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Abstract. We propose a natural generalization of arc-consistency, which
we call multiconsistency: A value v in the domain of a variable z is k-
multiconsistent with respect to a constraint C' if there are at least k
solutions to C' in which z is assigned the value v. We present algorithms
that determine which variable-value pairs are k-multiconsistent with re-
spect to several well known global constraints. In addition, we show that
finding super solutions is strictly harder than finding arbitrary solutions
and suggest multiconsistency as an alternative way to search for robust
solutions.

1 Introduction

A value v in the domain of a variable x is consistent with respect to the constraint
C if there is at least one solution to the constraint in which « is assigned the
value v. Identifying values which are not consistent is a fundamental task for a
constraint solver; it is crucial for reducing the exponential-size search space that
would otherwise need to be explored.

In this paper we generalize the notion of consistency: A value v in the domain
of the variable z is k-multiconsistent with respect to a constraint C' if there are
at least k solutions to C in which x is assigned the value v. Intuitively, a value
that appears in many solutions is a “useful” value. Knowing which values are
useful can be helpful in several ways. For example, usefulness can be used as
a heuristic while searching for a solution: While it is not guaranteed, it seems
reasonable to assume that if the constraint program has a solution s, then the
more useful a variable-value pair is with respect to individual constraints that
are defined on it, the more likely it is to be used in s. This implies that it
makes sense to regard the usefulness of the values as a heuristic that guides the
search.

Another possible application is in the search for robust solutions, i.e., solu-
tions that can be repaired if a small change occurs. In their recent paper on the
topic, Hebrard et al. [5] give the example of a schedule: A robust schedule does
not collapse if one job takes slightly longer to execute than planned. Rather, the
schedule changes locally and the overall makespan changes little if at all. In the
same paper, they define the notion of super solutions, which is a generalization of
super models in propositional satisfiability. An (a, b)-super solution is a solution
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such that if a variables lose their values, a new solution can be constructed by
assigning new values to these a variables and changing the values of at most b
other variables.

This is a very strong guarantee of robustness, and Hebrard et al. note that
it is quite rare to have a solution for which all of the variables can be repaired.
Therefore, they formulate the optimization problem of seeking the “most ro-
bust” solution, i.e., the solution that maximizes the number of repairable vari-
ables. They then study several approaches for finding super solutions, and the
super MAC search algorithm that they have developed for this purpose emerged
as the most promising. As for complexity, Hebrard et al. show that it is, in
general, NP-hard to find an (a,b)-super solution for a constraint program, for
any fixed a. They show this by proving that any constraint program P can
be transformed in polynomial time into a second constraint program P’ such
that P has a solution iff P/ has an (a,b)-super solution. Thus, finding a su-
per solution is as hard as finding an arbitrary solution, which is NP-hard. We
will show that, in fact, finding a super solution is strictly harder than finding
an arbitrary solution. In particular, we will prove that it is NP-hard to de-
termine whether an AllDifferent constraint has a (1,0)-super solution. Finding
an arbitrary solution to an AllDifferent constraint can be done in polynomial
time [6,11].

On the other hand, we will show that there are efficient algorithms to de-
termine which values are k-multiconsistent with respect to AllDifferent and
other global constraints. This information can easily be used to search for a
k-multiconsistent solution, i.e., a solution that uses only k-multiconsistent as-
signments of values to the variables, or, if no such solution exists, a solution that
maximizes the number of k-multiconsistent values. It is not guaranteed that a
k-multiconsistent solution can be easily repaired if some of the variables lose
their values. We are certainly not guaranteed that a local change will give a new
solution, or even that another solution exists. However, with a k-multiconsistent
solution, we do know that the remaining variables are assigned to values that
were once considered “useful”; and our purpose is to show that the computa-
tional price we need to pay for this knowledge is not very high in the case of the
constraints that we consider. We therefore believe that it would be worthwhile
to conduct experimental and theoretical research on the concept of multiconsis-
tency and ways in which it can be applied.

Section 2 contains a formal definition of k-multiconsistency and other notions
that will appear in the following sections. In Section 3 we show that it is NP-
hard to determine whether an AllDifferent constraint has a (1,0)-super solution.
In Section 4 we describe an algorithm that computes k-multiconsistency for the
AllDifferent constraint when the number of variables is equal to the number of
values. In Section 5 we show that this basic algorithm can be generalized for
the general AllDifferent constraint and for other global constraints. Finally, in
Section 6 we list some open problems that arise from our work.
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2 Multiconsistency and Preliminaries

2.1  Multiconsistency

The formal definition of multiconsistency appears below. It is a straightforward
generalization of the definition of arc-consistency ! as appears, e.g., in [1].

Definition 1. Let C be a constraint on the variables x1,...,x, with respective
domains D(x1),...,D(x¢) and let S C D(x1) x...x D(xy) be the set of solutions
to C. Then a variable-value pair (x;,v;) is k-multiconsistent with respect to C
if there are at least k tuples in S in which the jth component is v;.

The rest of the paper deals with multiconsistency of individual values. How-
ever, for completeness, we include the definition of a multiconsistent solution.

Definition 2. Let C' be a constraint on the variables x1,...,x; with respective
domains D(x1),...,D(xz¢). Let s be a solution to C and for all 1 < j < ¢, let
s(xj) be the value assigned by s to x;. s is a k-multiconsistent solution if for
every 1 < j </, (zj,s(x;)) is k-multiconsistent with respect to C.

2.2 A Few Global Constraints

The global constraints that we will consider in this paper are:

— The AllDifferent(z1,...,x,) [8,9,10,13,15] constraint is specified on n as-
signment variables. A solution s assigns each variable x; a value s(z;) €
D(x;) such that for any 1 <i < j <n, s(z;) # s(z;).

— The Global Cardinality Constraint GCC(x1,--+,%n,Co,y 5 C,,) [7,11,12,

14] is specified on n assignment variables x1,...,z, and n’ count vari-
ables ¢y,,..., ¢, ,. A solution s assigns each assignment variable z; a value
s(xzj) € D(z;) € D = {vy,---,vy} and assigns each count variable ¢,, a

value s(c,,) € D(cy,) such that each value v; is assigned to exactly s(c,,) as-
signment variables. We will assume that the domains of the count variables
are intervals, each of which is specified by a lower and upper bound, i.e.,
D(C'Ui) - [Lla Ul]

— The Same(X = {z1,...,2n},Z = {z1,...,2,}) [2] constraint is defined on
two sets X and Z of distinct variables such that |X| = |Z|. A solution s
assigns each variable v € X U Z a value s(v) € D(v) such that the multiset
of values assigned to the variables of X is identical to the multiset of values
assigned to the variables of Z.

2.3 Matchings

The solutions to the global constraints we consider in this paper will be rep-
resented as subsets of the edges of a graph that models the constraint. The
following terms will be used:

1 Some texts refer to hyper-arc-consistency when speaking of global constraints and
reserve the term arc-consistency for the special case of binary constraints.
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Definition 3. Given a graph G = (V,E), a subset M of E is a matching if
every node is incident to at most one edge from M. It is a perfect matching if
every node is incident to exactly one edge from M.

In the case of a bipartite graph we have the following definition:

Definition 4. Let G = (V, E) be a bipartite graph with V.= X UY such that
X is the set of nodes on one side, Y is the set of nodes on the other side, and
|X| <|Y|. Then a subset M of E is called an X-perfect matching if every node
i X s incident to exactly one edge from M, and every node Y is incident to
at most one edge from M.

We turn to the more general case where each node of the graph has a capac-
ity requirement that specifies how many of the edges incident to it should be
included in the matching.

Definition 5. Let G = (V, E,C) be a capacitate graph, where C is a function
that maps every node v € V to an interval C(v) = [L,,U,]. We call C(v) the
capacity requirement of v. A generalized matching [7] in G is a subset M of its

edges such that each node v € V is incident to at least L, and at most U, edges
m M.

Alternating cycles and paths will appear as an important tool in our algo-
rithms.

Definition 6. Let G be a graph and let M be a subset of its edges. An alternating
path (cycle) in G with respect to M is a simple path (cycle) in G where each
edge belonging to M in the path (cycle) (except the last in the case of a path), is
followed by an edge which is not in M, and vice versa.

2.4 Flows

When the graph is directed and has capacities on the edges, and not on the
nodes, we can view it as a flow network.

Definition 7. Given a directed graph G= (v, E) with lower and upper capaci-

ties le, ue for each arc e € E, a feasible flow in G is a function f : E — R such
that

1. Flow conservation: For each node v € V,

Z f(U, u) = Z f(w,v).

{ul(v,u)€E} {w|(w,v)€E}
2. Capacities: For eache € E, I, < fle) < ue.

An integral feasible flow is a feasible flow such that for all e € E, fle) is an
integer.
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The residual graph, defined below, appears in one of our algorithms:

Definition 8. Given a directed graph G= (v, E) with lower and upper capaci-
ties le, ue for each arc e € E and a flow f in it, the residual graph éf is defined
as follows: For each e = (u,v) € E, (1) if f(e) < ue then the arc (u,v) appears
in C_jf with capacity [0,ue — f(e)]. (2) if f(e) >l then the arc (v,u) appears in
Gy with capacity [0, f(e) — L]

It is not hard to show that for a directed graph G , if f is a feasible flow in G
and f' is a feasible flow in @f, then f” = f f' is a feasible flow in G, where the
operation @ is defined as follows: If e has the same direction in G and G then
fle)y® f'(e) = f(e) + f'(e) and otherwise, f(e) ® f'(e) = f(e) — f'(e). Thus, the
residual graph enables us to transform one feasible flow into another by finding
a positive-weight cycle.

2.5 Enumeration Algorithms

Generally speaking, given a property 7 : 2V + {0, 1} defined over all subsets of
a ground set U, an enumeration algorithm for 7 is a procedure that lists, one
by one, all subsets Y of U satisfying 7, i.e., for which 7(Y") = 1. For example,
assume that U = F is the edge set of a bipartite graph G = (V, E) and 7 (Y) is
the property that the edge set Y C FE is a perfect matching. Since, in general,
the size of the output of an enumeration algorithm (in our case, the perfect
matchings) is typically exponential in the size of the input (in our case, the size
of the graph |V| + |E|), it is common to measure the efficiency of the algorithm
in terms of the combined size of the input and output. Such an algorithm is
said to be incrementally polynomial if, after generating a subset A of elements
(satisfying ), the time to generate a new element is polynomial in both |X| and
the size of the input. A stronger requirement on an enumeration algorithm is to
run with polynomial delay, in which case, the time to generate a new element
is polynomial only in the size of the input, i.e., does not depend on how many
elements have been generated so far. As we shall see below, the enumeration
algorithms we use are of the latter type.

3 NP-Hardness of Finding a (1, 0)-Super Solution to the
AllDifferent constraint

In this section we show that it is NP-hard to determine whether an AllDifferent
constraint has a (1,0)-super solution. Since it takes O(n®/?n’) time to deter-
mine whether it has an arbitrary solution [6, 11], this implies that finding super
solutions is strictly harder than finding arbitrary solutions.

Theorem 1. Given n variables, 1, ..., Ty, with respective domains D(x1),. ..,
D(z,,), it is NP-hard to determine whether there exists a (1,0)-super solution
for the AllDifferent(x1,. .., x,) constraint, even if |D(x;)| < 4 for all 1 < i < n.
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Proof. We use a polynomial-time transformation from the 3SAT problem: Given

a conjunctive normal form formula ¢(y1,...,yn) = C1 A ... A Cyy,, where each
Cj is a disjunction of 3 literals in {y1,91,...,yn,yn}, determine whether there
exists a truth assignment to y1, . .., yn which satisfies all clauses of ¢(y1, ..., yn).

We show that we can construct an instance of AllDifferent that has a (1,0)-
super solution iff ¢(y,...,yn) is satisfiable. Let n = N +m, and 1, ..., z, be
n variables, the union of whose domains is D = {ay,b1,...,an,bn,C1,. .., Cm}
The domains of specific variables are defined as follows. For ¢ = 1,..., N,
let D(xz;) = {a;,b;}. For j = 1,...,m, let D(zj4n) = {¢;} U{a;, : @ =
1,...,N,and y; € C;}U{b; : i=1,...,N,and y; € C;} (see Figure 1).

x1 x2 x3 x4 x5 x6 x7 x8

Fig. 1. The AllDifferent instance generated from the 3SAT formula (y1 V 72 V y3) A
(1 VysVya) A(yr1VyaVys)

We claim that there is a (1, 0)-super solution to the AllDifferent(x1,...,xy,)
constraint with the specified variable domains if and only if the formula ¢ is
satisfiable. Indeed, given a satisfying assignment o for ¢, we can construct a

(1,0)-super solution to our constraint as follows. For i = 1,..., N, z; is assigned
either the value b; or the value a;, depending, respectively, on whether y; is
assigned T'rue or False by 0. For j = 1,...,m, the variable z,, x is assigned the

value ¢;. Clearly, each variable was assigned a different value so the AllDifferent
constraint is satisfied. Furthermore, for each variable x;, there exists a value
v € D(z;) that has not been assigned to any other variable. This is obvious for
i1=1,...,N, and follows, for i = N +1,...,n from the fact that ¢ is satisfying,
i.e. for each clause C}, j = 1,...,m, there is a literal in C; that is assigned True
by o. Conversely, given a (1,0)-super solution to the AllDifferent constraint,
we define a truth assignment o to the Boolean variables yi,...,yn, by setting
y; = True if x; is assigned the value b;, and setting y; = False if z; is assigned
the value a;. Note that, for j = 1,...,m, each variable =,  is assigned the value
¢; by the super solution since otherwise some variable z;, ¢ € {1,..., N} would
have all its domain values assigned to variables, contradicting the requirement
of a (1,0)-super solution. In particular, for each j = 1,...,m, variable z;
must have at least one value in its domain that is also an unassigned value in
the domain of some variable x;, ¢ € {1,..., N}. This implies that each clause C;
is satisfied by o. ad
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4  Multiconsistency for a Restricted Case of the
AllD:ifferent Constraint

In this section we consider the following problem: Given an integer k and an
AllDifferent(x1, ..., x,) constraint where the domains of z1,...,z, are all con-
tained in the set {1,...,n}, determine which values are k-multiconsistent with
respect to the constraint?.

It is common to represent the AllDifferent constraint by a bipartite graph G
with a node for each variable on one side, a node for each value on the other
side, and an edge between the node representing the variable z; and the node
representing the value v; iff v; is in the domain of x;. Then, there is a one-to-
one correspondence between the solutions to the constraint and the matchings
of cardinality n in G. In the restricted case that we consider in this section, a
matching of cardinality n is also a perfect matching.

The k-multiconsistency problem for the restricted AllDifferent constraint,
then, is the following: Given a bipartite graph G with n nodes on each
side and m edges, determine which edges of G belong to at least k perfect
matchings.

The algorithm in Figure 2 uses a recursive reformulation of an algorithm
by Fukuda and Matsui that enumerates the perfect matchings in a bipartite
graph [4]. For each edge e in G, the algorithm attempts to enumerate k perfect
matchings that contain e. If it fails, it determines that e is not k-multiconsistent.
The algorithm uses the following operations on graphs.

Definition 9. Let e = (u,v) be an edge in G. Then G — e is the graph obtained
by removing the edge e from G and G\e is the graph obtained by removing from
G the nodes u and v and all edges incident to them.

Clearly, there are k perfect matchings in G\e iff there are k perfect matchings
in G that contain the edge e. Hence, checking whether e is k-multiconsistent is
equivalent to checking whether G\ e contains k perfect matchings.

Let T'(n,n’,m) be the time required to find a maximum cardinality matching
in a bipartite graph with n nodes on one side, n’ nodes on the other, and m
edges. In the n’ = n case, the enumeration algorithm by Fukada and Matsui
needs T'(n,n,m) time to find the first perfect matching and then O(n + m)
time to generate each additional perfect matching. We get that given a single
perfect matching that contains the edge e, we can check in O(k(m + n)) time
whether e is k-multiconsistent. Note that once we have a perfect matching M,
we can find, in linear time, a perfect matching M’ that contains a specified
edge e which is not in M: All we need is an alternating cycle that contains e.
Thus, the total running time required to check k-multiconsistency for all edges
is T(n,n,m) + O(mk(m + n)) time.

2 This restriction of the AllDifferent constraint is also equivalent to a special case of
the Sortedness constraint [3, 9].
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Enumerating k Perfect Matchings

The basic idea of Fukuda and Matsui’s enumeration algorithm is the following:
First, it finds two perfect matchings M and M’ in the graph. Then, it selects an
edge e which belongs to one but not the other. e is used to partition the problem
into two subproblems: The first is to generate all perfect matchings that contain
e and the second is to generate all perfect matchings that do not contain e.
Clearly, the outputs of the two subproblems are disjoint.

The procedure NextPerfectMatchings shown in Figure 2 implements this al-
gorithm, with the additional upper bound k& on the number of perfect matchings
that should be generated. It receives a graph G, a perfect matching M in G and
an integer k that indicates how many more perfect matchings should be gen-
erated. If k > 0, the procedure searches for an alternating cycle and generates
a new perfect matching M’. Then it selects an edge e € M’ \ M and makes
two recursive calls to itself: The first receives the graph G — e and the matching
M. Tt generates all matchings in G that do not contain the edge e. The second
recursive call receives the graph G\e and the matching M’ \ {e}. It generates the
matchings in G that contain the edge e. The procedure returns the number of
matchings it has generated, which is & if it was successful and an integer smaller
than k otherwise.

5 Generalizations for Other Constraints

In this section we show that the basic algorithm described in Section 4 can be
generalized for the (unrestricted) AllDifferent, GCCand Same constraints.

5.1  AllDifferent

The bipartite graph representing the AllDifferent constraint is defined similarly
to that of the restricted AllDifferent constraint, with one difference: Instead of n
nodes on each side, there are n variable nodes and n’ value nodes, with n’ > n.
Of course, when n’ > n the graph does not contain any perfect matching. A
solution to the constraint now corresponds to a matching that matches all of
the variable nodes, i.e., an X-perfect matching where the set of variable nodes
is denoted by X.

The algorithm of Figure 2 can be modified for this case as follows: Replace
all references to perfect matchings by X-perfect matchings. Algorithmically, this
means that a new matching can be generated from an existing matching in one of
two ways: By an alternating cycle as in the previous section, or by an alternating
path from a matched value node to an unmatched value node.

52 GCC

The graph with which we represent the GCC' constraint is a capacitated graph,
i.e., a bipartite graph which topologically looks like the graph used for
AllDifferent, but which has a capacity associated with each node. The capacity
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Procedure kMultiConsistency(G k)

(* Initialization and tests for trivial inputs: *)

foreach edge e in G do kConsle] «— TRUE

if £ <0 then return

if there is no perfect matching in G then
foreach edge e in G do kConsle] «— FALSE;
return

end if

M « a perfect matching in G

k—k—-1

(* The main loop: *)
foreach edge e in G do
M’ «+ a perfect matching in G which contains e
k' «— NeatPerfectMatchings(G\e, M \ {e}, k)
if k' < k then kConsle] — FALSE
end for
end

Procedure NeztPerfectMatchings(G, M, k)
if £ <0 then return 0
else if there is an alternating cycle C' in G then
M —MaC
k—k—-1

e + an edge from M’ \ M
(* First recursive call: perfect matchings without e *)
k' «— NextPerfectMatchings(G — e, M, k)
(* Second recursive call: perfect matchings containing e *)
k" «— NextPerfectMatchings(G\e, M'\ {e}, k — k')
return k' + k" +1

else
return 0

endif

end

Fig. 2. k-multiconsistency for the restricted AllDifferent constraint

of a node v, denoted C, = [L,,U,], is an interval. With capacity [1,1] for each
variable node and [L;, U;] for the value node that corresponds to the value v;, we
get that there is a one-to-one correspondence between the generalized matchings
in G and the solutions of the GCC. Note that the different generalized matchings
in G do not, in general, have the same cardinality.

To modify the algorithm of Figure 2 for the GCC constraint, we generalize
the G\e operation that Fukuda and Matsui use with uncapacitated graphs, to the
case of capacitated graphs. For a capacitated graph G and an edge e = (u,v)
in G, G\e is the graph obtained by subtracting 1 from the lower and upper
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capacities of each of u and v. Note that reducing the upper capacity of a node to
0 is equivalent to removing the node and all edges incident to it from the graph.

We also need to generalize the manner in which the algorithm searches for
M’. Given the capacitated graph G = (V, E) and a generalized matching M in
it, another generalized matching can be found by searching for a directed cycle
in the directed graph G = (V, E) defined as follows: V = V U{s}. For each edge
e = (z,v) € E between a variable node z and a value node v, {z,v} € E if
e € M and {v,z} € E otherwise. Finally, for each value node v, {v,s} € E if v
is incident to more than L, edges in M and {s,v} € E if v is incident to less
than U, edges in M [7,14].

5.3 Same

The basic algorithm can also be modified to support the Same constraint, but
in this case the changes are more substantial.

The Same(X = {x1,...,2n},Z ={z1,...,2n}) constraint [2] is modelled by
a graph with three sets of nodes: One set for the variables of X (called xz-nodes),
a second set for the variables of Z (called z-nodes) and a third set for the values
(called y-nodes). For each variable u € X UZ and for each value v in the domain
of u, there is an edge in the graph between the node that represents u and the
node that represents v. Let M be a subset of the edges and let y be a y-node. We
denote by Mx (y) (Mz(y)) the set of z-nodes (z-nodes) adjacent to y by edges
in M. An edge between an z-node (z-node) and a y-node is called an zy-edge (a
yz-edge). A parity matching in such a graph is a subset M of the edges such that
every z-node or z-node is incident to exactly one edge from M and for every
y-node y, |Mx (y)| = |Mz(y)| [2]. There is a one-to-one correspondence between
the parity matchings and the solutions to the Same constraint.

In the previous cases, after removing an edge from the graph we remained
with a subproblem of the same type as the original problem. However, with the
Same constraint the situation is slightly different. Suppose that we wish to enu-
merate all parity matchings that contain the zy-edge e = (z,y). Then the algo-
rithm will explore the graph G\e for sets of edges which are almost parity match-
ings. More precisely, we are interested in subsets M such that (1) |[Mz(y)| =
IMx(y)| + 1, (2) |Mx ()| = |Mz(y)| for all ¥ # y and (3) every variable
in X U Z except for z is matched. Then, M U {e} is a parity matching which
contains e. Since the algorithm recursively removes edges from the graph, the
desired difference between |Mx (y)| and |Mz(y)| can change in each recursive
step, and not necessarily for the same y-node every time.

To support such demands, the algorithm of Figure 3 associates an imbal-
ance requirement I(y) to each y-node y, which is equal to the desired value of
|Mz(y)| — |Mx (y)|. Initially, I(y) = 0 for all y. When the algorithm makes a
recursive call, there are three cases:

1. The recursive call needs to enumerate all solutions in which an xy-edge
e = (z,y) is contained. Then e is removed from the graph along with all
other edges incident to x, and I(y) is incremented.
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Table 1. Domains of the variables for our example

J|D(x;) [D(z)

1({1,2} [{2,3}
2||{3,4} |{4,5}
3(|{4,5,6}|{4,5}

2. The symmetric case for a yz-edge e = (y, 2). e is removed from the graph
along with all other edges incident to z, and I(y) is decremented.

3. The recursive call needs to enumerate all solutions in which an edge e = (v, y)
is not contained, for some z-node (or z-node) v and y-node y. Then e is
removed from the graph and I(y) remains unchanged.

Definition 10. Let G = (X U Z,Y, E) be a bipartite graph with |X| = |Z] and
an integer I(y) associated with every y € Y. A generalized parity matching is a
subset M C E such that for ally, |Mz(y)|—|Mx (y)| = I(y) and eachv € XUZ,
is incident to exactly one edge in M.

The algorithm needs to find a generalized parity matching from scratch only
once, when I(y) = 0 for all y. Since in this case a generalized parity matching is
just a parity matching, there already exists an algorithm for this task [2], which
is based on finding a flow in the following network: We direct the arcs from
x-nodes to y-nodes and from y-nodes to z-nodes, and place a capacity of [0, 1]
on each of them. In addition, we add two nodes s and ¢ to the graph, add an
arc with capacity [1,1] from s to each a-node, an arc with capacity [1, 1] from
each z-node to ¢ and an arc with capacity [n,n] from t to s, where n = | X|.
There is a one-to-one correspondence between the integral feasible flows in this
network and the parity matchings in the graph. Figure 4 shows the network
constructed for the following example: |X| = |Z] = 3, |Y| = 6 and the domains
of the variables of X U Z are as in Table 1. Figure 5 shows an integral feasible
flow in this network.

It remains to show how, given a generalized parity matching M, we can
determine in linear time whether another generalized parity matching M’ exists
in the graph. To do this, we show how to generalize the graph described above
such that there is a one-to-one correspondence between integral feasible flows
and generalized parity matchings. Then, we can use the standard flow theory
technique of finding another integral feasible flow by searching for a cycle in the
residual graph (see Section 2).

As shown in Figure 6, we add an additional node Z and connect it to the
y-nodes with arcs that enforce the imbalances: For each y such that I(y) > 0, we
add the arc {Z, y} with capacity [I(y), I(y)] and for each y such that I(y) < 0, we
add the arc {y,Z} with capacity [—I(y), —I(y)]. Since in a feasible flow, the flow
into each y-node is equal to the flow out of this y-node, the required imbalances
must be respected.
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Procedure kMultiConsistencySame(G k)

(* Initialization and tests for trivial inputs: *)

foreach edge e in G do kConsle] «— TRUE

foreach value node y do I(y) < 0

if £ <0 then return

if there is no parity matching in G then
foreach edge e in G do kConsle] +— FALSE;
return

end if

M < a parity matching in G

k—k—-1

(* The main loop: *)

foreach edge e = (v,y) in G do
M’ + a parity matching in G which contains e
if e is an zy-edge then I(y) — 1 else I(y) «— —1
k' «— NextParityMatchings(G\e, I, M\ {e}, k)
if k' < k then kConsle] «— FALSE
I(y) <0

end for

end

Procedure NeztParityMatchings(G, I, M, k)
if £ <0 then return 0
else if there is another generalized parity matching M’ in G then
k—k—-1

e = (v,y) < an edge from M'\ M
(* First recursive call: matchings without e *)
k' < NextParityMatchings(G — e, I, M, k)

(* Second recursive call: matchings containing e *)
(* Update I(y) *)

if e is an zy-edge then I(y) — I(y) +1

else I(y) «— I(y) — 1

k" «— NextParityMatchings(G\e, I, M'\ {e}, k — k')
(* Restore the previous I(y) *)

if e is an zy-edge then I(y) «— I(y) — 1

else I(y) «— I(y)+1

return k' + k" +1
else
return 0
endif
end

Fig. 3. k-multiconsistency for the Same constraint
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Fig. 4. The directed network for the example in Table 1

13.3] ¢

Fig. 5. A feasible flow in the graph of Figure 4

6 Discussion and Future Directions

In this paper, we have defined multiconsistency in the natural way and argued
that the term corresponds to the intuitive notion of a “useful” value. Therefore,
we believe that determining which values are k-multiconsistent with respect to a
global constraint can be a component of reasonable heuristics for finding a solu-
tion to a constraint program, or for preferring solutions that can be expected to
be more robust. In the realm of the search for robust solutions, we noted that the
super solutions as defined by Hebrard et al. [5] seem to offer a better guarantee
of robustness than k-multiconsistent solutions. However, we show that while it is
NP-hard to determine whether an AllDifferent constraint has a (1, 0)-super so-
lution, computing k-multiconsistency for the AllDifferent, GCC and Same con-
straints can be performed in time T'(n,n',m)+O(mk(m+n)), where T'(n,n’, m)
is the time required to find a single solution, and is upper bounded by O(n3/ Zn')
for AllDifferent and GCC [6,11] and to O(n?n’) for Same [2]. The complex-
ity of computing arc-consistency (which we can now call 1-multiconsistency) for
these constraints is O(T(n,n’,m)). Thus, while there is a computational cost for
k-multiconsistency, for constant k£ the algorithms can still be considered useful.
We are currently working to further reduce the complexity of these algorithms.

There are many questions that remain to be explored in the context of mul-
ticonsistency. On the theoretical level, one would hope that efficient specialized
algorithms can be found for many global constraints, whether exact algorithms
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) 1331

Fig. 6. Example: I(y1) = I(y2) = I(y3) = I(ys) =0, I(ya) = —1 and I(ys) = 1. A flow
in the augmented graph corresponds to a generalized parity matching

such as the ones in this paper, or faster approximation algorithms (i.e., algo-
rithms that determine k-multiconsistency correctly for edges that participate in
much fewer or much more than k solutions, but might make errors regarding
edges that participate in approximately k solutions). In addition, it would be
good to have a theoretical analysis that will better clarify the meaning of mul-
ticonsistency. An example of such a result could be a probabilistic analysis that
correlates the robustness of the solution to a random AllDifferent constraint
with the level of consistency of this solution, i.e., the maximal k for which this
solution is k-multiconsistent. A third type of theoretical result could be the fol-
lowing: Given a constraint, efficiently compute a “reasonable” value of k for this
constraint, where “reasonable” could mean a k such that at least 1/4 and at most
3/4 of the edges are k-multiconsistent. It seems desirable to determine such val-
ues, because we do not gain much information by computing k-multiconsistency
with an “unreasonable” k: Most of the edges fall into the same set (consistent
or inconsistent), so we cannot conclude any preferences among them.

Finally, there are questions that will need to be explored experimentally.
What is the practical value of the heuristics we propose? Does a constraint
solver really find a solution faster if it prefers to assign the “useful” values? Does
the robustness increase in practice (even if there does not exist a theoretical
guarantee?) Are there other heuristics that can be conceived and which use
multiconsistency?
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