
The Temporal Knapsack Problem
and Its Solution

Mark Bartlett1, Alan M. Frisch1, Youssef Hamadi2, Ian Miguel3,
S. Armagan Tarim4, and Chris Unsworth5

1 Artificial Intelligence Group, Dept. of Computer Science,
Univ. of York, York, UK

2 Microsoft Research Ltd., 7 J J Thomson Avenue,
Cambridge, UK

3 School of Computer Science, University of St Andrews,
St Andrews, UK

4 Cork Constraint Computation Centre, Univ. of Cork,
Cork, Ireland

5 Department of Computing Science,
University of Glasgow, UK

Abstract. This paper introduces a problem called the temporal knap-
sack problem, presents several algorithms for solving it, and compares
their performance. The temporal knapsack problem is a generalisation
of the knapsack problem and specialisation of the multidimensional (or
multiconstraint) knapsack problem. It arises naturally in applications
such as allocating communication bandwidth or CPUs in a multiproces-
sor to bids for the resources. The algorithms considered use and combine
techniques from constraint programming, artificial intelligence and op-
erations research.

1 Introduction

This paper defines the temporal knapsack problem (TKP), presents some algo-
rithms for solving it and compares the performance of the algorithms on some
hard instances. TKP is a natural generalisation of the knapsack problem and a
natural specialisation of the multi-dimensional knapsack problem. Nonetheless,
it is—as far as we know—a new problem.

In the TKP a resource allocator is given bids for portions of a timeshared
resource — such as CPU time or communication bandwidth — or a shared-
space resource — such as computer memory, disk space, or equivalent rooms in
a hotel that handles block-booking. Each bid specifies the amount of resource
needed, the time interval throughout which it is needed, and a price offered for
the resource. The resource allocator will, in general, have more demand than
capacity, so it has the problem of selecting a subset of the bids that maximises
the total price obtained.

We were initially drawn to formulating the TKP from our interest in ap-
plying combinatorial optimisation techniques in the context of grid computing.

R. Barták and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 34–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Temporal Knapsack Problem and Its Solution 35

Applications that use a grid simultaneously require different resources to per-
form large-scale computations. An advanced-reservation system will be used to
guarantee a timed access to resources through some service level agreement [1].

The agreement is reached via negotiation, where end users present reserva-
tion bids to resource providers. Each bid specifies the resource category, start
time, end time and required quality of service (e.g., bandwidth, number of
nodes) [2]. If end users offer a price they are willing to pay for the resource,
advanced reservation allocation in a grid infrastructure becomes equivalent to
the TKP.

Our algorithms are designed to be used by a resource provider to select ef-
ficiently the right subset of customers with respect to resource requirements
and the provider’s utility. So far advanced reservation is not used in grid in-
frastructures, which still use specialised fifo scheduling policies inherited from
high-performance computing. However, the convergence between web services
and grid computing, combined with the arrival of the commercial grid, make the
efficient use of valuable resources critical [3]. Our algorithms fit well into next-
generation grids and represent the first attempts towards efficient grid resource
schedulers.

2 The Temporal Knapsack Problem

A formal statement of the TKP is given in Figure 1. Here, and throughout,
bids(t) is {b ∈ bids|t ∈ duration(b)}. It is important to notice that TKP is not
a scheduling problem.

Figure 2(a) illustrates an instance of TKP that has seven bids, b1, . . . , b7,
and 10 times, t1, . . . , t10, which are displayed on the x-axis. The instance has a
uniform capacity of 10, which is not shown. The optimal solution to this instance
is to accept bids b1, b4, b5, and b6, yielding a total price of 22.

The traditional knapsack problem, as overviewed by Martello and Toth [4],
is a special case of TKP in which there is only a single time. Since the knapsack
problem, which is NP-hard, is a special case of TKP, TKP is also NP-hard.

Given: times, a finite, non-empty set totally ordered by ≤
for each t ∈ times, capacity(t), a positive integer
bids, a finite set
for each b ∈ bids,

price(b), a positive integer
demand(b), a positive integer
duration(b) = [start(b), end(b)], a non-empty interval of times

Find: a set accept ⊆ bids
Such that: ∀t ∈ times,

∑
b∈(accept∩bids(t)) demand(b) ≤ capacity(t)

Maximising:
∑

b∈accept price(b)

Fig. 1. Definition of the temporal knapsack problem

36 M. Bartlett et al.

Fig. 2. An instance of the temporal knapsack problem to which the reduce operator is

applied

The multidimensional knapsack problem (MKP, also known as the multi-
constraint knapsack problem), as overviewed by Fréville [5], is a generalisation
of TKP. Each time and bid in the TKP corresponds, respectively, to a dimen-
sion and an item in MKP. If t1, . . . , tn are the times in TKP, then every bid
b corresponds to an item in MKP whose size is an n-dimensional vector of
the form 〈0 · · · 0 demand(b) · · · demand(b) 0 · · · 0〉 and the MKP capacity is the
n-dimensional vector 〈capacity(t1) · · · capacity(tn)〉. Since TKP polynomially-
reduces to MKP, which is NP-easy, TKP is also NP-easy.

TKP readily reduces to integer linear programming. An instance of TKP
generates the integer linear program that has a 0/1 variable Xb for each bid b:

Maximise:
∑

b∈bids

price(b) · Xb

Subject to:
∑

b∈bids(t)

demand(b) · Xb ≤ capacity(t), for each t ∈ times

Xb ∈ {0, 1}, for each b ∈ bids

Each solution to this integer linear program corresponds to an optimal solution
to the TKP in which bid b is accepted if and only if Xb is assigned 1.

The Temporal Knapsack Problem and Its Solution 37

It shall often be convenient to switch between a TKP formulation, as given
in Figure 1, and its linear programming formulation. To do this readily, it is
important to notice that each time t produces one linear constraint; we shall
refer to this as the constraint at t.

3 The Decomposition Algorithm

A decomposition algorithm for solving the TKP is presented here in three stages
of increasing detail. Sec. 3.1 gives the algorithm as a non-deterministic proce-
dure, which implicitly defines a search tree. Sec. 3.2 presents two methods for
searching the tree for an optimal solution. Finally, Sec. 3.3 explains how linear
programming is used to compute cuts, upper bounds, lower bounds and variable
assignments, all of which are used to prune the search space.

3.1 A Non-deterministic Algorithm

Starting with all bids unlabelled, the decomposition algorithm records the solu-
tion by labelling each bid either “accept” or “reject.” The algorithm employs
three basic operations: reduce, which simplifies a problem instance; branch,
which generates one branch in which an unlabelled bid is labelled “accept” and
another branch in which that bid is labelled “reject”; and split, which decom-
poses a problem instance into smaller, independent problem instances. Let us
begin by exemplifying the three operators.

The reduce operator performs two kinds of simplification. The first kind re-
moves from the problem instance any bid b whose demand exceeds the capacity
available at some time t in the duration of the bid. The operator labels all
removed bids with “reject.” This simplification corresponds to the constraint
programming operation of achieving bound consistency on the constraint at t
by removing the value 1 from the domain of Xb. For example, in the instance
of Figure 2(a), bid b2 has demand 11 at t1, t2 and t3, yet the capacity at these
times is only 10. So, the reduce operator removes b2 from the instance and labels
it “reject,” which results in the instance shown in Figure 2(b).

The second kind of simplification removes unnecessary times from the in-
stance. In the instance of Figure 2(b), at times t1, t5, t6, t7 and t10 the total
demand does not exceed the capacity. Hence the constraints at these four times
are satisfied in all assignments to the variables; in constraint programming ter-
minology, they are entailed. Hence these times can be removed from the instance
and from the durations of all bids. The result of this is that the duration of bid
b5 is now the empty set, meaning that b5 participates in no constraints. Hence,
b5 is accepted in all optimal solutions. (In constraint programming terminology,
any feasible solution that rejects b5 is dominated by another feasible solution
that is identical except that it accepts b5.) Thus, the reduce operator removes
b5 from the instance and labels it “accept,” resulting in the instance displayed
in Figure 2(c).

There is a second method by which the reduce operator removes times from
an instance. It is often the case that two adjacent times have the same bids. In

38 M. Bartlett et al.

such a case the time with the larger capacity imposes a weaker constraint and
therefore can be removed; if the two times have the same capacity, then either
time can be removed. In the instance of Fig. 2(c), t2 and t3 impose the same
constraint as do t8 and t9. Thus, t3 and t9 can be removed from the instance,
resulting in the instance of Figure 2(d).

The split operator decomposes a problem instance into subproblems that can
be solved independently. A split can be performed between any two adjacent
times, t and t′, such that bids(t) ∩ bids(t′) = ∅. In the instance of Fig. 2(d),
a split can be made in between t4 and t8 resulting in two subproblems: one
comprising times t2 and t4 and bids b1, b3 and b4; and a second comprising time
t8 and bids b6 and b7. Splitting is rarely used in constraint programming, though
two recent exceptions are the work of Walsh [6] and of Marinescu and Dechter
[7].

The branch operator is the familiar one from constraint programming, arti-
ficial intelligence and operations research. A bid b is selected, it is then removed
from the problem and two branches are generated: one in which b is labelled
“reject” and the other in which it is labelled “accept.” On the accept branch,
demand(b) must be subtracted from the capacity at all times in duration(b).

The decomposition algorithm, which applies the previous operations, is shown
as Algorithm 1. This performs some initialisation and then calls the recursive
procedure Solve.

Algorithm 1: Decomposition
Input: P , an instance of TKP;
Reduce(P);
Split(P) into set of problems S;
for (s ∈ S) do Solve(s);

Procedure Solve(P); (where P is an instance of TKP)
if bids = ∅ then return;
else

Select a bid b from bids;
Non-deterministically do one of;
(1) RejectBid(b);

Reduce(P);
Split(P) into set of problems S;
for s ∈ S do Solve(s)

(2) AcceptBid(b);
Reduce(P);
Split(P) into set of problems S;
for s ∈ S do Solve(s)

Let us now turn our attention to the four procedures used in the de-
composition algorithm: RejectBid, AcceptBid, Reduce and Split. The algo-
rithms for these support procedures are given in Algorithm 2. In this discus-
sion, and throughout, let Demand(t) be the total demand at time t—that is

The Temporal Knapsack Problem and Its Solution 39

Algorithm 2: Support Procedures for the Decomposition Algorithm
Procedure RejectBid(b : bids);
label b reject;
remove b from bids;

Procedure AcceptBid(b : bids);
label b accept;
remove b from bids;
for t ∈ duration(b) do subtract demand(b) from capacity(t);

Procedure Reduce(P);
for b ∈ bids do TestForcedReject(b);
for t ∈ times do if Demand(t) ≤ capacity(t) then RemoveTime(t);
if |times| ≥ 2 then

set ta to min(times);
while ta �= max(times) do

set tb to next(ta);
if bids(ta) = bids(tb) then

if capacity(ta) ≥ capacity(tb) then RemoveTime(ta); set ta to tb

else RemoveTime(tb)

else set ta to tb

Procedure Split(P);
Let ta and tb be two times such that next(ta) = tb and bids(ta) ∩ bids(tb) = ∅;
if no such times exist then return(P);
else

Let P1 be the TKP instance with times {t|t ≤ ta} and bids {b|end(b) ≤ ta};
Let P2 be the TKP instance with times {t|t ≥ tb} and bids {b|start(b) ≥ tb};
return(Split(P1) ∪ Split(P2))

Procedure RemoveTime(t : times);
remove t from times;
for b ∈ bids(t) do

remove t from duration(b);
if duration(b) = ∅ then AcceptBid(b)

Procedure TestForcedReject(b:bids);
if for some t ∈ duration(b), demand(b) > capacity(t) then RejectBid(b)

∑
b∈bids(t) demand(b). Also let next(t) be the smallest time strictly greater than

t; next(t) is undefined if t is the largest time.
RejectBid(b) and AcceptBid(b) are simple; both label bid b appropriately and

remove it from the problem instance. In addition, AcceptBid(b) must subtract
the demand of the bid from the resource capacities available. Recall that reduce
performs two kinds of simplification: (1) removing bids that must be rejected
(forced rejects) and (2) removing unnecessary times, which may lead to removing

40 M. Bartlett et al.

bids that must be accepted (forced accepts). This is achieved by performing (1)
to completion and then performing (2) to completion. Once this is done, there is
no need to perform (1) again; doing so would not force any more rejects. In fact,
it can be shown (though space precludes doing so here) that every time Solve is
invoked it is given an instance such that

– ∀t ∈ times ∀b ∈ bids(t) demand(b) ≤ capacity(t),
– ∀t ∈ times capacity(t) < Demand(t),
– ∀b duration(b) �= ∅ and
– ∀t, t′ ∈ times t′ = next(t) =⇒ bids(t) �= bids(t′).

An instance that has these properties is said to be reduced since performing
the Reduce operator on the instance would have no effect. For each the two
occurrences of Reduce in Solve we have implemented a significant simplification
of the operator by considering the context in which it occurs.

As presented, the decomposition algorithm defines an AND/OR search tree.1

Each node consists of a TKP instance. The root node is an AND node and
comprises the initial problem instance. Every leaf node comprises a TKP instance
with no bids. The children of an AND node are the (one or more) instances
generated by applying the Split operator to the AND node. The set of feasible
solutions to an AND node is the cross product of the feasible solutions of its
children. Each child of an AND node is an OR node. Each OR node, other than
the leaves, has two children generated by the branching in the algorithm—one
child in which a selected bid is accepted and one in which that bid is rejected.
The set of feasible solutions of an OR node is the union of the feasible solutions
of its children.

The Decomposition Algorithm is correct in that the feasible solutions of the
AND/OR search tree include all optimal solutions. The feasible solutions of the
tree generally contain non-optimal solutions, which is obvious once one notices
that the non-deterministic algorithm does not use the price of the bids. The next
section considers how to explore the tree to find an optimal solution and how to
use bounds on the objective function to prune the tree during the exploration.

3.2 The Search Strategy

This section explains how the standard branch-and-bound framework for OR
trees can be adapted to handle AND/OR trees, such as those of the previous
subsection. We refer this adapted framework as AOBB. The framework does not
specify how the algorithm should choose the next node to be expanded. To do
this, we currently employ two strategies: the AO* algorithm described by Nils-
son [9] (which is itself based on an algorithm of Martelli and Montanari [10]),
and a depth-first algorithm. The AO* search strategy is an extension of the A*
algorithm to AND/OR search spaces, and retains two important properties of
A*: the first feasible solution found is guaranteed to be an optimal one, and no

1 The idea that a non-deterministic program implicitly defines an AND/OR tree was
used in the very first paper published in the journal Artificial Intelligence [8].

The Temporal Knapsack Problem and Its Solution 41

algorithm that is guaranteed to find an optimal solution expands fewer nodes
than AO* [11]. The drawback of AO* is that it requires a large amount of mem-
ory; the number of nodes in memory is Ω(2|bids|). In contrast, depth-first search
stores only Ω(|bids|) nodes. However, in general, depth-first search explores more
nodes than necessary to determine an optimal solution.

As with other branch-and-bound algorithms, AOBB stores at each search
node an upper and lower bound on the objective function value for the TKP in-
stance at that node. The AOBB algorithm repeatedly (1) selects an unexpanded
OR node, (2) expands the OR node and then its children, and (3) propagates
new bounds through the tree and uses these bounds to prune the tree. It per-
forms this sequence of three stages until the tree contains no nodes to expand,
at which point the result of the pruning is that the tree contains nothing but
an optimal solution. Notice that whenever an OR node is expanded its children
(which are AND nodes) are immediately expanded, producing OR nodes. Thus,
the search tree’s new leaves are always OR nodes. The only time an AND node
is a leaf is at the start when the tree contains only the root node. Let us now
consider the three major stages in more detail.

Stage 1: The node to process next is found. This is where AO* and
depth-first differ. AO* selects a leaf node by descending the search tree, starting
at the root and taking the child with the highest upper bound at an OR node.
AO* allows any child to be taken at an AND node; our implementation takes the
child with the largest spread between its upper and lower bounds. It is important
to notice that successive descents can take different paths from a node since the
node’s bounds may change between the descents.

In contrast, when depth-first search expands a node its children are ordered
from left to right and this ordering is fixed throughout the execution. Depth-
first descends from the root node by always taking the left-most child that has
unexpanded descendants. Depth-first search allows the children to be ordered in
any manner. Our implementation orders the children of an OR node from left to
right so that their upper bounds are non-decreasing and the children of an AND
node so that the spread between their upper and lower bounds is non-decreasing.

Stage 2: The node is processed and expanded. The node found by the
above stage will be either an OR node or the root node.

In the case of the root node, the resulting problem is reduced and split to
form a set of child nodes, which are OR nodes, each containing independent
subproblems. For each of these OR nodes, an upper and lower bound on its
objective function value is obtained through solving the linear relaxation of the
TKP at the node. As explained in the next subsection, at each OR node this
linear program is also used to calculate three cuts (implied constraints in con-
straint programming terminology): a Gomory mixed-integer cut, a reduced costs
constraint and a reversed-reduced-cost constraint. The Gomory cut is added to
the linear programming form of the problem at the node and at all of its future
descendents. This cut reduces the feasible region of the linear program without
removing any integer solutions. Bounds consistency is enforced on all three cuts,
which might determine the value of certain variables, i.e., whether a bid should

42 M. Bartlett et al.

be accepted or rejected. The RejectBid and AcceptBid operators are performed
as appropriate, followed by the Reduce operator.

In the case of the node to expand being an OR node, an unlabelled bid is
chosen to branch on, and two child AND nodes are created, one in which the
bid is labelled “accept” and one in which it is labelled “reject.” Both of these
AND nodes are then processed and expanded in the same way as described for
the root node. By expanding an OR node and both its children in a single stage
in this way, the algorithm gains efficiency.

Stage 3: The new bound values are propagated and the tree is
pruned. Starting at the OR nodes just created and working up the tree to the
root, the value of the upper bound (ub) and the lower bound (lb) are updated
for each node as follows.

ub(n) =

{
maxn′∈children(n)(ub(n′) + a(n, n′)) if n is an OR node
∑

n′∈children(n)(ub(n′) + a(n, n′)) if n is an AND node

lb(n) =

{
maxn′∈children(n)(lb(n′) + a(n, n′)) if n is an OR node
∑

n′∈children(n)(lb(n
′) + a(n, n′)) if n is an AND node

where a(n, n′) is the sum of the prices of all bids accepted in moving from node
n to node n′, and children(n) is the set of nodes that are children of n.

As this stage assigns and reassigns bounds, it checks to see if any OR node
has one child whose upper bound does not exceed the lower bound of the other
child. In such a case the best solution from the first child can be no better than
that of the second child, so the first child and all its descendants are removed
from the tree.

Having seen how the three stages operate, the last search issue that must
be addressed is that of how bids are chosen for branching in Stage 2. We have
tried two strategies for this. The demand strategy, chooses a bid with the high-
est demand. The intuition behind this is that labelling a bid with high de-
mand is likely to lead to more propagation than one with low demand. The
second strategy, called force-split is designed to yield nodes that can be split,
preferably near the center. This strategy searches the middle half of the times
for a pair of adjacent times, t and t′, that minimises the cardinality of S =
bids(t)∩bids(t′); ties are broken in favour of the time nearest the center. The al-
gorithm then branches on each bid in S in non-increasing order of their demands.
This sequence of branches generates leaf nodes that can each be split between t
and t′.

3.3 Generating Cuts and Bounds

This section explains how we use linear programming to generate cuts and
bounds on the objective function value. The presentation assumes the reader
is familiar with the basic theory underlying linear programming, such as that
which is presented by Chvatal [12].

As shown in Section 2, a TKP instance can be represented as an integer linear
program. This enables us to generate cuts that reduce the size of the feasible

The Temporal Knapsack Problem and Its Solution 43

region for TKP without eliminating any potential integer solutions. To enhance
the given search strategy, we employ the well-known Gomory mixed-integer cut
(GMIC), which is considered one of the most important classes of cutting planes
(see [13]).

Using the results from the linear relaxed TKP model (0 ≤ Xb ≤ 1, ∀b ∈ bids)
and an objective function value z of a known feasible integer solution, a valid
GMIC [14] for the TKP model can be written as

zU� − z ≥
∑

fi≤f0
i∈N1

−ri�Xi +
∑

fj≤f0
j∈N2

rj�(1 − Xj) +
∑

fi>f0
i∈N1

(

−ri� +
fi − f0

1 − f0

)

Xi +

∑

fj>f0
j∈N2

(

rj� +
fj − f0

1 − f0

)

(1 − Xj) +
∑

fk≤f0
k∈S

−rk�sk +
∑

fk>f0
k∈S

(

−ri� +
fk − f0

1 − f0

)

sk

where, N1 (N2) is the set of indices for non-basic variables at their lower (up-
per) bounds; S, the set of slack variables s; r, the reduced costs; and zU , the
objective value of the linear relaxation model. It is clear that zU provides an up-
per bound for the linear mixed integer TKP. In this notation, f0 = zU −
zU�;
fi = −ri −
−ri�, ∀i ∈ N1; and fj = rj −
rj�, ∀j ∈ N2.

The generated GMICs are added to the linear relaxed TKP instance and
all its descendants in the search tree. Each added GMIC removes some of the
non-integer solutions from the relaxed feasible region, but none that are integer.
This also helps to improve the upper bound zU .

We also employ the “reduced costs constraints” (RCC) and “reverse-reduced
costs constraints” (R-RCC) discussed by Oliva et al. [15]. Following their work,
the “pseudo-utility criterion” is used to obtain a reasonably good feasible so-
lution. This criterion is computationally cheap, especially once the solution to
the linear relaxation is known and the optimal values of the dual variables,
λ, are determined. In this criterion all Xb are sorted in non-increasing order of
price(b)/(demand(b) ·∑t∈duration(b) λt) and the demands are satisfied in this or-
der, as long as there is enough capacity. The resulting objective function value,
denoted by zL, yields a lower bound for the optimum z. From

z −
∑

i∈N1

riXi +
∑

j∈N2

rj(1 − Xj) −
∑

k∈S

rksk = zU ,

one can devise two useful constraints: RCC on the right, and R-RCC on the
left.

zU − zU+ ≤ −
∑

i∈N1

riXi +
∑

j∈N2

rj(1 − Xj) −
∑

k∈S

rksk ≤ zU − zL

where zU+ represents an upper bound which is stronger than the one provided
by the linear relaxation (zU). Such an upper bound can be obtained by using a
“surrogate relaxation”. In our case, this relaxation consists of adding together
all of the constraints weighted with their associated dual values.

44 M. Bartlett et al.

The aforementioned cuts and constraints are used for propagation purposes.
By enforcing bounds consistency, the domains of decision variables including
slacks are filtered and in certain cases are reduced to a singleton. Bounds consis-
tency on a RCC/R-RCC constraint of the form a ≤ ∑

i bixi +
∑

j cj(1−xj) ≤ d
gives the following additional bounds on the domains of the variables xp ∈ N1∪S
and xq ∈ N2:

⌈
a − ∑

i bi −
∑

j cj + bp

bp

⌉

≤ xp ≤
⌊

d

bp

⌋

and

1 −
⌊

d

cq

⌋

≤ xq ≤ 1 −
⌈

a − ∑
i bi −

∑
j cj + cq

cq

⌉

.

The GMIC works in a manner similar to RCC.

4 Performance Comparison

This section compares the effectiveness of three algorithms at solving a range of
randomly-generated TKP instances. The algorithms considered are:

– the decomposition algorithm using AO* search with the forced-split variable-
selection strategy;

– the decomposition algorithm using depth-first search with the forced-split
variable-selection strategy; and

– the integer linear program solver provided by CPLEX version 8.1 with the
default settings. The solver uses a branch-and-cut algorithm — branch-and-
bound augmented by the use of cuts. After an initial “presolve” phase, which
removes redundant constraints and attempts to tighten the bounds on the
variables, the solver creates a tree, whose root contains the linear relaxation
of the problem, and proceeds to expand nodes of this tree until an optimal
integer solution has been found. At each node, the linear relaxation of the
problem at that node is solved. If this leads to a solution in which some
variables have fractional values, a selection of cuts are generated and added
to the problem. The problem is then solved again, and if some variables are
still non-integer, one is chosen to branch on, producing one child with the
chosen variable set to 1 and another with it set to 0.

Preliminary experiments showed that the decomposition algorithm consistently
performed better with forced-split selection than with demand selection. This
is the case for both AO* search and depth-first search. Consequently, extensive
experiments were not performed for the demand strategy.

Our method for randomly generating TKP instances is controlled by six
parameters: ntimes, max length, max demand, ucapacity, max rate and nbids.
These are all integers, except max rate, which is a floating point number. Given
these parameters, an instance is generated that has times = {t1, . . . tntimes},
ordered in the obvious way, a uniform capacity of ucapacity, and nbids bids.

The Temporal Knapsack Problem and Its Solution 45

Each bid within an instance is generated by randomly choosing its start time,
end time, demand and rate from a uniform distribution over the following ranges:

start(b) ∈ [1, ntimes],
end(b) ∈ [start(b),max(ntimes, start(b) + max length − 1)],
demand(b) ∈ [1,max demand],
rate(b) ∈ [1,max rate].

All of these are integers except that rate(b) is a floating point number. From
these values, we set price(b) to round(rate(b)·demand(b)·(end(b)−start(b)+1)).

Performance was assessed on a set of randomly-generated instances in which
most factors affecting complexity were kept static,

ntimes = 2880,
max length = 100,
max demand = 50,
ucapacity = 400,

while varying the values of two parameters: nbids and max rate. The value 2880
corresponds to the number of 15 minute slots in 30 days. By varying max rate
from 1.0 to 2.0 in increments of .2, and then further increasing its value to 4, 8
and 16, and by varying nbids from 400 to 700 in increments of 50, we generated
63 problem suites, each containing 20 instances. By using these parameter values,
we have focussed the majority of our experiments on instances generated with
max rate between 1 and 2, but also consider instances with larger values of
max rate in order to show the effect this parameter has over a greater range.

Figure 3 shows the mean solution time taken by each algorithm for all gen-
erated instances in which there are a given number of bids and max rate ≤ 2,
The graph reveals that for the problems with the lowest number of bids, both
decomposition algorithms outperform the CPLEX solver. However, as the prob-
lem size increases, the performance of the decomposition algorithms deteriorates
faster than that of CPLEX. The AO* algorithm is unable to solve some instances

 0.1

 1

 10

 100

 400 450 500 550 600 650 700

M
ea

n
So

lu
tio

n
T

im
e

(s
)

Number of Bids

AO*
Depth First
CPLEX

Fig. 3. Mean time taken to solve instances with a given number of bids

46 M. Bartlett et al.

 0.1

 1

 16 8 4 2 1

M
ea

n
So

lu
tio

n
T

im
e

(s
)

Maximum Rate

AO*
Depth First

CPLEX

Fig. 4. Mean time taken to solve instances with a given range of rates

with 600 bids as it encounters memory problems and thrashes badly. The depth-
first algorithm and CPLEX are both capable of solving all instances with up to
and including 650 bids, but encounter problems on some instances with 700 bids;
CPLEX through encountering memory-shortage problems and depth-first search
through the exceptionally long time required to solve some problem instances.

Figure 4, shows the performance of the three algorithms on all instances in
which max rate has a given value and nbids ≤ 550. The graph shows that for
smaller values of max rate, on average the CPLEX solver performs best, followed
by the AO* algorithm, with the depth-first exploration proving worse. However
for larger values of max rate the AO* and depth-first algorithms clearly out-
perform the CPLEX solver. It is worth noting that the performance of CPLEX,
unlike the other two programs, is barely affected by the value of max rate.

While we have reported mean solution time throughout, it should be men-
tioned that these are influenced strongly by the extremely long run times required
for a few of the instances. For most problem suites, the algorithms solve most in-
stances in very short times; however for a few instances substantially longer is
taken, resulting in these instances having a large influence on the mean. Despite
this, we report mean times rather than median times (which would not be affected
by these extreme values) as the frequency of the very hard instances increases with
both increasing numbers of bids and decreasing max rate, and their frequency is
a significant component of the difficulty of a particular problem suite.

5 Conclusion and Future work

This paper has defined the temporal knapsack problem and identified it as a
formalisation of some problems that naturally arise in making advanced reserva-
tions. The TKP specialises the multidimensional knapsack problem by imposing
a temporal structure.

We have designed a special-purpose algorithm for solving the TKP. Its novel
feature is that it exploits the temporal structure to decompose problem instances

The Temporal Knapsack Problem and Its Solution 47

into subproblems that can be solved independently. It also uses a branching
method that is designed to increase the frequency with which decompositions are
made. The decomposition algorithm combines techniques from constraint pro-
gramming (e.g., bound consistency, entailed constraints), artificial intelligence
(e.g., AND/OR search spaces and the AO* and depth-first methods for search-
ing them) and operations research (e.g., linear relaxations, cuts, branch and
bound).

The TKP readily reduces to integer linear programming, which can be solved
with an off-the-shelf system such as CPLEX.

Our experiments compared the time it takes to solve randomly-generated
instances of TKP with three algorithms: CPLEX and the decomposition algo-
rithm with both AO* search and depth-first search. CPLEX and decomposition
with AO* search are effective on instances with approximately 650 and 550
bids, respectively, but encounter space problems on larger instances. Decompo-
sition with depth-first search is effective on instances with approximately 650
bids but runs slowly on larger instances, though it does not encounter space
problems.

In comparing these solution programs one must consider that the algorithms
and implementation of CPLEX have been refined over decades, whereas those of
our decomposition algorithm have been refined over months. With this in mind,
we speculate that with further development—such as that outlined below—the
decomposition algorithm could handle larger instances than CPLEX. We also
have come to appreciate that beating CPLEX requires significant effort.

We see many ways in which believe that the decomposition algorithm and
its implementation could be improved. The most important improvement would
be to employ a search algorithm that takes the middle-ground between time-
efficient, space-hungry AO* and time-hungry, space-efficient depth-first search.
Such an algorithm could be developed by generalising one of the memory-
bounded versions of A*, such as SMA* [16], to operate on AND/OR search
trees. It also is likely that the decomposition algorithm would benefit from a
better heuristic for choosing where to force splits. We conjecture that a better
heuristic could be developed by carefully trading off the advantage of splitting
into equal-sized subproblems and the advantage of minimising the amount of
branching required to force a split. Finally, the algorithm would surely bene-
fit from further development of its data structures. In particular, it should be
possible to efficiently identify a greater number of redundant times.

Acknowledgements

We thank Michael Trick, Michel Vasquez and Lucas Bordeaux for helpful discus-
sions. This project has been partly funded by Microsoft Research. Ian Miguel is
supported by a UK Royal Academy of Engineering/EPSRC Post-doctoral Re-
search Fellowship and S. Armagan Tarim by Science Foundation Ireland under
Grant No. 03/CE3/I405 as part of the Centre for Telecommunications Value-
Chain-Driven Research (CTVR) and Grant No. 00/PI.1/C075.

48 M. Bartlett et al.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable
virtual organization. The International Journal of High Performance Computing
Applications 15 (2001) 200–222

2. Roy, A., Sander, V.: Advanced reservation API. GFD-E5, Scheduling Working
Group, Global Grid Forum (GGF) (2003)

3. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open
grid services architecture for distributed systems integration (2002)

4. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, New York (1990)

5. Fréville, A.: The multidimensional 0-1 knapsack problem: An overview. European
Journal of Operational Research 155 (2004) 1–21

6. Walsh, T.: Stochastic constraint programming. In: Proc. of the Fifteenth European
Conf. on Artificial Intelligence, IOS Press (2002) 1–5

7. Marinescu, R., Dechter, R.: AND/OR tree search for constraint optimization.
In: Proc. of the 6th International Workshop on Preferences and Soft Constraints.
(2004)

8. Manna, Z.: The correctness of nondeterministic programs. Artificial Intelligence 1
(1970) 1–26

9. Nilsson, N.J.: Principles of Artificial Intelligence. Tioga (1980)
10. Martelli, A., Montanari, U.: Additive AND/OR graphs. In: Proc. of the Fourth

Int. Joint Conf. on Artificial Intelligence. (1975) 345–350
11. Chang, C.L., Slagle, J.: An admissible and optimal algorithm for searching

AND/OR graphs. Artificial Intelligence 2 (1971) 117–128
12. Chvatal, V.: Linear Programming. W.H.Freeman, New York (1983)
13. Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: Theory and

practice — closing the gap. In Powell, M.J.D., Scholtes, S., eds.: System Mod-
elling and Optimization: Methods, Theory, and Applications. Kluwer Academic
Publishers (2000) 19–49

14. Wolsey, L.A.: Integer Programming. John Wiley and Sons, New York (1998)
15. Oliva, C., Michelon, P., Artigues, C.: Constraint and linear programming : Using

reduced costs for solving the zero/one multiple knapsack problem. In: Proc. of
the Workshop on Cooperative Solvers in Constraint Programming (CoSolv 01),
Paphos, Cyprus. (2001) 87–98

16. Russell, S.J.: Efficient memory-bounded search methods. In: Proc. of the Tenth
European Conf. on Artificial Intelligence, Vienna, Wiley (1992) 1–5

	Introduction
	The Temporal Knapsack Problem
	The Decomposition Algorithm
	A Non-deterministic Algorithm
	The Search Strategy
	Generating Cuts and Bounds

	Performance Comparison
	Conclusion and Future work

