
Scheduling Social Golfers Locally

Iván Dotú1 and Pascal Van Hentenryck2

1 Departamento De Ingenierı́a Informática, Universidad Autónoma de Madrid
2 Brown University, Box 1910, Providence, RI 02912

Abstract. The scheduling of social golfers has attracted significant attention in
recent years because of its highly symmetrical and combinatorial nature. In par-
ticular, it has become one of the standard benchmarks for symmetry breaking
in constraint programming. This paper presents a very effective, local search,
algorithm for scheduling social golfers. The algorithm find the first known solu-
tions to 11 instances and matches, or improves, state-of-the-art results from con-
straint programming on all but 3 instances. Moreover, most instances of the social
golfers are solved within a couple of seconds. Interestingly, the algorithm does
not incorporate any symmetry-breaking scheme and illustrates the nice comple-
mentarity between constraint programming and local search on this scheduling
application.

1 Introduction

The social golfer problem has attracted significant interest since it was first posted on
sci.op-research in May 1998. It consists of scheduling n = g × p golfers into
g groups of p players every week for w weeks so that no two golfers play in the same
group more than once. An instance of the social golfer is specified by a triple g−p−w,
where g is the number of groups, p is the size of a group, and w is the number of weeks
in the schedule.

The scheduling of social golfers is a highly combinatorial and symmetric problem
and it is not surprising that it has generated significant attention from the constraint
programming community (e.g., [5, 12, 6, 11, 10, 2, 9]). Indeed, it raises fundamentally
interesting issues in modeling and symmetry breaking, and it has become one of the
standard benchmarks for evaluating symmetry-breaking schemes. Recent developments
(e.g., [2, 9]) approach the scheduling of social golfers using innovative, elegant, but also
complex, symmetry-breaking schemes.

This paper approaches the problem from a very different angle. It proposes a local
search algorithm for scheduling social golfers, whose local moves swap golfers within
the same week and are guided by a tabu-search meta-heuristic. The local search algo-
rithm matches, or improves upon, the best solutions found by constraint programming
on all instances but 3. It also found the first solutions to 11 instances that were previ-
ously open for constraint programming.1 Moreover, the local search algorithm solves

1 For the statuses of the instances, see Warwick Harvey’s web page at http://
www.icparc.ic.ac.uk/wh/golf.

R. Barták and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 155–167, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



156 I. Dotú and P. Van Hentenryck

almost all instances easily in a few seconds and takes about 1 minute on the remaining
(harder) instances. The algorithm also features a constructive heuristic which trivially
solves many instances of the form odd− odd−w and provides good starting points for
others.

The main contributions of this paper are as follows.

1. It shows that local search is a very effective way to schedule social golfers. It found
the first solutions to 11 instances and matches, or improves upon, all instances
solved by constraint programming but 3. In addition, almost all instances are solved
in a few seconds, the harder ones taking about 1 minute.

2. It demonstrates that the local search algorithm uses a natural modeling and does
not involve complex symmetry-breaking schemes. In fact, it does not take sym-
metries into account at all, leading to an algorithm which is significant simpler
than constraint programming solutions, both from a conceptual and implementa-
tion standpoint.

3. The experimental results indicate a nice complementarity between constraint pro-
gramming and local search, as some of the hard instances for one technology are
trivially solved by the other.

The rest of the paper is organized as follows. The paper starts by describing the basic
local search algorithm, including its underlying modeling, its neighborhood, its meta-
heuristic, and its experimental results. It then presents the constructive heuristic and
reports the new experimental results when the heuristic replaces the random configura-
tions as starting points of the algorithm. Finally, the paper discusses related work and
concludes by giving some preliminary results on generalizations of the problem.

2 The Modeling

There are many possible modelings for the social golfer problem, which is one of
the reasons why it is so interesting. This paper uses a modeling that associates a de-
cision variable x[w, g, p] with every position p of every group g of every week w.
Given a schedule σ, i.e., an assignment of values to the decision variables, the value
σ(x[w, g, p]) denotes the golfer scheduled in position p of group g in week w. There
are two kinds of constraints in the social golfer.

1. A golfer plays exactly once a week;
2. Two golfers can play together (i.e., in the same group of the same week) at most

once.

The first type of constraints is implicit in the algorithms presented in this paper: It is
satisfied by the initial assignments and is preserved by local moves. The second set of
constraints is represented explicitly. The model contains a constraint m[a, b] for every
pair (a, b) of golfers: Constraint m[a, b] holds for an assignment σ if golfers a and b are
not assigned more than once to the same group. More precisely, if #σ(a, b) denotes the
number of times golfers a and b meet in schedule σ, i.e.,

#{(w, g) | ∃p, p′ : σ(x[w, g, p]) = a & σ(x[w, g, p′]) = b},
constraint m[a, b] holds if



Scheduling Social Golfers Locally 157

#σ(a, b) ≤ 1.

To guide the algorithm, the model also specifies violations of the constraints. Infor-
mally speaking, the violations υσ(m[a, b]) of a constraint m[a, b] is the number of times
golfers a and b are scheduled in the same group in schedule σ beyond their allowed
meeting. In symbols,

υσ(m[a, b]) = max(0,#σ(a, b) − 1).

As a consequence, the social golfer problem can be modeled as the problem of finding
a schedule σ minimizing the total number of violations f(σ) where

f(σ) =
∑

a,b∈G
υσ(m[a, b]).

and G is the set of g × p golfers. A schedule σ with f(σ) = 0 is a solution to the social
golfer problem.

3 The Neighborhood

The neighborhood of the local search consists of swapping two golfers from different
groups in the same week. The set of swaps is thus defined as

S = {(〈w, g1, p1〉, 〈w, g2, p2〉) | g1 �= g2}.

It is more effective however to restrict attention to swaps involving at least one golfer in
conflict with another golfer in the same group. This ensures that the algorithm focuses
on swaps which may decrease the number of violations. More formally, a triple 〈g, w, p〉
is said to be in conflict in schedule σ, which is denoted by υσ(〈g, w, p〉), if

∃p′ ∈ P : υσ(m[σ(x[w, g, p]), σ(x[w, g, p′])]) > 1.

With this restriction in mind, the set of swaps S−(σ) considered for a schedule σ be-
comes

S−(σ) = {(〈w1, g1, p1〉, 〈w2, g2, p2〉) ∈ S | υσ(〈w1, g1, p1〉)}.

4 The Tabu Component

The tabu component of the algorithm is based on three main ideas. First, the tabu list
is distributed across the various weeks, which is natural since the swaps only consider
golfers in the same week. The tabu component thus consists of an array tabu where
tabu[w] represents the tabu list associated with week w. Second, for a given week w,
the tabu list maintains triplet 〈a, b, i〉, where a and b are two golfers and i represents
the first iteration where golfers a and b can be swapped again in week w. Observe that



158 I. Dotú and P. Van Hentenryck

the tabu lists store golfers, not positions 〈w, g, p〉. Third, the tabu tenure, i.e., the time a
pair of golfers (a, b) stays in the list, is dynamic: It is randomly generated in the interval
[4, 100]. In other words, each time a pair of golfers (a, b) is swapped, a random value
ρ is drawn uniformly from the interval [4, 100] and the pair (a, b) is tabu for the next ρ
iterations. At iteration k, swapping two golfers a and b is tabu, which is denoted by

tabu[w](a, b, k)

if the Boolean expression

〈a, b, i〉 ∈ tabu[w] & i ≤ k

holds. As a consequence, for schedule σ and iteration k, the neighborhood consists of
the set of moves St(σ, k) defined as

St(σ, k) = {(t1, t2) ∈ S−(σ) | ¬tabu[w](σ(x[t1]), σ(x[t2]), k)}.
where we abuse notations and use x[〈w, g, p〉] to denote x[w, g, p].

Aspiration In addition to the non-tabu moves, the neighborhood also considers moves
that improve the best solution found so far, i.e., the set S∗(σ, σ∗) defined as

S∗(σ, σ∗) = {(t1, t2) ∈ S−(σ) | f(σ[x[t1] ↔ x[t2]]) < f(σ∗)},
where σ[x1 ↔ x2] denotes the schedule σ where the values of variables x1 and x2 have
been swapped and σ∗ denotes the best solution found so far.

5 The Tabu-Search Algorithm

We are now ready to present the basic local search algorithm SGLS. The algorithm,
depicted in Figure 1, is a tabu search with a restarting component. Lines 2-7 perform
the initializations. In particular, the tabu list is initialized in lines 2-3, the initial schedule
is generated randomly in line 4, while lines 6 and 7 initialize the iteration counter k, and
the stability counter s. The initial configuration σ randomly schedules all golfers in the
various groups for every week, satisfying the constraint that each golfer plays exactly
once a week. The best schedule found so far σ∗ is initialized to σ.

The core of the algorithm is given in lines 8-23. They iterate local moves for a
number of iterations or until a solution is found. The local move is selected in line 9.
The key idea is to select the best swaps in the neighborhood

St(σ, k) ∪ S∗(σ, σ∗),

i.e., the non-tabu swaps and those improving the best schedule. Observe that the expres-
sion

f(σ[x[t1] ↔ x[t2]])

represents the number of violations obtained after swapping t1 and t2. The tabu list is
updated in line 11, where week(〈w,g,p〉) is defined as

week(〈w, g, p〉) = w.



Scheduling Social Golfers Locally 159

1. SGLS(W, G, P )
2. forall w ∈ W
3. tabu[w] ← {};
4. σ ← random configuration;
5. σ∗ ← σ;
6. k ← 0;
7. s ← 0;
8. while k ≤ maxIt & f(σ) > 0 do
9. select (t1, t2) ∈ St(σ, k) ∪ S∗(σ, σ∗) minimizing f(σ[x[t1] ↔ x[t2]]);
10. τ ← RANDOM([4,100]);
11. tabu[week(t1)] ← tabu[week(t1)] ∪ {〈σ(x[t1]), σ(x[t2]), k + τ〉};
12. σ ← σ[x[t1] ↔ x[t2]];
13. if f(σ) < f(σ∗) then
14. σ∗ ← σ;
15. s ← 0;
16. else if s > maxStable then
17. σ ←random configuration;
18. s ← 0;
19. forall w ∈ W do
20. tabu[w] = {};
21. else
22. s++;
23. k++;

Fig. 1. Algorithm SGLS for Scheduling Social Golfers

The new schedule is computed in line 12. Lines 13-15 update the best schedule, while
lines 16-20 specify the restarting component.

The restarting component simply reinitializes the search from a random configura-
tion whenever the best schedule found so far has not been improved upon for maxStable
iterations. Note that the stability counter s is incremented in line 22 and reset to zero in
line 15 (when a new best schedule is found) and in line 18 (when the search is restarted).

6 Experimental Results

This section reports the experimental results for the SGLS algorithm. The algorithm
was implemented in C and the experiments were carried out on a 3.06GHz PC with
512MB of RAM. Algorithm SGLS was run 100 times on each instance and the results
report average values for successful runs, as well as the percentage of unsuccessful runs
(if any).

Tables 1 and 2 report the experimental results for SGLS. Given a number of groups
g and a group size p, the tables only give the results for those instances g − p − w
maximizing w since they also provide solutions for w′ < w. Table 1 reports the number
of iterations (moves), while Table 2 reports the execution times. Bold entries indicate
that SGLS matches the best known number of weeks for a given number of groups and
a given group size. The percentage of unsuccessful runs is shown between parentheses
in Table 2.



160 I. Dotú and P. Van Hentenryck

Table 1. Number of Iterations for SGLS with Maximal Number of Weeks. Bold Entries Indicate
a Match with the Best Known Number of Weeks

size 3 size 4 size 5 size 6 size 7 size 8 size 9 size 10
g w I w I w I w I w I w I w I w I

6 8 282254.0 6 161530.3 6 16761.5 3 15.8 - - - - - - - -
7 9 12507.6 7 274606.0 5 102.9 4 100.4 3 23.4 - - - - - -
8 10 653.9 8 323141.5 6 423.7 5 1044.9 4 237.5 4 153301.6 - - - -
9 11 128.3 8 84.4 6 52.7 5 55.5 4 44.8 3 27.7 3 43.9 - -
10 13 45849.1 9 100.2 7 80.8 6 110.7 5 94.6 4 61.8 3 36.1 3 53.3

Table 2. CPU Time in Seconds for SGLS with Maximal Number of Weeks. Bold Entries Indicate
a Match with the Best Known Number of Weeks

size 3 size 4 size 5 size 6 size 7 size 8 size 9 size 10
g w T %F w T %F w T w T w T w T w T w T

6 8 48.93 6 6 47.75 6 107.18 3 0.01 - - - - - - - -
7 9 3.06 7 107.62 8 5 0.07 4 0.09 3 0.03 - - - - - -
8 10 0.23 8 207.77 9 6 0.37 5 1.21 4 0.39 4 360.00 - - - -
9 11 0.08 8 0.09 6 0.09 5 0.13 4 0.14 3 0.09 3 0.19 - -
10 13 30.82 9 0.16 7 0.19 6 0.34 5 0.41 4 0.33 3 0.20 3 0.39

As can be seen from the tables, Algorithm SGLS finds solutions to all the instances
solved by constraint programming except 4. Moreover, almost all entries are solved in
less than a second. Only a few instances are hard for the algorithm and require around
1 minute of CPU time. Interestingly, algorithm SGLS also solves 7 new instances:
9 − 4 − 9, 9 − 5 − 7, 9 − 6 − 6, 9 − 7 − 5, 9 − 8 − 4, 10 − 5 − 8 and 10 − 9 − 4.

It is interesting to observe that algorithm SGLS does not break symmetries and
does not exploit specific properties of the solutions. This contrasts with constraint-
programming solutions that are often quite sophisticated and involved. See, for instance,
the recent papers [2, 9] which report the use of very interesting symmetry-breaking
schemes to schedule social golfers.

7 A Constructive Heuristic

The quality of SGLS can be further improved by using a constructive heuristic to find
a good starting, and restarting, configuration. The heuristic [3] trivially solves p − p −
(p + 1) instances when p is prime and provides good starting points (or solutions) for
other instances as well. Examples of such initial configurations are given in Tables 3
and 4, which will be used to explain the intuition underlying the constructive heuristic.
The heuristic simply aims at exploiting the fact that all golfers in a group for a given
week must be assigned a different group in subsequent weeks. As a consequence, the
heuristic attempts to distribute these golfers in different groups in subsequent weeks.

Table 4 is a simple illustration of the heuristic with 5 groups of size 5 (i.e., 25
golfers) and 6 weeks. The first week is simply the sequence 1..25. In the second week,
group i consists of all golfers in position i in week 1. In particular, group 1 consists



Scheduling Social Golfers Locally 161

Table 3. The initial configuration for the problem 4 − 3 − 3

weeks group 1 group 2 group 3 group 4
week 1 1 2 3 4 5 6 7 8 9 10 11 12
week 2 1 4 7 10 2 5 8 11 3 6 9 12
week 3 1 5 9 10 2 6 7 11 3 4 8 12

Table 4. The intial configuration for the problem 5 − 5 − 6

weeks group 1 group 2 group 3 group 4 group 5
week 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
week 2 1 6 11 16 21 2 7 12 17 22 3 8 13 18 23 4 9 14 19 24 5 10 15 20 25
week 3 1 7 13 19 25 2 8 14 20 21 3 9 15 16 22 4 10 11 17 23 5 6 12 18 24
week 4 1 8 15 17 24 2 9 11 18 25 3 10 12 19 21 4 6 13 20 22 5 7 14 16 23
week 5 1 9 12 20 23 2 10 13 16 24 3 6 14 17 25 4 7 15 18 21 5 8 11 19 22
week 6 1 10 14 18 22 2 6 15 19 23 3 7 11 20 24 4 8 12 16 25 5 9 13 17 21

of golfers 1, 6, 11, 16, 21, group 2 is composed of golfers 2, 7, 12, 17, 22 and so on. In
other words, the groups consist of golfers in the same group position in week 1. The
third week is most interesting, since it gives the intuition behind the heuristic. The key
idea is to try to select golfers whose positions are j,j+1,j+2,j+3,j+4 in the first week,
the addition being modulo the group size. In particular, group 1 is obtained by selecting
the golfers in position i from group i in week 1, i.e., golfers 1, 7, 13, 19, 25. Subsequent
weeks are obtained in similar fashion by simply incrementing the offset. In particular,
the fourth week considers sequences of positions of the form j,j+2,j+4,j+6,j+8 and its
first group is 1, 8, 15, 17, 24. Table 3 illustrates the heuristic on the 4-3-3 instance. Note
that the first group in week 2 has golfers in the first position in groups 1, 2, and 3 in
week 1. However, the first golfer in week 4 must still be scheduled. Hence the second
group must select golfer 10, as well as golfers 2 and 5.

Figure 2 depicts the code of the constructive heuristic. The code takes the convention
that the weeks are numbered from 0 to w−1, the groups from 0 to g−1, and the positions
from 0 to p − 1, since this simplifies the algorithm. The key intuition to understand the
code is to recognize that a week can be seen as a permutation of the golfers on which
the group structure is superimposed. Indeed, it suffices to assign the first p positions
to the first group, the second set of p positions to the second group and so on. As a
consequence, the constructive heuristic only focuses on the problem of generating w
permutations P0, . . . , Pw−1.

The top-level function is HEURISTICSCHEDULE which specifies the first week and
calls function SCHEDULEWEEEK for the remaining weeks. Scheduling a week is the
core of the heuristic. All weeks start with golfer 1 (line 7) and initialize the position
po to 0 (line 8), the group number gr to 1 (line 9), and the offset ∆ to we − 1. The
remaining golfers are scheduled in lines 11-15.

The key operation is line 12, which selects the first unscheduled golfer s from group
gr of week 0 (specified by P0) starting at position (po + ∆)%p and proceeding by
viewing the group as a circular list. The next three instructions update the position po
to the position of s in group gr of week 0 (line 13), increment the group to select a



162 I. Dotú and P. Van Hentenryck

1. HEURISTICSCHEDULE(w, g, p)
2. n ← g × p;
3. P0 ← 〈1, . . . , n〉;
4. forall we ∈ 1..w − 1
5. Pwe ← scheduleWeek(we, g, p, n);

6. SCHEDULEWEEK(we, g, p, n)
7. Pwe ← 〈1〉;
8. po ← 0;
9. gr ← 1;
10. ∆ ← we − 1;
11. forall go ∈ 1..n − 1
12. s ← SELECT(gr, (po + ∆)%p);
13. po ← POSITION(s);
14. gr ← (gr + 1)%g;
15. Pwe ← Pwe :: 〈s〉;
16. return Pwe;

Fig. 2. The Constructive Heuristic for Scheduling Social Golfers

golfer from the next group, and extend the permutation by concatenating s to Pwe. By
specification of SELECT, which only selects unscheduled golfers and the fact that the
heuristic selects the golfers from the groups in a round-robin fashion, the algorithm is
guaranteed to generate a permutation.

8 Experimental Results Again

This section discusses the performance of algorithm SGLS-CH that enhances SGLS
with the constructive heuristic to generate starting/restarting points. Although the start-
ing point is deterministic, the algorithm still uses restarting, since the search itself is
randomized, i.e., ties are broken randomly.

8.1 The odd − odd − w Instances

It is known that the constructive heuristic finds solutions for p − p − (p + 1) instances
when p is prime. Moreover, it also provides solutions to many instances of the form
odd−odd−w as we now show experimentally. The results were performed up to odd =
49. For all (odd) prime numbers p lower than 49, the heuristic solves the instances
p − p − w, where w is the maximal number of weeks for p groups and periods. When
odd is divisible by 3, the heuristic solves instances of the form odd − odd − 4, when
odd is divisible by 5, it solves instances of the form odd − odd − 6, and when odd is
divisible by 7, it solves instances of the form odd−odd−8. For instance, the constructive
heuristic solves instance 49-49-8.

It is interesting to relate these results to mutually orthogonal latin squares. Indeed, it
is known that finding a solution for instances of the form g − g − 4 is equivalent to the
problem of finding two orthogonal latin squares of size g. Moreover, instances of the
form g− g−n are equivalent to the problem of finding n− 2 mutually orthogonal latin



Scheduling Social Golfers Locally 163

Table 5. Results on the odd − odd − w Instances

instances CH : w Gol:LB
3-3-w 4 4
5-5-w 6 6
7-7-w 8 8
9-9-w 4 10

11-11-w 12 12
13-13-w 14 14
15-15-w 4 6
17-17-w 18 18
19-19-w 20 20
21-21-w 4 7
23-23-w 24 24
25-25-w 6 26
27-27-w 4 28
29-29-w 30 30
31-31-w 32 32
33-33-w 4 7
35-35-w 6 7
37-37-w 38 38
39-39-w 4 6
41-41-w 42 42
43-43-w 44 44
45-45-w 4 8
47-47-w 48 48
49-49-w 8 50

squares of size g [3, 10]. Instances of the form g − g − 4 can be solved in polynomial
time when g is odd. This provides some insight into the structure of these instances and
some rationale why the constructive heuristic is able to solve many of the odd−odd−w
instances. Table 5 summarizes the results on the odd−odd−w instances. The columns
respectively specify the instances, the largest w found by the constructive heuristic, and
the number of weeks w for the social golfers that corresponds to the best lower bound
on the latin square as given in [4]. Rows in bold faces indicate closed instances.

It is interesting to observe that the lower bounds on the mutually orthogonal latin
squares vary significantly. Indeed, the lower bound for size 17 is 16, while it is 4 for
size 15. These lower bounds give some additional insights on the inherent difficulty of
these instances and on the behavior of the constructive heuristic.

8.2 Hard Instances

Table 6 compares the tabu-search algorithm with and without the constructive heuristic
on the hard instances from Table 2. Note that 7− 7− 7 and 7− 7− 8 are now trivially
solved, as well as 9−9−4 which was also open. SGLS-CH does not strictly dominates
SGLS, as there are instances where it is slightly slower. However, on some instances,



164 I. Dotú and P. Van Hentenryck

Table 6. Comparison between SGLS and SGLS-CH

random new
instances I T %F I T %F

6-3-8 282254.07 48.93 6 250572 43.84 4
6-4-6 161530.35 47.75 168000 49.66
7-4-7 274606.00 107.18 200087 124.15
8-4-8 323141.52 107.62 8 316639 141.91 3
8-8-4 153301.61 360.00 8380.45 19.54
8-8-5 – – 100 108654.00 496.82

10-3-13 45849.00 30.82 51015.00 34.28

Table 7. Experimental Results of SGLS-CH on the New Solved Instances

instance I T %solved
7-5-6 487025.0 370.50 10
9-4-9 469156.4 402.55 100
9-5-7 4615.0 5.39 100
9-6-6 118196.7 196.52 100
9-7-5 64283.9 155.16 100
9-8-4 1061.3 2.92 100

10-4-10 548071.6 635.20 100
10-5-8 45895.4 76.80 100
10-9-4 5497.9 24.42 100

it is clearly superior (including on 8 − 8 − 5 which can now be solved). Algorithm
SGLS-CH also closes two additional open problems: 7− 5− 6 and 10− 4− 10. Table
7 depicts the performance of algorithm SGLS-CH on the new solved instances.

8.3 Summary of the Results

Table 8 summarizes the results of this paper. It depicts the status of maximal instances
for SGLS-CH and whether the instances are hard (more than 10 seconds) or easy (less
than 10 seconds). The results indicate that SGLS-CH matches or improves the best
results for all but 3 instances. In addition, it produces 11 new solutions with respect to
earlier results. These results are quite remarkable given the simplicity of the approach.
Indeed, constraint-programming approaches to the social golfer problem are typically
very involved and use elegant, but complex, symmetry-breaking techniques. Algorithm
SGLS-CH, in contrast, does not include any such symmetry breaking.

It is interesting to observe the highly constrained nature of the instances for which
SGLS-CH does not match the best-known results. Hence it is not surprising that con-
straint programming outperforms local search on these instances. Note also that Brisset
and Barnier [2] proposed a very simple constraint-programming model to solve 8−4−9
in a few seconds. So, once again, there seems to be a nice complementarity between
constraint programming and local search on the social golfer problem.



Scheduling Social Golfers Locally 165

Table 8. Summary of the Results for SGLS-CH with Maximal Number of Weeks. Bold entries
represent a match or an improvement over existing solutions. The status is new (for improvement),
hard (> 10 seconds), and easy (≤ 10 seconds)

size 3 size 4 size 5 size 6 size 7 size 8 size 9 size 10
#groups w status w status w status w status w status w status w status w status

6 8 Hard 6 Hard 6 Hard 3 Easy - - - - - - - -
7 9 Easy 7 Hard 6 New 4 Easy 8 New - - - - - -
8 10 Easy 8 Hard 6 Easy 5 Easy 4 Easy 5 Hard - - - -
9 11 Easy 9 New 7 New 6 New 5 New 4 New 4 New - -
10 13 Hard 10 New 8 New 6 Easy 5 Easy 4 Easy 4 New 3 Easy

Table 9. Summary of the Results for Atmost Two Meetings. Easy < 10s. Medm > 20s & < 5%
unsolved. Hard < 50% unsolved. Chal > 50% unsolved

size 3 size 4 size 5 size 6 size 7 size 8 size 9 size 10
#groups w status w status w status w status w status w status w status w status

3 8 Easy 6 Easy 6 Easy 6 Easy 4 Easy 4 Easy 4 Easy 2 -
4 11 Easy 10 Easy 8 Chal 6 Easy 6 Easy 7 Chal 6 Easy 6 Easy
5 14 Hard 11 Easy 9 Easy 8 Easy 7 Easy 7 Hard 6 Easy 6 Easy
6 16 Easy 13 Easy 11 Easy 10 Easy 9 Easy 8 Easy 7 Easy 7 Easy
7 19 Easy 15 Easy 13 Easy 12 Easy 11 Medm 10 Easy 9 Easy 8 Easy
8 22 Medm 18 Medm 15 Easy 14 Hard 12 Easy 11 Easy 10 Easy 10 Medm
9 25 Chal 20 Easy 17 Easy 15 Easy 14 Easy 13 Medm 12 Easy 11 Easy
10 27 Easy 22 Easy 19 Easy 17 Easy 15 Easy 14 Easy 13 Easy 12 Easy

9 Related Work

There is a considerable body of work on scheduling social golfers in the constraint pro-
gramming community. References [2, 6, 9] describe state-of-the art results using con-
straint programming and are excellent starting points for more references.2 See also
[10] for interesting theoretical and experimental results on the social golfer problem, as
well as the description of SBDD, a general scheme for symmetry breaking. Reference
[1] describes a tabu-search algorithm for scheduling social golfers, where the neighbor-
hood consists of swapping the value of a single variable and where all constraints are
explicit. The results are very far in quality and performance from those reported here.

10 Conclusion

This paper reconsidered the scheduling of social golfers, a highly combinatorial and
symmetric application which has raised significant interest in the constraint program-
ming community. It presented an effective local search algorithm which found the first

2 Reference [9] contains much more general results on symmetry breaking but the scheduling of
social golfers is one of the main applications in evaluating the new techniques.



166 I. Dotú and P. Van Hentenryck

solutions to 11 new instances and matched, or improved upon, all instances solved
by constraint programming solutions but 3. Moreover, the local search algorithm was
shown to find almost all solutions in less than a couple of seconds, the harder instances
taking about 1 minute. The algorithm also features a constructive heuristic which triv-
ially solves many instances of the form odd − odd − w.

It is interesting to conclude with a number of interesting observations. First, the so-
cial golfer is a problem where the properties of the instances seem to determine which
approach is best positioned to solve them. In particular, hard instances for constraint
programming are easy for local search and vive-versa. There are of course other appli-
cations where this also holds. What is interesting here is the simplicity of local search
compared to its constraint programming counterpart and the absence of symmetry-
breaking schemes in local search. Whether this observation generalizes to other, highly
symmetric, problems is an interesting issue for future work. See, for instance, [7, 8] for
early results along these lines.

Second, there are many interesting variations around the social golfer problem that
are generating increasing interest. These variations include the possibility of golfers
to meet more than once, as well as the superimposition of a referee assignment mini-
mizing the number of referees subject to “fairness” constraints. Our preliminary results
with local search on these problems, which are motivated by real-life applications, are
extremely encouraging. In particular, Table 9 reports some very preliminary results on
the generalizations where golfers are allowed to meet more than once. The instances
are classified into easy, medium, hard, and challenging. Hard instances mean that local
search may occasionally fail to find a solution in 100,000 iterations (but in less than
50% of the time), while challenging instances fail in finding a solution more than 50%
of the time within the iteration limit. Once again, given a number of groups g and a
group size p, the tables only give the results for those instances g − p − w maximizing
w since they also provide solutions for w′ < w.

Finally, there are many connections with Latin squares that could be exploited fur-
ther. It is likely that new heuristic solutions based on this connection would close addi-
tional instances and provide good starting points on others.

Acknowledgements

Thanks to Warwick Harvey and Meinolf Sellmann for pointing out relevant results on
social golfers and Latin squares, and to the reviewers for several interesting comments
and suggestions. This work was partially supported by NSF ITR Awards ACI-0121497.

References

1. M. Ågren. Solving the Social Golfer Using Local Search. peg.it.uu.se/ saps02/
MagnusAgren/, 2003.

2. N. Barnier and P. Brisset. Solving kirkman’s schoolgirl problem in a few seconds. Con-
straints, 2005. To appear in the Special Issue on CP’02.

3. C. Colbourn and Dinitz. The CRC Handbook of Combinatorial Design. CRC Press, Boca
Raton, FL, 1996.



Scheduling Social Golfers Locally 167

4. C.J. Colbourn and J.H. Dinitz. Mutually orthogonal latin squares: A brief survey of con-
structions. ”Journal of Statistical Planning and Inference”, 95:9–48, 2001.

5. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In Toby Walsh, editor,
Principles and Practice of Constraint Programmingo, volume 2293 of LNCS, pages 93–107.
Springer Verlag, 2001.

6. S. Prestwich. Randomized backtracing for linear pseudo-boolean constraint problems. In
Proceedings of the Fourth International Workshop on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimisation Problems (CP-AI-OR’02), pages
7–19, Le Croisic, France, March 2002.

7. S.D. Prestwich. Supersymmetric Modeling for Local Search. In Second International Work-
shop on Symmetry in Constraint Satisfaction Problems, 2002.

8. S.D. Prestwich. Negative Effects of Modeling Techniques on Search Performance. Annals
of Operations Research, 118:137–150, 2003.

9. J.F. Puget. Symmetry breaking revisited. Constraints, 2005. To appear in the Special Issue
on CP’02.

10. M. Sellmann. Reduction Techniques in Constraint Programming and Combinatorial Opti-
mization. PhD thesis, University of Paderborn, Germany, 2003.

11. Meinolf Sellmann and Warwick Harvey. Heuristic constraint propagation – Using local
search for incomplete pruning and domain filtering of redundant constraints for the social
golfer problem. In Narendra Jussien and François Laburthe, editors, Proceedings of the
Fourth International Workshop on Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimisation Problems (CP-AI-OR’02), pages 191–204, Le
Croisic, France, March 2002.

12. B. Smith. Reducing Symmetry in a Combinatorial Design Problem. In CP-AI-OR’2001,
pages 351–359, Wye College (Imperial College), Ashford, Kent UK, April 2001.


	Introduction
	The Modeling
	The Neighborhood
	The Tabu Component
	The Tabu-Search Algorithm
	Experimental Results
	A Constructive Heuristic
	Experimental Results Again
	The odd-odd-w Instances
	Hard Instances
	Summary of the Results

	Related Work
	Conclusion



