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Abstract. We present an algorithmic framework for integrating solu-
tion methods that is based on search, inference, and relaxation and their
interactions. We show that the following are special cases: branch and
cut, CP domain splitting with propagation, popular global optimization
methods, DPL methods for SAT with conflict clauses, Benders decom-
position and other nogood-based methods, partial-order dynamic back-
tracking, various local search metaheuristics, and GRASPs (greedy ran-
domized adaptive search procedures). The framework allows elements of
different solution methods to be combined at will, resulting in a variety of
integrated methods. These include continuous relaxations for global con-
straints, the linking of integer and constraint programming via Benders
decomposition, constraint propagation in global optimization, relaxation
bounds in local search and GRASPs, and many others.

1 Introduction

The constraint programming and optimization communities have developed a
wide variety of effective methods for solving combinatorial optimization prob-
lems. Yet they are described in different literatures using different terminology
and implemented in a growing collection of different solvers. Recent advances in
hybrid methods show how to integrate algorithmic ideas from several sources,
but hybrid methods themselves are multiplying, since there are so many ways to
hybridize. Practical application would be much more effective if a single solver
could bring a wide variety of methods under one roof, not only to allow the user
to select the best one, but to allow the integration of techniques from different
methods.

We suggest that the goal of integration should be addressed at a fundamental
and conceptual level rather than postponing it to the software design stage. The
growing repertory of combinatorial optimization methods should be interpreted
as special cases of a single solution method that can be adjusted to exploit the
structure of a given problem. This overarching method would then dictate the
architecture of a general-purpose solver.

One approach, some elements of which are proposed in [4, 10, 11, 12, 13, 15,
17], is to view solution methods as instances of a search-infer-and-relax algo-
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rithm. The search phase enumerates restrictions of the problem, perhaps by
branching, neighborhood search, or creation of subproblems. Inference may take
the form of cutting planes, filtering, or nogood generation. Relaxation provides
bounds on the optimal value that can reduce the search space.

We show in this paper that a wide variety of solution methods have this
structure, including branch and cut, standard CP methods, popular global op-
timization methods, DPL methods for the propositional satisfiability problem,
generalizations of Benders decomposition and other varieties of nogood-based
search, partial-order dynamic backtracking and related methods, local search
metaheuristics, and GRASPs (greedy randomized adaptive search procedures).

However, it is one thing to observe in a general way that solution algorithms
tend to have a search-infer-and-relax structure, and another thing to demon-
strate it in precise algorithmic terms. While such methods as branch and cut or
standard CP methods readily fit into this framework, it is less obvious how to
treat some of the other methods. The main contribution of this paper, relative to
previous work, is to extend the range of solution methods that can be viewed as
having common structure, while trying to make their commonality more precise.

In particular, we extend the analysis to “heuristic” methods, such as local
search and GRASPs. Although one can distinguish exact from inexact methods,
this distinction need not imply a fundamental distinction of the algorithmic
approach. We view them as special cases of the same search strategy, adjusted
in some cases to be exhaustive and in other cases to be inexhaustive.

Some aspects of the integration scheme described here are implemented in the
solution and modeling system SIMPL [1], which combines integer and constraint
programming but has not yet been extended to other methods.

2 The Basic Ideas

– Search is an enumeration of problem restrictions, each of which is obtained
by adding constraints to the problem. The motivation for examining problem
restrictions is that they may be easier to solve than the original. In branching
search, for example, the problem restrictions correspond to nodes of the
search tree. In Benders decomposition and its generalizations, the restrictions
are subproblems. In local search, each neighborhood is the feasible set of a
problem restriction.

– Inference derives valid constraints that were only implicit in the constraint
set. They can rule out infeasible or suboptimal restrictions that would oth-
erwise be solved. Popular forms of inference include the identification of
valid inequalities in integer programming, the generation of nogoods (such
as Benders cuts and conflict clauses), and domain filtering in constraint pro-
gramming.

– Relaxation, like restriction, is motivated by the desire to solve a problem
that is easier than the original. Solution of a relaxation may provide an
optimal solution of the original problem, but more often it provides a bound
on the optimal value. Popular forms of relaxation include the constraint
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store in constraint programming, continuous relaxations of 0-1 inequalities
or global constraints, and the master problem in Benders decomposition and
its generalizations.

The interaction of these elements is key to problem solving.

– Search and inference. Inference reduces the number of restrictions that must
be enumerated in the search. For instance, domain filtering reduces branch-
ing by eliminating values on which one must branch. Conversely, restricting
the problem can make inference more effective. Branching on variables, for
example, reduces domains and triggers further domain reduction through
propagation.

– Search and relaxation. Relaxation provides valuable information for directing
the search. For instance: the solution of a continuous relaxation suggests how
to branch (perhaps on a variable with a fractional value); the solution of a
master problem can define the next subproblem (in Benders-like methods);
and the result of a neighborhood search can provide the center of the next
neighborhood to be searched. Conversely, problem restriction during search
can yield a tighter relaxation, perhaps one whose optimal solution is feasible
in the original problem. Relaxation and restriction also interact in a bounding
mechanism that is used by branch-and-relax methods but has much wider
application. If the relaxation of a restriction has an optimal value that is no
better than that of the best solution found so far, then the restriction need
not be solved.

– Inference and relaxation. The solution of a relaxation can help identify use-
ful inferences, such as separating cuts in integer programming. Conversely,
inference can generate constraints that strengthen the relaxation, as cutting
planes strengthen a continuous relaxation.

Inference and relaxation are most effective when they exploit problem struc-
ture. For instance, specialized cutting planes or domain filtering methods can be
developed for constraints or subsets of constraints that have special character-
istics. Arguably the success of combinatorial optimization relies on the identifi-
cation of structure, and the problem formulation should indicate to the solver
where the structure lies.

3 Overview of the Solution Method

For the purposes of this paper, an optimization problem P can be written

min f(x)
S(x)
x ∈ D

where f(x) is a real-valued function of variable x and D is the domain of x. The
function f(x) is to be minimized subject to a set S(x) of constraints, each of
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which is either satisfied or violated by any given x ∈ D. Generally x is a vector
(x1, . . . , xn) and D a Cartesian product D1 × · · · × Dn, where each xj ∈ Dj .

Any x ∈ D is a solution of P . A feasible solution is one that satisfies all the
constraints in S(x), and the feasible set of P is the set of feasible solutions. A
feasible solution x∗ is optimal if f(x∗) ≤ f(x) for all feasible x. An infeasible
problem is one with no feasible solution and is said to have optimal value ∞.

3.1 Search

Search is carried out by solving a series of problem restrictions P1, P2, . . . , Pm of
P and picking the best candidate solution. The search is complete if the feasible
set of P is equal to the union of the feasible sets of P1, . . . , Pm. In incomplete
search the restrictions may not be solved to optimality.

The most basic kind of search simply enumerates elements of the domain D
and selects the best feasible solution. This is can be viewed as a search over
problem restrictions Pk, each of which is defined by fixing x to a particular
value. It is generally more practical, however, to define restrictions by branching,
constraint-directed search, or local search.

3.2 Inference

Search can often be accelerated by inference, that is, by inferring new constraints
from the constraint set of each Pk. The new constraints are then added to Pk.
Constraints that can be inferred from P alone are added to Pk and all subsequent
restrictions.

Inference procedures are typically applied to individual constraints or small
highly-structured groups of constraints rather than the entire problem. As a
result, implications of the entire constraint set may be missed.

One can partially address this problem by propagating constraints through
a constraint store S. When inferences are drawn from constraint C, they are
actually drawn from {C}∪S. Processing each constraint enlarges S and thereby
strengthens the implications that can be derived from the next constraint. Prop-
agation of this sort is practical only if the constraint store contains elementary
constraints that all of the inference algorithms can accommodate. Constraint
programming solvers typically store in-domain constraints, and mixed integer
solvers store linear inequalities.

3.3 Relaxation

Relaxation is often used when the subproblems Pk are themselves hard to solve.
A relaxation Rk of each Pk is created by dropping some constraints in such a
way as to make Rk easier than Pk. For instance, one might form a continuous
relaxation by allowing integer-valued variable to take any real value.

The optimal value v of the relaxation Rk is a lower bound on the optimal
value of Pk. If v is greater than or equal to the value of the best candidate
solution found so far, then there is no need to solve Pk, since its optimal value
can be no better than v.
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Let vUB = ∞ and S = {P0}. Perform Branch.
The optimal value of P0 is vUB.

Procedure Branch.
If S is nonempty then

Select a problem restriction P ∈ S and remove P from S.
If P is too hard to solve then

Add restrictions P1, . . . , Pm of P to S and perform Branch.
Else

Let v be the optimal value of P and let vUB = min{v, vUB}.
Fig. 1. Generic branching algorithm for solving a minimization problem P0. Set S

contains the problem restrictions so far generated but not yet attempted, and vUB is

the best solution value obtained so far

The relaxation, like the constraint store, must contain fairly simple con-
straints, but for a different reason: they must allow easy optimal solution of
the relaxed problem. In traditional optimization methods, these are generally
linear inequalities in continuous variables, or perhaps nonlinear inequalities that
define a convex feasible set.

4 Branching Search

Branching search uses a recursive divide-and-conquer strategy. If the original
problem P is too hard to solve as given, the branching algorithm creates a series
of restrictions P1, . . . , Pm and tries to solve them. In other words, it branches
on P . If a restriction Pk is too hard to solve, it attacks Pk in a similar manner
by branching on Pk. The most popular branching mechanism is to branch on
a variable xj . The domain of xj is partitioned into two or more disjoint sub-
sets, and restrictions are created by successively restricting xj to each of these
subsets.

Branching continues until no restriction so far created is left unsolved. If the
procedure is to terminate, problems must become easy enough to solve as they
are increasingly restricted. For instance, if the variable domains are finite, then
branching on variables will eventually reduce the domains to singletons. Figure 1
displays a generic branching algorithm.

4.1 Branch and Infer

Inference may be combined with branching by inferring new constraints for each
Pk before Pk is solved. When inference takes the form of domain filtering, for
example, some of the variable domains are reduced in size. When one branches
on variables, this tends to reduce the size of the branching tree because the
domains more rapidly become singletons. Constraint programming solvers are
typically built on a branch-and-infer framework.
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Let vUB = ∞ and S = {P0}. Perform Branch.
The optimal value of P is vUB.

Procedure Branch.
If S is nonempty then

Select a problem restriction P ∈ S and remove P from S.
Repeat as desired:

Add inferred constraints to P .
Let vR be the optimal value of a relaxation R of P .

If vR < vUB then
If R’s optimal solution is feasible for P then let vUB = min{vR, vUB}.
Else add restrictions P1, . . . , Pm of P to S and perform Branch.

Fig. 2. Generic branching algorithm, with inference and relaxation, for solving a mini-

mization problem P0. The repeat loop is typically executed only once, but it may be executed

several times, perhaps until no more constraints can be inferred or R becomes infeasible.

The inference of constraints can be guided by the solution of previous relaxations

4.2 Branch and Relax

Relaxation can also combined with branching in a process that is known in the
operations research community as branch and bound, and in the constraint pro-
gramming community as branch and relax. One solves the relaxation Rk of each
restriction, rather than Pk itself. If the solution of Rk is feasible in Pk, it is opti-
mal for Pk and becomes a candidate solution. Otherwise the algorithm branches
on Pk. To ensure termination, the branching mechanism must be designed so
that Rk’s solution will in fact be feasible for Pk if one descends deeply enough
into the search tree.

Branch-and-relax also uses the bounding mechanism described earlier. If the
optimal value of Rk is greater than or equal to the value of the best candidate
solution found so far, then there is no point in solving Pk and no need to branch
on Pk.

The addition of inferred constraints to Pk can result in a tighter bound when
one solves its relaxation Rk. This is the idea behind branch-and-cut methods,
which add cutting planes to the constraint set at some or all of the nodes.
Conversely, the solution of Rk can provide guidance for generating further con-
straints, as for instance when separating cuts are used. A generic branching
algorithm with inference and relaxation appears in Fig. 2.

It is straightforward to combine elements of constraint programming and in-
teger programming in this framework. Domain filtering can be applied to integer
inequalities as well as global constraints at each node of the search tree, and tight
relaxations can be devised for global constraints as well as specially-structured
inequalities.

4.3 Continuous Global Optimization

A continuous optimization problem may have a large number of locally optimal
solutions and can therefore be viewed as a combinatorial problem. The most pop-
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ular and effective global solvers use a branch-and-relax approach that combines
relaxation with constraint propagation [21, 22, 24]. Since the variable domains are
continuous intervals, the solver branches on a variable by splitting an interval into
two or more intervals. This sort of branching divides continuous space into increas-
ingly smaller “boxes” until a global solution can be isolated in a very small box.

Two types of propagation are commonly used: bounds propagation, and prop-
agation based on Lagrange multipliers. Bounds propagation is similar to that
used in constraint programming solvers. Lagrange multipliers obtained by solv-
ing a linear relaxation of the problem provide a second type of propagation. If
a constraint ax ≤ α has Lagrange multiplier λ, v is the optimal value of the
relaxation, and L is a lower bound on the optimal value of the original problem,
then the inequality

ax ≥ α − v − L

λ

can be deduced and propagated. Reduced-cost-based variable fixing is a special
case.

Linear relaxations can often be created for nonlinear constraints by “fac-
toring” the functions involved into more elementary functions for which linear
relaxations are known [24].

5 Constraint-Directed Search

A ever-present issue when searching over problem restrictions is the choice of
which restrictions to consider, and in what order. Branching search addresses
this issue in a general way by letting problem difficulty guide the search. If a
given restriction is too hard to solve, it is split into problems that are more highly
restricted, and otherwise one moves on to the next restriction, thus determining
the sequence of restrictions in a recursive fashion.

Another general approach is to create the next restriction on the basis of
lessons learned from solving past restrictions. This suggests defining the current
restriction by adding a constraint that excludes previous solutions, as well as
some additional solutions that one can determine in advance would be no better.
Such a constraint is often called a nogood.

Restrictions defined in this manner may be hard to solve, but one can solve
a more tractable relaxation of each restriction rather than the restriction itself.
The only requirement is that the relaxation contain the nogoods generated so
far. The nogoods should therefore be chosen in such a way that they do not
make the relaxation hard to solve.

More precisely, the search proceeds by creating a sequence of restrictions
P0, P1, . . . , Pm of P , where P0 = P and each Pk is formed by adding a nogood
Nk−1 to Pk−1. It solves a corresponding series of relaxations R0, R1, . . . , Rm of
P to obtain solutions x0, x1, . . . , xm. Each relaxation Rk contains the nogoods
N0, . . . , Nk−1 in addition to the constraints in R0.

Step k of the search begins by obtaining a solution xk of Rk. If xk is infeasible
in P , a nogood Nk is designed to exclude xk and possibly some other solutions
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Let vUB = ∞, and let R be a relaxation of P .
Perform Search.
The optimal value of P is vUB.

Procedure Search.
If R is feasible then

Select a feasible solution x = s(R) of R.
If x is feasible in P then

Let vUB = min{vUB , f(x)}.
Define a nogood N that excludes x and possibly other solutions x′

with f(x′) ≥ f(x).
Else

Define a nogood N that excludes x and possibly other solutions
that are infeasible in P .

Add N to R and perform Search.

Fig. 3. Generic constraint-directed search algorithm for solving a minimization problem

P with objective function f(x), where s is the selection function. R is the relaxation of

the current problem restriction

that are infeasible for similar reasons. If xk is feasible in P , it may or may not be
optimal, and it is recorded as a candidate for an optimal solution. A nogood Nk

is designed to exclude xk and perhaps other solutions whose objective function
values are no better than that of xk. The search continues until Rk becomes
infeasible, indicating that the solution space has been exhausted. An generic
algorithm appears in Fig. 3.

The search is exhaustive because the infeasibility of the final relaxation Rm

implies the infeasibility of Pm. Thus any feasible solution x of P that is not enu-
merated in the search is infeasible in Pm. This is possible only if x has been ex-
cluded by a nogood, which means x is no better than some solution already found.

If the domains are finite, the search will terminate. Each relaxation excludes
a solution that was not excluded by a previous relaxation, and there are finitely
many solutions. If there are infinite domains, more care must be exercised to
ensure a finite search and an optimal solution.

Interestingly, there is no need to solve the relaxations Rk to optimality. It is
enough to find a feasible solution, if one exists. This is because no solution is
excluded in the course of the search unless it is infeasible, or an equally good or
better solution has been found.

There is normally a good deal of freedom in how to select a feasible solution
xk of Rk, and a constraint-directed search is partly characterized by its selection
function; that is, by the way it selects a feasible solution s(Rk) for a given Rk.
Certain selection functions can make subsequent Rk’s easier to solve, a theme
that is explored further below.

We briefly examine three mechanisms for generating nogoods: constraint-
directed branching, partial-order dynamic backtracking, and logic-based Benders
decomposition.
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5.1 Constraint-Directed Branching

Constraint-directed branching stems from the observation that branching on
variables is a special case of constraint-directed search. The leaf nodes of the
branching tree correspond to problem restrictions, which are defined in part by
nogoods that exclude previous leaf nodes. The nogoods take the form of “conflict
clauses” that contain information about why the search backtracked at previous
leaf nodes. Well-chosen conflict clauses can permit the search to prune large
portions of the enumeration tree.

Search algorithms of this sort are widely used in artificial intelligence and
constraint programming. Conflict clauses have played a particularly important
role in fast algorithms for the propositional satisfiability problem (SAT), such
as Chaff [20].

Branching can be understood as constraint-directed search in the following
way. We branch on variables in a fixed order x1, . . . xn. The original problem
P corresponds to the first leaf node of the branching tree, and its relaxation
R contains only the domain constraints of P . The branching process reaches
the first leaf node by fixing (x1, . . . , xn) to certain values (v1, . . . , vn), thereby
creating P1. If the search backtracks due to infeasibility, typically only some of
the variables are actually responsible for the infeasibility, let us say the variables
{xj | j ∈ J}. A nogood or conflict clause N is constructed to avoid this partial
assignment in the future:

∨

j∈J

(xj �= vj) (1)

If a feasible solution with value z is found at the leaf node, then a subset of
variables {xj | j ∈ J} is identified such that f(x) ≥ z whenever xj = vj for
j ∈ J . A nogood N of the form (1) is created.

Each of the subsequent leaf nodes corresponds to a relaxation Rk, which con-
tains the nogoods generated so far. A feasible solution s(Rk) of Rk is now selected
to define the next solution to be enumerated. A key property of constraint-based
branching is that the selection function s is easy to compute. The solution s(Rk)
sequentially assigns x1, x2, . . . the values to which they are fixed at the current
leaf node, until such an assignment violates a nogood in Rk. At this point the
unassigned variables are sequentially assigned any value that, together with the
assignments already made, violates none of the nogoods in Rk. Constraint-based
search does not actually construct a search tree, but the values to which xj is
fixed at the current leaf node are encoded in the nogoods: if one or more nogoods
in Rk contain the disjunct xj �= vj , then xj is currently fixed to vj (all disjuncts
containing xj will exclude the same value vj).

It is shown in [12] that this procedure finds a feasible solution of Rk without
backtracking, if one exists, provided the nogoods are processed by parallel reso-
lution before computing s(Rk). Consider a set S = {Ci | i ∈ I} where each Ci

has the form
∨

j∈Ji

(xj �= vj) ∨ (xp �= vpi)
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and where p is larger than all the indices in J =
⋃

i∈I Ji. If {vpi | i ∈ I} is equal
to the domain of xp, then S has the parallel resolvent

∨

j∈J

(xj �= vj)

Thus parallel resolution always resolves on the last variable xp in the clauses
resolved. (In constraint-directed branching, Ji is the same for all i ∈ I, but this
need not be true in general to derive a parallel resolvent.) Parallel resolution is
applied to Rk by deriving a parallel resolvent from a subset of nogoods in Rk,
deleting from Rk all nogoods dominated by the resolvent, adding the resolvent
to Rk, and repeating the process until no parallel resolvent can be derived. In
the context of constraint-based branching, parallel resolution requires linear time
and space.

The Davis-Putnam-Loveland (DPL) algorithm for SAT is a special case of
constraint-directed branching in which the unit clause rule is applied during the
computation of s(Rk). The SAT problem is to determine whether a set of logical
clauses is satisfiable, where each clause is a disjunction of literals (xj or ¬xj).
The unit clause rule requires that whenever xj (or ¬xj) occurs as a unit clause
(a clause with a single literal), xj is fixed to true (respectively, false) and the
literal ¬xj (respectively, xj) is eliminated from every clause in which it occurs.
The procedure is repeated until no further variables can be fixed. During the
computation of s(Rk), the unit clause rule is applied after each xj is assigned a
value, and subsequent assignments must be consistent with any values fixed by
the rule.

An infeasible assignment (x1, . . . , xn) = (v1, . . . , vn) for the SAT problem
is one that violates one or more clauses. A conflict clause (1) is obtained by
identifying a subset of variables {xj | j ∈ J} for which the assignments xj = vj

for j ∈ J violate at least one clause. Thus if setting (x1, x2) = (true, false)
violates a clause, the conflict clause is ¬x1 ∨ x2.

5.2 Partial-Order Dynamic Backtracking

Partial-order dynamic backtracking (PODB) is a generalization of branching
with conflict clauses [3, 8, 9]. In a conventional branching search, one backtracks
from a given node by de-assigning the assigned variables in a certain order.
In PODB, this complete ordering of the assigned variables is replaced by a
partial ordering. Thus the search cannot be conceived as a tree search, but it
remains exhaustive while allowing a greater degree of freedom in how solutions
are enumerated.

PODB can be viewed as constraint-based search in which the selection func-
tion s(Rk) is computed in a slightly different way than in constraint-based
branching. In constraint based branching, there is a complete ordering on the
variables, and s(Rk) is computed by assigning values to variables in this order.
In PODB, this ordering is replaced by a partial ordering.

The partial ordering is defined as follows. Initially, no variable precedes an-
other in the ordering. At any later point in the algorithm, the partial ordering
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is defined by the fact that some variable xj in each nogood N of Rk has been
designated as last in N . Every other variable in N is penultimate and precedes
xj in the partial ordering. The ordering is updated whenever a new nogood is
created. Any variable xj in the new nogood can be chosen as last, provided the
choice is consistent with the current partial ordering. Thus if xk is a penultimate
variable in the nogood, xj must not precede xk in the current partial ordering.

The nogoods are processed by parallel resolution exactly as in constraint-
based branching, which as shown in [], again consumes linear time and space.
The selection function s(Rk) is computed as follows. It first assigns values to
variables xj that are penultimate in some nogood. As before, it assigns xj the
value vj if the disjunct xj �= vj occurs in a nogood (all penultimate disjuncts
containing xj exclude the same value vj). The remaining variables are assigned
values as in constraint-based branching, but in any desired order.

5.3 Logic-Based Benders Decomposition

Benders decomposition [2, 7] is a constraint-directed search that enumerates pos-
sible assignments to a subset of the variables, which might be called the search
variables. Each possible assignment defines a subproblem of finding the optimal
values of the remaining variables, given the values of the search variables. So-
lution of the subproblem produces a nogood that excludes the search variable
assignment just tried, perhaps along with other assignments that can be no bet-
ter. Since the subproblems are restrictions of the original problem, a Benders
algorithm can be viewed as enumerating problem restrictions.

Benders is applied to a problem P of the form

min f(x)
C(x, y)
x ∈ Dx, y ∈ Dy

(2)

where x contains the search variables and y the subproblem variables. C(x, y) is
a constraint set that contains variables x, y. To simplify exposition we assume
that the objective function depends only on x. The more general case is analyzed
in [12, 16].

In the constraint-directed search algorithm, each problem restriction (sub-
problem) Pk is obtained from P by fixing x to the solution xk−1 of the previous
relaxation Rk−1. Pk is therefore the feasibility problem

C(xk−1, y)
y ∈ Dy

(3)

where C(xk−1, y) is the constraint set that remains when x is fixed to xk−1 in
C(x, y).

Unlike many constraint-directed methods, a Benders method obtains nogoods
by solving the restriction Pk. If Pk has a feasible solution yk, then (x, y) =
(xk−1, yk) is optimal in P , and the search terminates. Otherwise a nogood or
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Benders cut Nk(x) is generated. Nk(x) must exclude xk−1, perhaps along with
other values of x that are infeasible for similar reasons.

In classical Benders decomposition, the subproblem is a continuous linear or
nonlinear programming problem, and Nk(x) obtained from Lagrange multipliers
associated with the constraints of the subproblem. In a more general setting,
Nk(x) is based on an analysis of how infeasibility of the subproblem is proved
when x = xk−1. The same proof may be valid when x takes other values, and
these are precisely the values that violate Nk(x). The result is a “logic-based”
form of Benders.

The Benders cut Nk(x) is added to the previous relaxation Rk−1 to obtain
the current relaxation or master problem Rk:

min f(x)
Ni(x), i = 0, . . . , k − 1
x ∈ Dx

(4)

If the master problem is infeasible, then P is infeasible, and the search termi-
nates. Otherwise we select any optimal solution s(Rk) of Rk and denote it xk,
and the algorithm proceeds to the next step. A Benders method therefore re-
quires solution of both Pk and Rk, the former to obtain nogoods, and the latter
to obtain Pk+1.

Logic-based Benders decomposition can be combined with constraint pro-
gramming in various ways [5, 6, 12, 14, 16, 18, 19, 26]. One type of integration is
to solve the subproblem by constraint programming (since it is naturally suited
to generate Benders cuts) and the master problem Rk by another. Planning and
scheduling problems, for example, have been solved by applying integer program-
ming to Rk (task allocation) and constraint programming to Pk (scheduling)
[12, 14, 19, 26]. This approach has produced some of the largest computational
speedups available from integrated methods, outperforming conventional solvers
by several orders of magnitude.

6 Heuristic Methods

Local search methods solve a problem by solving it repeatedly over small subsets
of the solution space, each of which is a “neighborhood” of the previous solution.
Since each neighborhood is the feasible set of a problem restriction, local search
can be viewed as a search-infer-and-relax method.

In fact, it is useful to conceive local search as belonging to a family of local-
search-and-relax algorithms that resemble branch-and-relax algorithms but are
inexhaustive (Fig. 4). A number of other heuristic methods, such as GRASPs,
belong to the same family. The analogy with branch and relax suggests how
inference and relaxation may be incorporated into heuristic methods.

The generic local-search-and-relax algorithm of Fig. 4 “branches” on a prob-
lem restriction Pk by creating a further restriction Pk+1. For the time being, only
one branch is created. Branching continues in this fashion until a restriction is
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Let vUB = ∞ and S = {P0}.
Perform LocalSearch.
The best solution found for P0 has value vUB.

Procedure LocalSearch.
If S is nonempty then

Select a restriction P = from S.
If P is too hard to solve then

Let vR be the optimal value of a relaxation of P .
If vR < vUB then

Add a restriction of P to S.
Perform LocalSearch.

Else remove P from S.
Else

Let v be the value of P ’s solution and vUB = min{v, vUB}.
Remove P from S.

Fig. 4. Generic local-search-and-relax algorithm for solving a minimization problem P0

created that is easy enough to solve, whereupon the algorithm returns to a previ-
ous restriction (perhaps chosen randomly) and resumes branching. There is also
a bounding mechanism that is parallel to that of branch-and-relax algorithms.

Local search and GRASPs are special cases of this generic algorithm in which
each restriction Pk is specified by setting one or more variables. If all the vari-
ables x = (x1, . . . , xn) are set to values v = (v1, . . . , vn), Pk’s feasible set is a
neighborhood of v. Pk is easily solved by searching the neighborhood. If only
some of the variables (x1, . . . , xk) are set to (v1, . . . , vk), Pk is regarded as too
hard to solve.

A pure local search algorithm, such as simulated annealing or tabu search,
branches on the original problem P0 by setting all the variables at once to v =
(v1, . . . , vn). The resulting restriction P1 is solved by searching a neighborhood
of v. Supposing P1’s solution is v′, the search backtracks to P0 and branches
again by setting x = v′. Thus in pure local search, the search tree is never more
than one level deep.

In simulated annealing, Pk is “solved” by randomly selecting one or more
elements of the neighborhood until one of them, say v′, is accepted. A solution
v′ is accepted with probability 1 if it is better than the currently best solution,
and with probability p is it is no better. The probability p may drop (reflecting
a lower “temperature”) as the search proceeds.

In tabu search, Pk is solved by a complete search of the neighborhood, where-
upon the best solution becomes v′. In this case the neighborhood of v′ excludes
solutions currently on the tabu list.

Each iteration of a GRASP has two phases, the first of which constructs a so-
lution in a greedy fashion, and the second of which uses this solution as a starting
point for a local search [25]. In the constructive phase, the search branches by
setting variables one at a time. At the original problem P0 it branches by setting
one variable, say x1, to a value v1 chosen in a randomized greedy fashion. It then
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branches again by setting x2, and so forth. The resulting restrictions P1, P2, . . .
are regarded as too hard to solve until all the variables x are set to some value
v. When this occurs, a solution v′ of P is found by searching a neighborhood of
v, and the algorithm moves into the local search phase. It backtracks directly to
P0 and branches by setting x = v′ in one step. Local search continues as long as
desired, whereupon the search returns to the constructive phase.

A GRASP provides the opportunity to use the bounding mechanism of the
local-search-and-relax algorithm, a possibility already pointed out by Prestwich
[23]. If a relaxation of Pk has an optimal value that is no better than that of the
incumbent solution, then there is nothing to be gained by branching on Pk.
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