the solver during search provides information
that should lead to identify those hidden structures. One way of exploiting that
information is to use explanations.

3 Identifying Problem Structure Using Explanations

Refalo [16] introduced an impact measure with the aim of detecting choices with
the strongest search space reduction. He proposes to characterize the impact of
a decision by computing the Cartesian product of the domains (an evaluation of
the size of the search space) before and after the considered decision. We claim
here that we can go a step further by analyzing where this propagation occurs
and how past choices are involved. We extend those measures into an impact
graph of variables, taking into account both the effects of old decisions and their
effective involvement in each inference made during resolution.

Our objective being to identify variables that maximally constrain the prob-
lem as well as subsets of variables that have strong relationships and strong
impact upon the whole problem (namely a backdoors). We have focused our
study on the following points:

– the impact or influence of a variable on the direct search space reduction;
– the impact of a variable inside a chain of deductions made by the solver even

a long time after the variable has been instantiated;
– the region of the problem under the influence of a variable and the precise

links between variables.

Such information relies on the concept of explanation for CP [11].

3.1 Explanations for Constraint Programming

Explanations have been initially introduced to improve backtracking-based al-
gorithms but have been recently used for many purposes including dynamic
constraint satisfaction problems and user interaction.

Definition 1. An explanation records some sufficient information to justify an
inference made by the solver (domain reduction, contradiction, etc.). It is made
of a set of constraints C ′ (a subset of the original constraints of the problem) and
a set of decisions dc1, ..., dcn taken during search. An explanation of the removal
of value a from variable v will be written: C ′ ∧ dc1 ∧ dc2 ∧ · · · ∧ dcn ⇒ v 6= a.

As the constraint solver always know (although may be not explicitly) why
it removes a value from the domain of a variable, explanations can be computed
within the solver3 [12]. Thus, explanations computed by the solver account for

3 Notice that when a domain is emptied (i.e. a contradiction is identified), an expla-
nation for that situation is computed by uniting each explanation of each removal
of value of the variable concerned.

98 H. Cambazard and N. Jussien

the underlying logical chain of consecutive inferences made by the solver during
propagation. In a way, explanations provide an accurate trace of the behavior
of the solver as all operations are explained. In the following, Eval

i will denote
the set of all explanations computed from the start of the search for all differ-
ent removals of the value val of the variable i that have occurred throughout
search.

3.2 Characterizing Impact

The impact of a decision xi = a can be expressed, according to the first fail
principle, through the reduction of the search space implied in average by this
decision. Nevertheless, this reduction does not only occur when the decision is
posted to the problem but also when other (future) deductions that are partially
based on the hypothesis xi = a are made.

The use of explanations can provide more information on the real involvement
of the decision in the reduction. A past decision xi = a has an effective impact
(in the solver’s point of view) over a value val of variable xj if it appears in the
explanation justifying its removal.

We introduce now our new measures whose aim is to characterize the impact
of a decision not only based on the immediate search space reduction. We denote
Iα(xi = a, xj , val) the impact of taking decision xi = a on the value val of a
variable xj . α is an index used to distinguish our different measures.

Our first measure is expressed as the number of times a decision occurs in
a removal explanation for value val from variable xj . The size of the explana-
tion is also taken into account as it reflects directly the number of hypothe-
sis required to deduce the removal. Therefore, small explanations reveal strong
relationships.

I0(xi = a, xj , val) =
∑

{e∈Eval
j ,xi=a∈e}

1/ |e|

From this basic measure, we introduced different impact measures based on
the solver activity and the computation of explanations (measures I1 and I2) in
order to exhibit dynamic structures. We also designed a search space reduction
based measure (I3) in order to capture static structures and to help guiding
search. As search obviously direct propagation (and vice-versa), it seamed quite
natural to normalize this basic measure according to search.

– The impact is here normalized according to the number of times a decision
xi = a is taken during search: |xi = a|. We simply intend here to distinguish
frequent decisions (i.e. most likely recent ones) and hardly reconsidered ones
(i.e. most likely quite old ones):

I1(xi = a, xj , val) =

∑
{e∈Eval

j ,xi=a∈e}
1
|e|

|xi = a|

Identifying and Exploiting Problem Structures 99

– Another way to normalize is to consider the age4 ad
e of a decision d when

computing an explanation e with the aim of decreasing the impact of old
decisions. This leads to:

I2(xi = a, xj , val) =
∑

{e∈Eval
j ,xi=a∈e}

1
|e| × axi=a

e

– The computation of impacts is spread within the whole resolution process as
it is done during explanation computations. It is a quite different approach to
[16] which analyses each decision separately to get its instantaneous impact.
I3 tries to identify recurrent search space reduction associated to a decision:

I3(xi = a, xj , val) =

∑
e∈Eval

j ,xi=a∈e
1
|e|

|{xi = a active ∧ val ∈ Dom(xj)}|
I3(xi = a, xj , val) can be considered as the probability that the value val
of xj will be pruned if the decision xi = a is taken. It therefore considers
the number of time a removal could have been done and the number of time
it has been effectively done. This measure is therefore updated each time a
new removal occurs and as long as xi = a is active. It takes into account the
frequency as well as the proportion of the involvement of a decision within
explanations of removals.

3.3 From Fine-Grained Impact Measures to Relations Between
Variables

From the previous definitions, we can introduce different directed weighted graphs
of impacts GI(V,E) with weight I(x, y) for any couple (x, y) ∈ E = V × V . In
order to define those weights, fine-grained impact measure introduced above are
aggregated in the following way:

I(xi = a, xj) =
∑

val∈D(xj)

I(xi = a, xj , val)

where I(xi = a, xj , val) can be replaced by any of the 4 measures introduced
before ({Iα | α ∈ [0, 1, 2, 3]}).

We have a special case for I3, as it intends to relate the impact to the domain
reduction generated by a variable over another. Relating a variable and a decision
is therefore normalized considering the domain initial size of the variable:

I(xi = a, xj) = (|D(xj)| −
∑

val∈D(xj)

(1− I3(xi = a, xj , val)))/ |D(xj)|

In this context, 1− I3(xi = a, xj , val) corresponds to the probability of pres-
ence of the value val of the variable xj after taking xi = a.

4 The distance in the search tree from the decision to the resulting removal.

100 H. Cambazard and N. Jussien

The weight of an edge can now be computed in the following way :

I(xi, xj) =
∑

v∈D(xi)

I(xi = v, xj)

3.4 Overall Impact of a Given Decision

For measures I1 and I2, the overall impact of a decision is computed by accu-
mulating impacts over variables of the problem:

I(xi = a) =
∑

xj∈V

I(xi = a, xj)

As for measure I3, focus is made on the average search space reduction.
The current size P of the search space is the Cartesian product of the current
domains of variables. Therefore, the overall impact of a decision for the whole
problem is expressed through its effective search space reduction by considering
the probable remaining space after the decision ((Pbefore − Pafter)/Pbefore):

I(xi = a) = (P −
∏

xj∈V

∑

val∈D(xj)

(1− I3(xi = a, xj , val)))/P

3.5 An Illustrative Case

We take here a particular instance5 of the benchmark problems introduced later
in Section 4 in order to illustrate what kind of structures are isolated by our
impact measures. Moreover, we will describe how the retrieved information may
be used at the user level to investigate problems and instances.

We therefore consider a random binary problem in which a structure is in-
serted by increasing the tightness of some constraints in order to design several
subsets of variables with strong relationships. Random instances are character-
ized by the tuple < N, D, p1, p2 > (we use the classical B model [1]) where N
is the number of variables, D the unique domain size, p1 the density of the con-
straint network and p2 the tightness of the constraints. Here we consider N = 30,
D = 10, p1 = 50%. We design three subsets of 10 variables whose tightness is
p2 = 53% while it is set to 3% in the remainder of the network.

The specific instance we chose here to illustrate our different measures is inter-
esting because it seems harder to solve than expected for the mindom [8] classical
variable selection heuristic. Using the different measures of impact introduced
above, we would like to illustrate how several questions may be addressed when
facing a problem:

– is it possible without any network analysis to identify the structure embedded
within the instance ?

– why mindom is not performing as expected on this instance ? Is this due to
the instance or to the heuristic itself ?

5 One of the random generated problem with a given set of parameters.

Identifying and Exploiting Problem Structures 101

Visualizing the Impact Graph. Figures 1 to 4 show the impact graph GI of
the 30 variables involved in our instance. We use here a matrix-based represen-
tation [6]: variables are represented both on the rows and columns of the matrix.
The cell at the intersection of row i and column j corresponds to the impact of
the variable vj on the variable vi. The stronger the impact, the heavier the edge,
the darker the cell. The matrix is ordered according to the order of the hidden
kernel of variables6.

Notice that we start search by applying a kind of singleton consistency prop-
agation (every value of every variable is propagated [15]) to ensure that the
impacts of variables are homogenously initialized. Although the graph is almost
entirely connected, the matrix-based visualization depicted in Figure 1 makes it
possible to see very clearly the structure of the problem, i.e. the three sets of
variables having strong internal links, right after this first propagation step (we
use here the generic impact measure I0).

Fig. 1. The representation of the impact graph of variables at the end of the initial-

ization phase using I0 as measure of impact

Figure 2 depicts the impact graph after two minutes of search using mindom
as variable selection heuristic (using both I0 and I3). One can notice how I0

highly concentrates on dynamic structure (initial clusters are no longer visible
compared to Figure 1) whereas I3 is focused on the original static structure and
interestingly forgets the weak links. The darker area for I0 at the bottom left
corner shows that the variables in the first two sets have an apparently strong
influence on the variables belonging to the third set. This can be accounted
for by the fact that bad decisions taken early on the variables of the first sets
lead the solver into numerous try-and-fail steps on the variables of the third
set.

6 We are currently working on clustering algorithms [5] to discover this particular
ordering from the impact graph alone.

102 H. Cambazard and N. Jussien

Fig. 2. The impact graph using I0 (on the left) and I3 (on the right) after two minutes

of computation using the mindom heuristic

Fig. 3. A representation of the impact graph normalized according to the number of

times a decision is taken (I1)

Figure 3 represents a normalized representation of the same graph where
the influence of a decision taken by the solver is divided by the number of
times this decision occurred during the resolution (measure I1). By doing so,
we aim at refining the previous analysis by distinguishing two types of deci-
sions: those having a great influence because they are repeated frequently, and
those having a great influence because they guide the solver in some incon-
sistent branch of the search tree and appear in all inconsistency explanations.
We can thus isolate early bad decisions that seem to involve the second set of
variables.

Finally, Figure 4 represents the activity within the impact graph where the
effect of old decisions is gradually discarded. As expected, it appears that the

Identifying and Exploiting Problem Structures 103

Fig. 4. A representation of the impact graph normalized according to the age of deci-

sions (I2)

solver keeps going back and forth between the first and third set of variables,
with very negligible involvement of the second set. This must be related to poor
decisions taken on the variables of the second set.

In order to further confirm this interpretation, we adapted our search heuris-
tic so that it takes into account the impact of variables during the resolution and
undoes immediately decisions whose influence increase outstandingly (because
they appear in many explanations but do not provide any valuable pruning).
The problem was then solved almost instantaneously.

4 Using Impacts to Improve Search

In this section, we illustrate how the impact measure introduced above can be
used in order to improve search techniques. We use the impact measure in the
branching heuristics within a tree search: Upon branching, first, we choose the
variable x that maximizes

∑
a∈D(x) I(x = a) and second, for that variable, we

choose the value v that minimizes I(x = a) in order to allow a maximum possible
future assignments (D(x) is here the current domain of x). Ties are randomly
broken. As said earlier, impacts are initialized through the use of a singleton
consistency-like propagation.

Our experiments were conducted on a Pentium 4, 3 GigaHz, running Win-
dows XP. Our constraint solver is the most recent Java version of choco (choco.
sf.net). Notice that as we are using explanations, our tree search is not lim-
ited to standard backtracking but we actually use the mac-cbj algorithm (get-
ting higher in the search tree if it is possible upon encountering a contradic-
tion). In practice, the behavior is very close to mac and behaves as it was
only merely maintaining explanations. We considered three sets of benchmark
problems:

104 H. Cambazard and N. Jussien

1. The first set comes from experiments in [16]: a set of multiknapsack problems
modelled with binary variables. For this set a time limit of 1500s is consid-
ered. We focused here on the number of developed nodes7 as it is directly
related the relevance of the measure. Moreover, as randomness is introduced
in the problem solving when breaking ties, we report an average over 10
executions.

2. Our second set consists on random binary problems generated following
the classical B model (see Section 3.5) with the following parameters: <
50, 10, 30, p2 >. We considered here a time limit of 120s. We focus on the
number of unsolved instances within the time limit for each value of p2.

3. Our final set is made of random structured instances made as described in
Section 3.5. A problem < 45, 10, 35, p2 > is structured with three kernels
of 15 variables linked with an intra-kernel tightness p2 and an inter-kernel
tightness of 3%.

As for the impact measure, we compared three measures ({Iα | α ∈ [1, 2, 3]})
and our implementation of the measure introduced in [16] (denoted Iref). As
the measure completely specifies the search used, we will refer in the following
to the Iα and Iref strategies in the following.

4.1 First Benchmark: Multiknapsack Problems

On this first benchmark (whose results are reported on Table 1), Iref appears
to be the best search strategy. The use of explanations seems to provide good
information but it is a long term learning (it requires a restart policy) and is
much more costly (in time) so that it cannot solve the instance mknap1-6. I3 is
obviously too costly on this problem where near one million nodes need to be
explored. The number of nodes of mindom is given here as a reference.

Table 1. Impacts on multiknapsack problems

mindom Iref I3 I3+restart

Nodes Time Nodes Time Nodes Times Nodes

mknap1-2 38 0 25.9 0 23.1 0 23.1
mknap1-3 385 0.1 188.7 0.3 354.1 0.3 255.2
mknap1-4 16947 0.7 982.7 4.2 2754 3.2 979.5
mknap1-5 99003 11.2 21439.6 229.1 110666.4 112.8 20237.4
mknap1-6 21532776 425.7 612068 > 1500 > 1500

I1 and I2 are not accurate on these instances and maybe need a fine restart
policy as they attempt to detect irrelevant first choices. As mentioned by Refalo,
the use of restart only increases the overall computation time for Iref but seems
to be important for I3. I3 is indeed a fine-grained measure that maybe need
more time to become accurate for the search.

7 In the presented results, when a restart technique is used, only the number of nodes
of the last execution are reported whereas the overall time is indicated.

Identifying and Exploiting Problem Structures 105

Table 2. The number of unsolved instances (left) for each impact strategy on

< 50, 10, 30, p2 > and the percentage of succesfully solved instances (right)

0

20

40

60

80

100

21 22 23 24 25 26 27 28 29 30 31 p2

Nb unsolved
instances

Iref
I1
mindom
mindom + I2
mindom + Iref

strategy % success
Iref 36 %
I1 53.7 %
mindom 79 %
mindom + I2 86 %
mindom + Iref 92.9 %

4.2 Second Benchmark: Random Binary Problems

On this unstructured benchmark, the size of the domains (integer variables in-
stead of binary ones) gives to mindom better chances to make good choices. the
results (depicted in Figure 2) are not in favor of impact measures alone. How-
ever, their combination with mindom as a way of breaking equalities is much
more powerful and allow to solve around 93 % of instances over the whole phase
transition against 79 % for mindom alone. This combination avoids bad choices
for Iref which becomes the best technique whereas it was the worst one alone
(I1 could solve 17 % more instances than Iref). The use of restart generally
increases the overall computation time.

0

5

10

15

20

25

30

35

40

45

50

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69p2

Nb unsolved
instances

Iref
I3+rest
sat
mindom
I1-I2+rest

Fig. 5. Number of unsolved instances for different impact measures on random struc-

tured binary CSP only with the number of feasible instances (sat)

106 H. Cambazard and N. Jussien

4.3 Third Benchmark: Structured Random Binary Problems

On this set of problems, the Iref strategy seems to experience difficulties even
compared to the classical mindom heuristic. Figure 5 reports the number of in-
stances that were not successfully solved within the time limit of 120s. As restart
does not help the Iref strategy again on this problem but is effective for I3, only
the best results (i.e. with or without restart) of each technique are indicated.
The more impressive results here are obtained again by focusing on the dynamic
component of the inherent structure of the instances (i.e. using strategies I1 and
I2). That is the only way that all the instances could be successfully solved.
Notice that I3 gives better results than Iref despite its high cost.

The success of I1 and I2 may be due to the fact that the complexity of
this benchmark does not reside purely in the instances but is more due to the
level of the interaction with the search algorithm. The presence of such artificial
structures favors from our point of view a kind of heavy tailed behavior and
makes initial choices more critical. It can indeed be noticed on Figure 6 that I1

is sometimes subject to bad behavior which does not only appear at the transition
phase. The same phenomenon (on a larger scale) may be the cause of the poor
performance of Iref .

4.4 Impact-Based Heuristics: First Insights

I1 and I2 are strongly based on the solver activity during search (thus focus-
ing on the dynamic component of the instance structure). It generally pays off
using them on problems because (and that may be explains the relatively poor
performance of Iref in our benchmarks) they are able to detect past bad choices
(those whose influence increases outstandingly throughout search without lead-
ing to solutions) do be undone.

0

500

1000

1500

2000

2500

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 p2

time (ms)

0

10

20

30

40

50

60

70

80

90

100

I2+rest
I1+rest
sat

Fig. 6. Resolution time for I1 and I2 on random structured binary CSP with the number

of feasible instances (sat)

I3 is too costly (regarding time consumption) at the present time to be used
as a default heuristic but some interesting compromise between Iref and I3 may

Identifying and Exploiting Problem Structures 107

be designed: taking advantage of the general robustness of Iref while at the same
time avoiding heavy-tailed behavior due to bad initial choices.

5 Perspective: Automated Logic Based Benders
Decomposition in Constraint Programming

We are interested in Benders decomposition as it is intended for problems with
a specific structure and specially, a master-slave relationship between variables.
For us, the master set of variables could be restricted to a subset of variables
exhibiting a strong overall impact over the whole problem.

Usually, classical Benders cuts are limited to linear programming and are
obtained by solving the dual of the subproblem8 and therefore requires that
dual variables or multipliers to be defined to apply the decomposition. However,
[9] proposes to overcome this limit and to enlarge the classical notion of dual by
introducing an inference dual available for all kinds of subproblems. He refers
to a more general scheme and suggests a different way of considering duality: a
Benders decomposition based on logic.

However this inference dual must be implemented for each class of prob-
lems to derive accurate Benders cuts [10, 4]. One way of thinking the dual is
to consider it as a certificate of optimality or an explanation (as introduced
in Section 3.1) of inconsistency in our case. Our explanation-based constraint
programming framework therefore provides in a sense an implementation of the
logic based Benders decomposition in case of satisfaction problems [4]. One can
notice here as the computation of explanations is lazy9, the first explanation
is taken whereas several explanations exist. One cannot look for the minimal
explanation for evident scalability reasons. Therefore, such an inference dual
provides an arbitrary10 dual solution but not necessarily the optimal one. Obvi-
ously, the success of such an approach depends on the degree to which accurate
explanations can be computed for the constraints of the subproblem.

Explanation-based constraint programming as used in algorithms like mac-dbt
[13] or in decision-repair [14] kind of automatically focus on the master prob-
lem of such a decomposition but may be trapped by bad decisions and revert to
a more conventional behaviour. The next step would be here to use the structure
exhibited from the impact graphs presented above in order to apply a Benders
decomposition scheme in a second phase of resolution. The identification of sub-
structures once the master instantiated could guide the generation of cuts for
the master to gather as much information as possible where lies the real combi-
natorics of the problem.

8 Referring to linear programming duality.
9 Not all possible explanations are computed when removing a value. Only the one

corresponding to the solver actual reasoning is kept.
10 This can also be accounted for linear duality where any dual solution is a bound for

the primal problem.

108 H. Cambazard and N. Jussien

6 Conclusion

In this paper, we introduced several indicators useful for both identification and
use while searching of key structures at the heart of combinatorial problems. We
focused our study on the relationship between variables and gave new perspec-
tives on the design of generic search heuristics for constraint programming as
well as search algorithms. We believe that the presence of backdoors or subset of
variables exhibiting a strong impact over the whole problem could be explicitly
used by ad hoc decomposition or relaxation strategies inspired from Operation
Research. A concrete example is the Benders decomposition and its generic ex-
tension based on logic. It is indeed exactly a backdoors technique and could be
applied in Constraint Programming as a nogood learning strategy.

References

1. D. Achlioptas, L. Kirousis, E. Kranakis, D. Krizanc, M. Molloy, and Y. Stamatiou.
Random constraint satisfaction: a more accurate picture. In Proceedings CP 1997,
pages 121–135, Linz, Austria, 1997.

2. J. F. Benders. Partitionning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

3. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search
by weighting constraints. In Proceedings ECAI’04, pages 482–486, 2004.

4. Hadrien Cambazard, Pierre-Emmanuel Hladik, Anne-Marie Déplanche, Narendra
Jussien, and Yvon Trinquet. Decomposition and learning for a real time task
allocation problem. In Proceedings CP 2004, pages 153–167, 2004.

5. G. Cleuziou, L. Martin, and C. Vrain. Disjunctive learning with a soft-clustering
method. In ILP’03:13th International Conference on Inductive Logic Programming,
pages 75–92. LNCS, September 2003.

6. Mohammad Ghoniem, Narendra Jussien, and Jean-Daniel Fekete. VISEXP: visu-
alizing constraint solver dynamics using explanations. In Proceedings FLAIRS’04,
Miami, Florida, USA, May 2004.

7. Carla P. Gomes, Bart Selman, and Nuno Crato. Heavy-tailed distributions in
combinatorial search. In Proceeding CP 1997, pages 121–135, Linz, Austria, 1997.

8. R. Haralick and G. Elliot. Increasing tree search efficiency for constraint satisfac-
tion problems. Artificial intelligence, 14(9):263–313, 1980.

9. J.N. Hooker and G. Ottosson. Logic-based benders decomposition. Mathematical
Programming, 96:33–60, 2003.

10. Vipul Jain and I. E. Grossmann. Algorithms for hybrid milp/cp models for a class
of optimization problems. INFORMS Journal on Computing, 13:258–276, 2001.

11. Narendra Jussien. The versatility of using explanations within constraint program-
ming. Habilitation thesis, Université de Nantes, France, 2003. also available as
RR-03-04 research report at École des Mines de Nantes.

12. Narendra Jussien and Vincent Barichard. The PaLM system: explanation-based
constraint programming. In Proceedings of TRICS: Techniques foR Implementing
Constraint programming Systems, a post-conference workshop of CP 2000, pages
118–133, Singapore, September 2000.

13. Narendra Jussien, Romuald Debruyne, and Patrice Boizumault. Maintaining arc-
consistency within dynamic backtracking. In Proceedings CP 2000, pages 249–261,
Singapore, 2000. Springer-Verlag.

Identifying and Exploiting Problem Structures 109

14. Narendra Jussien and Olivier Lhomme. Local search with constraint propagation
and conflict-based heuristics. Artificial Intelligence, 139(1):21–45, July 2002.

15. P. Prosser, K. Stergiou, and T. Walsh. Singleton consistencies. In R. Dechter,
editor, Proceedings CP 2000, pages 353–368, Singapore, 2000.

16. Philippe Refalo. Impact-based search strategies for constraint programming. In
Proceedings CP 2004, pages 556–571, Toronto, Canada, 2004.

17. Ryan Williams, Carla Gomes, and Bart Selman. On the connections between back-
doors and heavy-tails on combinatorial search. In In the International Conference
on Theory and Applications of Satisfiability Testing (SAT), 2003.

18. Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors to typical case
complexity. In Proceedings IJCAI 2003, 2003.

	Introduction
	The Idea of Exploiting Problem Structures Within Search Strategies
	Identifying Problem Structure Using Explanations
	Explanations for Constraint Programming
	Characterizing Impact
	From Fine-Grained Impact Measures to Relations Between Variables
	Overall Impact of a Given Decision
	An Illustrative Case

	Using Impacts to Improve Search
	First Benchmark: Multiknapsack Problems
	Second Benchmark: Random Binary Problems
	Third Benchmark: Structured Random Binary Problems
	Impact-Based Heuristics: First Insights

	Perspective: Automated Logic Based Benders Decomposition in Constraint Programming
	Conclusion
	References

