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Abstract. Constraint programming (CP) based column generation uses
CP to solve the pricing subproblem. We consider a set partitioning for-
mulation with a huge number of variables, each of which can be gener-
ated by solving a CP subproblem. We propose two customized search
strategies to solve the CP subproblem, which aim to improve the coor-
dination between the master problem and the subproblem. Specifically,
these two strategies attempt to generate more promising columns for the
master problem in order to counter the effect of slow convergence and the
difficulty of reaching integer solutions. The first strategy uses the dual
variables to direct the search towards columns that drive the relaxed
master problem faster to optimality. The second strategy exploits the
structure of the constraints in the master problem to generate columns
that help to reach integer solutions more quickly. We use a physician
scheduling problem to test the strategies.

1 Introduction

Constraint programming (CP) based column generation uses CP to solve the
pricing subproblem in a column generation algorithm. First introduced by Junker
et al. [10], it has been subsequently used for various applications such as airline
crew scheduling [6, 17] and vehicle routing [15]. In these applications, the master
problem corresponds to a set partitioning model and the pricing subproblem
is formulated as a constrained shortest path problem. Although dynamic pro-
gramming is generally used to solve constrained shortest path problems, some
complex constraints can be difficult to handle within this framework. In this
context, CP allows more flexibility and can extend the scope of applicability
of column generation algorithms. It is also worthwhile to note that not all
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practical applications give rise to constrained shortest path subproblems. For
example, in a constrained cutting-stock problem, the pricing subproblem is a
constrained knapsack problem. Again, in this context, CP can be useful since
the subproblems can include complex constraints in addition to the knapsack
structure [7].

Column generation for linear programming (LP) [4] and integer programming
(IP) [8, 9] dates back to the 60s. During the last 20 years or so, it has been
used extensively to solve IP problems with a huge number of variables. In this
context, the LP relaxation is solved by column generation and integer solutions
are obtained by branching. When column generation is repeated at each node of
the branch-and-bound tree, we obtain the so-called branch-and-price algorithm
[1, 5, 18, 19]. As pointed out by many authors, the main difficulty when solving
these huge IPs by column generation is to achieve the right balance between
two different objectives: 1) try to solve the LP relaxation of the master problem,
and 2) try to obtain an integer solution to the master problem. In branch-and-
price algorithms, the second objective is attained by clever branching rules, while
the first one is achieved through the coordination between the master problem
and the pricing subproblem provided by the dual variables associated to the
constraints of the LP relaxation.

The goal of this paper is to show that, in the context of CP based column
generation, these objectives can also be reached by selecting an appropriate
branching scheme in the pricing subproblem, e.g., by devising customized se-
lection strategies in a standard CP based tree search algorithm. These selection
strategies will guide the search towards “good” columns and thus help the master
problem to reach LP relaxation optimality, as well as integrality. Note that using
such customized selection strategies in solving the pricing subproblem makes the
CP based column generation framework even more attractive.

The paper is organized as follows. First, we present the formulation of the
master problem: we consider a set partitioning formulation with different restric-
tions on the subsets. Since many applications found in the literature fall into this
category (many others are also set partitioning models, but with the same re-
strictions on the subsets), we will use this framework to develop our selection
strategies. The next section discusses how to model the pricing subproblem and
describes two selection strategies: the first one uses the dual variables to direct
the search towards columns that drive the LP master problem to optimality;
the second strategy exploits the structure of the constraints in the master prob-
lem to generate columns that help to reach integer solutions. We illustrate these
strategies on a difficult personnel scheduling problem, dealing with the planning
of work schedules for physicians in the emergency room of a major hospital.
Section 4 presents the particular CP model used in this case. In Section 5, we
present computational results that illustrate the behavior of the search strate-
gies in the context of a price-and-branch implementation (column generation
to solve the LP, followed by branch-and-bound on the limited set of variables
obtained after column generation). We conclude by summarizing our results and
by discussing extensions to our work.
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2 The Master Problem

Suppose we have a set of shifts K to assign to a set of employees I. Each shift
must be assigned to exactly one employee. There are several constraints that
limit the number of feasible schedules for each employee (see Section 4 for an
illustrative example). To model this problem, we introduce a set Pi of feasible
schedules for each employee i ∈ I. Each feasible schedule p ∈ Pi is made of
a number of shifts; we let δp

k equal 1, if shift k belongs to schedule p, and 0
otherwise. Assuming that there is a cost cp

i for assigning schedule p to employee
i, we obtain one of the most common forms of huge IP models amenable to
solution by column generation, the set partitioning formulation with different
restrictions on the subsets [1]:

min
∑

i∈I

∑

p∈Pi

cp
i y

p
i (1)

∑

i∈I

∑

p∈Pi

δp
kyp

i = 1, k ∈ K, (2)

∑

p∈Pi

yp
i = 1, i ∈ I, (3)

yp
i ∈ {0, 1}, i ∈ I, p ∈ Pi. (4)

The partitioning constraints, (2), simply state that each shift must be assigned
to exactly one employee. Constraints (3), often called convexity constraints, as-
sure that each employee gets one schedule, when combined with the integrality
constraints (4). This model is the column generation formulation of a classical
scheduling problem, where each shift must be assigned to exactly one employee
and there are several constraints for each employee. In some applications, mul-
tiple employees can be assigned to the same shift, in which case the partitioning
constraints (2) are simply rewritten with a right-hand side corresponding to
the number of employees assigned to that shift. This model arises in many ap-
plications, such as airline crew scheduling [6, 17] and the classical generalized
assignment problem [16] (the pricing subproblem in this case is a collection of
knapsack problems). When the pricing subproblems are identical for all employ-
ees, we can aggregate the yp

i variables and replace them by yp =
∑

i∈I yp
i . The

convexity constraints are then often removed because it is common in many ap-
plications to have |I| not fixed. Examples of this type of master model arise in
vehicle routing [15], as well as in the classical cutting-stock problem [8, 9].

Since the number of variables in this set partitioning formulation is huge, they
are generated dynamically by solving the LP relaxation of a restricted model
(with only a subset of the variables) and by collecting the values of the dual
variables associated to the constraints of the problem. These dual values are then
transfered to the pricing subproblem that will try to find at least one variable
with negative reduced cost (such variables have not yet been generated, since at
optimality of the restricted LP relaxation, all variables have non negative reduced
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costs). In our case, if we denote by λk and µi the dual variables corresponding
to constraints (2) and (3), respectively, the reduced cost for variable yp

i is given
by

cp
i = cp

i −
∑

k∈K

δp
kλk − µi. (5)

The pricing subproblem decomposes into one problem for each employee, de-
fined by the constraints corresponding to that employee. The objective of that
employee subproblem is to find the solution with the least reduced cost. In prac-
tice, we do not want to solve this subproblem optimally; it is generally enough
to identify a small number of negative reduced cost solutions. Once these vari-
ables have been identified, they are added to the restricted LP relaxation and
we proceed with another iteration, until the LP relaxation is solved (to prove
optimality, we need an exact algorithm for solving the pricing subproblem) or a
maximum number of iterations has been reached. Typically, the LP relaxation of
such huge set partitioning formulations are very difficult to solve as they exhibit
degeneracy and slow convergence (see [11] and [14] for recent contributions on
improving the solution of the LP relaxation in column generation algorithms).

Once the LP relaxation is solved (in an exact or heuristic way) an integer
solution can be found by branching. One alternative is to perform branch-and-
bound using the set of columns obtained after solving the LP relaxation, but
this is a heuristic method, as some non generated columns might appear in an
optimal solution. If the column generation scheme is repeated at each node of the
search tree, we obtain a branch-and-price algorithm, which is an exact method,
provided the pricing subproblem can be solved to optimality.

3 Search Strategies for the Pricing Subproblem

Recall that the pricing subproblem decomposes by employee. In each employee
subproblem, we will assume that the schedule can be decomposed by day because
no more than one shift can be assigned to the employee on any given day. This
allows us to define one variable xj for each day j ∈ J in the employee subproblem;
thus we have a vector of variables X = (x1, x2, ..., xn), where n is the number of
days in the planning horizon. The domain of each variable xj , D(xj), is defined
as the set of shifts required on day j, plus a dummy shift that represents the
outcome that the employee does not work on day j. One can take this dummy
shift into account in the master problem by adding partitioning constraints for
each day corresponding to the dummy shift, with a right-hand side equal to
(number of employees - number of shifts required on that day). In this way, dual
values associated to these dummy shift constraints can be taken into account
when solving the pricing subproblem.

Another alternative for modeling the employee subproblem is to use a set
variable representing the shifts that can be assigned over the whole planning
horizon [6]. In this setting, a constraint such as “no more than one shift per day”
would be modeled using a shift graph, where each node corresponds to a shift on
a given day and each arc connects two possible consecutive shifts; thus, in this
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graph, there would be no arc connecting two shifts on the same day. With our
formulation, these constraints are implicitly taken into account. Moreover, we
will use them to define global constraints specialized to the physician scheduling
problem that we consider in our study (see Section 4). Note that adapting our
search strategies to the model with set variables is a straightforward task.

Often, the dominant terms in the reduced costs, (5), are the dual values
corresponding to the λk variables (since feasibility in the master is an issue).
Moreover, the costs associated to the assignment of a particular shift do not
differ significantly by employee (this is the case in the application presented in
Section 4). In this situation, by solving the employee subproblems independently
with the same search strategy, we would end up with many schedules that are
similar from one employee to another. This implies that reaching an integer
solution that satisfies the partitioning constraints (2) is a difficult issue because
several columns for many employees would share the same shifts.

The first search strategy, based on the values of the dual variables, attempts
to drive the search towards solutions with negative reduced costs. The objective
of this Dual strategy is thus to speed up the resolution of the LP relaxation of
the master problem. A similar strategy, called Lowest Reduced First, has been
proposed by Fahle et al. [6]. In this strategy, the shift with the smallest reduced
cost over the whole planning horizon is selected and assigned to the employee.
In our approach, we aim to introduce more variability in the selection strategy
from one employee to another to avoid generating similar schedules. We achieve
this objective by scanning the days and, for each day, by selecting the shift with
the lth largest dual value λk (which is the dominant term in the reduced cost),
where l is randomly chosen, with a bias towards the largest values. By choosing
different seed values for the random number generator, we obtain variability in
the schedules generated for different employees.

The second strategy tries to speed up the search for integer solutions in the
branch-and-bound (-and-price) phase; we call it the Master strategy, since the
idea is to take into account the partitioning constraints (2) of the master problem
in the selection process. We simply store Nsj , the number of times each shift
s on any given day j has been assigned to another employee when solving the
current pricing subproblem. When solving an employee subproblem, we scan the
days, and for each day j, we choose the first shift s (in arbitrary order) for which
Nsj is less than the right-hand side of the partitioning constraint corresponding
to shift s (note that this definition allows for right-hand side values larger than
1). If there is no such shift, we choose a shift arbitrarily. In addition, to avoid
generating similar schedules from one column generation iteration to the next,
we change the order for solving the employee subproblems. Note that, instead of
choosing the shifts in arbitrary order, we could have biased the selection towards
the shifts with the largest dual values, as in the dual strategy. However, we first
wanted to examine the effects of each strategy independently.

We will present computational results of these two strategies on a physician
scheduling problem, to be described in the next section. Before examining the
particular constraints of that problem, we comment on how we have modeled
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the negative reduced cost constraint. As in [6], we have used a simple version
where the constraint is used only for pruning and not for domain reduction. As
shown by these authors, this version of the reduced cost constraint is clearly
inferior, especially for large-scale instances, to the shortest path constraint they
developed, which performs domain reduction in an efficient way. Since we focus
on the search strategies in the pricing subproblems and their impact on solv-
ing the master problem, we expect that our conclusions will hold as well if we
use shortest path constraints instead of the simple version of the reduced cost
constraints.

4 Illustrative Example: A Physician Scheduling Problem

As illustrative example of our approach, we use a simplified version of the physi-
cian scheduling problem described in [2] (a similar problem, also modeled with
CP, can be found in [3]). In this problem, a group of physicians must be as-
signed to a predefined set of shifts in order to satisfy the requirements of an
emergency room of a major hospital. The schedules are planned for the next n
days; typically, the planning horizon varies between two weeks and six months.

Several types of rules must be satisfied in order to obtain acceptable working
schedules. First, there are a few compulsory rules, e.g., rules that must absolutely
be enforced. Demand rules are the most basic in this category. They define how
many physicians should work at different periods of a day and which responsi-
bilities are attached to particular shifts. Each day is divided into three periods
of eight hours: day, evening and night. Three physicians (two on weekends or
holidays) work during day and evening shifts, including one exclusively in charge
of traumas (“heavy” emergencies). “Trauma” shifts are considered heavier than
“regular” shifts (which mostly involve the treatment of “light” cases and patients
in stabilized condition). At night, there is only one night shift, the physician as-
suming the responsibilities of trauma and regular shifts. Three days per week,
one physician works a four-hour shift, the “follow-up” shift, when he receives by
appointment patients that have recently been treated at the emergency room.
Other compulsory rules include: vacations, days-off, or particular shifts requested
by the physicians, and the basic ergonomic rule: “there must be at least 16 hours
between the end of one shift and the beginning of another one”.

The demand rules are implicitly taken into account in the definition of our
variables. The other rules dealing with preassigned shifts are easily modeled, as
well as the basic ergonomic rule, which is formulated as follows:

xj = s ⇒ xj+1 �= t, j ∈ {1, 2, ..., n − 1}, s ∈ Sj , t ∈ Fsj , (6)

where Sj is the set of required shifts on day j and Fsj is the set of forbidden
shifts once shift s is assigned on day j (all forbidden shifts are located on day
j+1). Another way to model this constraint is by using the shift graph described
in Section 3.

In addition to these basic constraints, the physicians have their own require-
ments regarding the number of consecutive night shifts they accept to work: some
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prefer to work three consecutive nights, while others do not want to work more
than one night at a time, and some others accept any number of consecutive
nights, as soon as it never exceeds three. These specific requirements can be eas-
ily modeled using the stretch constraint [12]. If we denote by S = {1, 2, . . . ,m}
the set of shifts that can be assigned on any given day (e.g., S = ∪j∈JSj),

stretch(X,S,L−, L+) (7)

ensures that, in any instanciation of the variables X = (x1, x2, . . . , xn), the
length of any sequence of consecutive days assigned to shift s ∈ S is between l−s
and l+s , where L− = (l−1 , l−2 , . . . , l−m) and L+ = (l+1 , l+2 , . . . , l+m). The stretch con-
straint also serves to limit to four (in some cases, five) the number of consecutive
shifts of any type.

In addition, there are constraints on the minimum and maximum num-
ber of hours each physician can work every week. These constraints are mod-
eled using the two global constraints distribute [13] and ext. The constraint
distribute(C,S,X) ensures that each value s ∈ S appears exactly cs times in
X, where C = (c1, c2, . . . , cm). The constraint ext(M,Γ ) lists all the admissible
d-tuples of variable M = (m1,m2, . . . ,md). Let

– H, an m-dimensional vector such that Hs equals the number of hours worked
during shift s (there are only three possible values: 0, for the dummy shift,
4, for the follow-up shift, and 8, for all other shifts);

– Y = (y1, y2, . . . , yn), an n-dimensional vector of variables defined as yj =
Hxj

;
– M = (m0,m4,m8) a 3-dimensional vector of variables representing the num-

ber of times 0-hour, 4-hour and 8-hour shifts appear in Y .

The constraint on the minimum (minH) and maximum (maxH) number of
working hours every week can then be written as:

Y = HX ∧ distribute(M, {0, 4, 8}, Y ) ∧ ext(M,Γ ), (8)

where the set of admissible triples Γ is given by Γ = {(m0,m4,m8) ∈ [0,m0] ×
[0,m4] × [0,m8] | minH ≤ 4m4 + 8m8 ≤ maxH, m0 + m4 + m8 = 7}, with
m4 = �maxH/4�, m8 = �maxH/8� and m0 = 7 − (m4 + m8).

Many other rules exist in the application described in [2], but our simplified
version contains only the constraints described so far. This choice allows to
capture enough of the complexity of the problem, and to illustrate as well the
flexibility of the modeling approach.

The objective function is defined so as to ensure that different types of shifts
are fairly distributed among physicians. In our simplified version, we try to
achieve a fair distribution of two types of antagonist shifts: days versus evenings,
and regular versus trauma. Positive and negative deviations with respect to an
ideal ratio are penalized, thus defining the cost of a schedule over the whole
planning horizon.
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5 Computational Results

The objective of our computational experiments is to compare the two search
strategies, Dual and Master, when embedded within a simple column generation
algorithm that proceeds in three phases:

– Initialization: During this phase, an initial set of columns is generated. For
this purpose, we use a CP engine to solve a global problem containing all
the constraints of the subproblem, as well as the partitioning constraints;
this method ensures that at least one globally feasible set of schedules is
generated (a similar approach is presented in [17]).

– Column generation: This phase is the CP based column generation method,
with either the Dual or the Master search strategy being used to solve the
subproblem; the search is stopped for each employee subproblem when one
solution with negative reduced cost is obtained. We stop this phase after a
predetermined number of iterations (40 in our tests).

– Branch-and-bound: We invoke a branch-and-bound algorithm that solves the
formulation obtained at the end of the column generation phase. This allows
to evaluate if the columns generated during the column generation phase are
sufficient to improve the initial integer solution.

The overall method is programmed with ILOG Concert (version 1.1). ILOG
Solver (version 5.1) is used for solving the subproblems and the global problem
in the initialization phase. ILOG CPLEX (version 7.1) solves the restricted LP
relaxations in the column generation phase, as well as the restricted IP model in
the branch-and-bound phase. The default parameters are used for all software
packages.

We tested the approach on an instance of the physician scheduling problem
with 18 physicians over a period of two weeks. Table 1 compares the results
obtained with the two search strategies, Dual and Master, as well as the default
search strategy implemented in Solver. For each strategy, five values are dis-
played: Z(INIT ), the objective function value of the integer solution obtained
after the initialization phase; Z(LPCG), the objective function value of the best
solution to the restricted LP relaxation of the master problem obtained at the
end of the column generation phase (recall that we stop this phase after 40 iter-
ations); Z(IPBB), the value of the best integer solution obtained at the end of
the branch-and-bound phase; Avg.CPU/iter, the average CPU time in seconds
spent per iteration during the column generation phase; Avg.Fail/iter, the av-

Table 1. Comparing the Default, the Dual and the Master Search Strategies

Strategy Z(INIT ) Z(LPCG) Z(IPBB) Avg.CPU/iter Avg.Fail/iter

Default 28816 28816 28816 3.68 200.41

Dual 28816 12028 28816 1.84 0.12

Master 28816 13481 13952 2.28 37.27
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erage number of failures per iteration when solving the employee subproblems
during the column generation phase.

These results indicate that both the Dual and Master strategies improve sig-
nificantly upon the default strategy. The Dual strategy quickly identifies negative
reduced cost solutions, as shown by the low number of failures and the modest
CPU time required. This strategy also exhibits the lowest objective value of
Z(LPCG), which indicates that it is the most effective for solving the LP relax-
ation. However, with the set of columns obtained after the column generation
phase, the branch-and-bound algorithm is unable to identify an improving in-
teger solution. By contrast, the Master strategy is less effective at solving the
LP relaxation, but identifies a significantly better integer solution during the
branch-and-bound phase.

Figure 1 presents, for the three search strategies, the evolution of the objec-
tive value during the column generation phase. The default strategy generates
negative reduced cost solutions at every iteration but these added columns do
not contribute to change the objective value. The Dual strategy is unable to
improve the objective for the first 25 iterations, but then exhibits a sudden
drop and a constant improvement at every iteration. These observations are
consistent with the common knowledge in the column generation literature that
the dual information is relatively poor during the first iterations. The Master
strategy improves the objective value very early and then continues to make
progress, although it is outperformed by the dual strategy in the last iterations.
These results suggest that a hybrid method combining the Dual and Master
strategies would be indicated to take advantage of the relative merits of both
approaches.
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6 Conclusion

In this paper, we have presented and compared two search strategies for solving
the pricing subproblem in CP based column generation. The dual strategy aims
to accelerate the solution of the LP relaxation of the master problem, while the
master strategy drives the search towards integer solutions. We have presented
computational results on an instance of a physician scheduling problem. These
results show that these two strategies are promising and suggest that combining
them might be even more effective. Further tests on other classes of problems
would confirm the interest of such customized search strategies in CP based
column generation. In addition, several other comparisons might be instructive:

– A comparison of the search strategies using the shortest path-based negative
reduced cost constraint [6] rather than the simple pruning version used here;

– A comparison of the relative gains in terms of CPU time and branch-and-
bound tree size obtained by sophisticated master problem branching rules
(instead of the CPLEX default strategy used in our experiments) versus
subproblem search strategies;

– An investigation of whether the subproblem search strategies can add to the
gains achieved by more sophisticated master problem branching rules in a
branch-and-price algorithm.
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