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Abstract. The Employee Timetabling Problem (ETP) is a general class
of problems widely encountered in service organizations (such as call cen-
ters for instance). Given a set of activities, a set of demand curves (spec-
ifying the demand in terms of employees for each activity for each time
period) the problem consists of constructing a set of work shifts such that
each activity is at all time covered by a sufficient number of employees.
Work shifts can cover many activities and must meet work regulations
such as breaks, meals and maximum working time constraints. Further-
more, it is often desired to optimize a global objective function such
as minimizing labor costs or maximizing a quality of service measure.
This paper presents variants of this problem which are modeled with
the Dantzig formulation. This approach consists of first generating all
feasible work shifts and then selecting the optimal set. We propose to
address the shift generation problem with constraint satisfaction tech-
niques based on expressive and efficient global constraints such as gcc

and regular. The selection problem, which is modeled with an integer
linear program, is solved by a standard MIP solver for smaller instances
and addressed by column generation for larger ones. Since a column gen-
eration procedure needs to generate only shifts of negative reduced cost,
the optimization constraint cost-regular is introduced and described.
Preliminary experimental results are given on a typical ETP.

1 Introduction

Employee Timetabling Problems (ETP) form a wide class of optimization prob-
lems encountered in several industries and organizations. Generally, an ETP is
the problem of designing valid employee schedules over a given time horizon
that cover given workforce requirements. The timetabling attempts to optimize
performance criteria such as the overall cost or the quality of service.

In a context where there are numerous possible activities, such as in call
centers, a schedule refers to a sequence of activities performed during fixed time
periods satisfying a given set of rules and regulations (e.g. a break of 15 minutes
is necessary between two different work activities). Various constraints of that
kind arise in real world ETP and their number and complexity quickly make
these problems NP-hard. Furthermore, it is sometimes necessary to take into
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account the individual preferences and skills of each employee, which significantly
increases the complexity of the problem.

Because it is a broad modeling methodology, constraint programming (CP)
is well suited to generate the valid individual schedules. Most of the constraints
in this problem are defined in terms of allowed patterns of activities and limits
on the amount of work that is scheduled. These constraints can be efficiently
tackled in a constraint satisfaction model using global constraints such as gcc
[8] and regular [7], together able to restrict the number of occurrences and to
enforce patterns of values in a sequence of variables.

This paper describes a general algorithm based on such a CP framework
for solving several variants of ETP. The basic ETP can be represented as a set
covering problem, where each column is a valid schedule. Our solution method is
based on an integer linear formulation of the whole optimization problem, where
variables represent the different permitted schedules (which are pre-computed
in CP). When the number of valid schedules becomes too large to be generated
and stored, the linear relaxation of the integer program is solved by column
generation. In this case, only a subset of the schedules (with negative reduced
costs) are generated by CP and added iteratively to the master linear program.
In order to generate only negative reduced cost schedules, the regular constraint
is replaced by its extension cost-regular within the CP model.

The interest of this approach is its ability to handle variations of the problem
without major modifications to the algorithm itself. Indeed, comparing with pure
linear programming approaches that are generally developed for ETP, CP offers
a more straightforward way to model complex constraints. Furthermore, the de-
composition of the problem makes the processing of these hard constraints inde-
pendent from the global optimization process. This hybrid constraint-linear pro-
gramming approach also differs from pure constraint programming approaches
by taking more efficiently into consideration the optimization criterion.

CP-based column generation approaches have been proposed for several prob-
lems more or less related to ETP. The general framework was first introduced
in [5]. It has since been applied to airline crew scheduling [3, 12], vehicle rout-
ing [10], and cutting-stock problems [4]. The subproblems solved by CP have
taken the form of constrained shortest path problems and constrained knapsack
problems. In our case we use cost-regular, which bears some similarity to a
constrained shortest path, as we shall see in Section 4. Recently other hybrid
CP-LP algorithms have been advantageously applied to solve ETP. In particu-
lar, Benoist et al. [1] presented a CP-based Benders decomposition for solving
the timetabling problem encountered in a large call center. They use CP includ-
ing the flow global constraint to handle the underlying flow structure of the
problem.

The paper is organized as follows. The next section gives definitions and no-
tation for employee timetabling problems. A typical set of regulation constraints
and the associated CP model is presented in Section 3. Section 4 presents the
optimization constraint cost-regular, an extension of the regular global con-
straint. Section 5 describes the linear formulations for three different ETP as
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well as the column generation process for each of these formulations. Section 6
contains preliminary computational results. The final section presents our con-
clusion and perspectives.

2 Problem Statement

Employee Timetabling Problems come in many forms. The ones adressed here are
essentially divided into two major classes: the anonymous and the personalized
scheduling. In the anonymous version we are only interested in building a set of
valid work schedules — employees are considered interchangeable. This problem
is in fact equivalent to the shift scheduling problem. This paper mostly address
the anonymous case, but gives some insight on how to deal with individual
schedules.

The definitions and notation given in this section apply to ETP where the
planning horizon (ex. one day) can be partitioned as a sequence of T consecutive
time intervals called periods or shifts.

Activities. Different types of activities must be fulfilled by the employees on the
planning horizon. Let W denote the set of these work activities. An estimation
of the workforce requirement of each activity is given on the whole planning
duration. For each activity a and each period t, rat specifies the number of
workers required to achieve activity a during period t. Eventually, cat will denote
the cost of assigning one employee to activity a at period t.

Besides work activities, we distinguish three other activities : break (p), rest
(o) and lunch (l). These activities are not subjected to costs and workforce but
they may be involved in specific constraints. Let A = W ∪ {o, b, l} denote the
set of generalized activities.

Valid Schedules. A schedule is an assignment s : [1..T ] −→ A where s(t) stands
for the activity to perform at period t. Alternatively, schedule s can be expressed
by a binary matrix Bs = (bs

at)a∈A,t∈[1..T ] where bs
at = 1 if s(t) = a and bs

at = 0
otherwise. S denotes the set of valid schedules that are individual schedules
satisfying all regulation constraints.

Cost and Satisfaction. Usual objectives in ETP are the minimization of the
overall cost or the maximization of employee satisfaction. These criteria can be
formulated by considering the cost cs for the company of allocating schedule s
to an employee. Such a cost can also represent the degree of dissatisfaction for
an employee being assigned to schedule s. The objective is then to minimize
the sum of the costs of the schedules assigned to each employee. In this paper,
cs is computed as the sum of the costs of performing activity s(t) at period t:
cs =

∑T
t=1 cs(t)t.

Regulation Constraints. Constraints describing permitted schedules come from
legislation and contractual agreements. Three kinds of constraints are usually
encountered:
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– Some activities are not allowed to be performed at some times.
– Restrictions are imposed on the number of periods or on the number of

consecutive periods an employee is assigned to a particular activity or to a
group of activities during his schedule (e.g. at most 8 hours of work a day,
at least one 15 minute break)

– Some given patterns specify the allowed sequences of activities for the work-
ers (e.g. imposing a break before performing a new activity).

Overcoverage and Undercoverage. In some ETP formulations, the cost of the
staff timetabling may include penalties due to overcoverage or undercoverage.
For each activity a and period t, let ĉat and čat be the additional cost when
the timetabling covers the workforce demand rat with, respectively, one more
employee and one less employee.

Employees. When taking into consideration individual preferences and skills,
the definition of a valid schedule becomes different for each employee (or team).
Additional constraints restrict the assignment of a given employee to activities
following his qualification or to periods following his availabilities.

For each employee e ∈ E , let Se be the set of valid schedules for employee
e. The cost of a schedule s may then also differs between employees (for whom
schedule s is permitted): let ces be the cost of schedule s ∈ Se when assigned to
employee e.

3 Constraint Programming for Shift Scheduling

The subproblem (SP ) of computing valid schedules can easily be modeled as
a Constraint Satisfaction Problem with T decision variables s1, s2, . . . , sT and
finite discrete domains D1,D2, . . . , DT all equal to A. There is an obvious one-
to-one correspondence between complete instantiations of these variables and
schedules s : [1..T ] −→ A by setting s(t) = st for all periods t (i.e. st = a means
that activity a is performed at period t). The set S of valid schedules corre-
sponds then to the set of all the solutions of this CSP including the regulation
constraints.

The high expressiveness and modeling flexibility of constraint programming
allows to formulate a wide variety of complex regulation constraints in terms of
variables s1, . . . , sT (eventually with the help of additional variables). In partic-
ular, a number of global constraints well suited to model such constraints have
been introduced in the constraint programming literature. Some of these global
constraints are quickly described in Section 3.1. We give in Section 3.2 the exam-
ple of a set of typical regulation constraints encountered for example in a large
store where workers may be assigned to any sales activities.

3.1 Global Constraints for Shift Scheduling

A global constraint in constraint programming is both a way of modelling a spe-
cific substructure (common preferably to many decision problems) and a filtering



144 S. Demassey, G. Pesant, and L.-M. Rousseau

algorithm dedicated to this substructure. In the context of ETP some global con-
straints of the literature are of great interest. These constraints mainly relate to
the allowed values taken by a sequence of decision variables X = (x1, . . . , xn)
(in domains D1 × · · · × Dn) together:

Global Cardinality Constraint [8]. This constraint does not consider the ordering
of the variables but restricts the number of times each value is distributed on a
set of variables. Formally,

gcc(< y1, . . . , ym >,< v1, . . . , vm >,X)

constrains variable yj to be equal to the number of appearances of value vj in
the set of variables X. For the ETP, the gcc constraint is helpful to give lower
and upper bounds on the total amount of work performed over a day.

Stretch Constraint [6]. A stretch refers to a subsequence (xi, xi+1, . . . , xj) of
variables all assigned to a same value v and that is maximal for this property in
terms of inclusion (i.e. xi−1 �= v and xj+1 �= v).

stretch(X,< v1, . . . , vm >,< lmin
1 , . . . , lmin

m >,< lmax
1 , . . . , lmax

m >)

restricts the length of any stretch in X with value vj to be at least equal to value
lmin
j and at most to value lmax

j .
For example in ETP, the stretch constraint is helpful to indicate that ac-

tivities must be assigned to a certain number of consecutive periods. Note that
stretch is more general and can also be applied to cyclic schedules.

Global Sequencing Constraint [9]. This constraint lies somewhere between the
two preceding constraints since it looks like the stretch constraint with the
difference that values do not have to appear consecutively. It can be understood
as a set of global cardinality constraints defined on every subsequence of X of
a given length. It may occur in the ETP if restrictions on the amount of work
performed are also given over a shorter duration, say every three hours.

Regular Constraint [6]. This constraint is able to express complex patterns in
a sequence. Formally, given a deterministic finite automaton Π describing a
regular language, constraint

regular(X,Π)

restricts the sequence of values taken by the variables of X to belong to the
regular language associated to Π. For the ETP, it is useful to enforce sequencing
rules for the activities.

3.2 Example of Regulation Constraints

We based our first experimentations on a mostly generic set of regulation con-
straints. These constraints as well as their formulation in a CSP using global
constraints are presented below.
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The problem consists of generating valid schedules for employees in a shop
with different sales activities a ∈ W . The planning horizon (one day) is de-
composed in periods of 15 minutes (T = 96). A valid schedule is an assignment
s : [1..T ] −→ A, where A includes also activities p (break), o (rest) and l (lunch),
and that satisfies the following constraints:

1. Some activities a ∈ Ft are not allowed to be performed at some periods t.
2. s covers between 3 hours and 8 hours of work activities.
3. If s is worked for at least 6 hours, then it includes exactly two breaks and

one lunch break of 1 hour. Else, it includes only 1 break and no lunch break
is planned.

4. If performed, the duration of an activity a ∈ W is at least 1 hour.
5. A break (or lunch) is necessary between two different working activities.
6. Rest shifts have to be assigned only at the begining and at the end of the day.
7. Work activities must be inserted between breaks, lunch and rest stretches.
8. The maximum duration of a break is 15 minutes.

The first condition simply consists of removing the forbidden activities Ft

from the initial domain of each variable st: Dt = A \ Ft.
The next two regulation constraints need the definition of additional decision

variables. They can then be modeled as explicit constraints as well as, implicitly,
by restricting the initial domain of the variables. One way of modeling the second
condition is to use one additional variable σa for each work activity a ∈ W ,
with domain {0, 1, . . . , 32} and representing the number of periods assigned to
activity a, as well as a variable σ with domain {12, . . . , 32}, standing for the total
number of working periods. Variables σa and st may be linked by the gcc. In the
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Fig. 1. An automaton for two work activities a and b. The leftmost circle represents

the initial state and shaded circles correspond to accepting states
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same manner, we define cardinality variables σp, σo and σl for the non-working
activities (break, rest and lunch, respectively). To model the third condition,
the domains of σl and σp are initialized to {0, 4} and {1, 2} respectively. We can
also logically deduce from the whole set of conditions that any valid schedule
contains a number of rest periods between 58 and 83. As redundant constraints,
we can then reduce the initial domain of σo to {58, . . . , 83}.

The last five constraints can be modeled with the help of only one regular
constraint. Indeed, the values permitted by these constraints together for the
sequence of variables (s1, . . . , sT ) can be described by a single automaton Π.
Figure 1 depicts such an automaton when W contains two activities a and b.

Given automata Π, the shift scheduling problem described above can be
formulated by the following Constraint Satisfaction Problem (CP ):

gcc(< σa|a ∈ A >, < a ∈ A >, < s1, . . . , sT >) (1)

σ ==
∑

a∈W

σa (2)

σ < 24 ⇒ (σl == 0 ∧ σp == 1) (3)
σ ≥ 24 ⇒ (σl == 4 ∧ σp == 2) (4)
regular(< s1, . . . , sT >,Π) (5)
st ∈ A \ Ft, ∀t = 1, . . . , T (6)
σa ∈ {0, . . . , 32}, ∀a ∈ W, σ ∈ {12, 32} (7)
σl ∈ {0, 4}, σp ∈ {1, 2}, σo ∈ {58, . . . , 83} (8)

4 cost-regular Global Constraint

As indicated in Section 3.1, a regular constraint is specified using a determin-
istic finite automaton that describes the regular language to which the sequence
must belong. That automaton is then unfolded into a layered directed graph
where vertices of a layer correspond to states of the automaton and arcs rep-
resent variable-value pairs. This graph has the property that paths from the
first layer to the last are in one-to-one correspondence with solutions of the con-
straint. The existence of a path through a given arc constitutes a support for
the corresponding variable-value pair [7].

In the ETP, assigning a given activity at a given period has a cost. For the
CP model, this translates to associating costs to variable-value pairs. For this
purpose, we define cost-regular(X,Π, z, C) constraining X as in regular but
also requiring that z, a bounded-domain continuous variable, represent the cost
of a solution with respect to the constraint, given cost matrix C. This cost is
computed as the sum of the costs of the individual arcs in the solution. 1

1 Note that we could refine the costs by associating one to every combination of
variable, value, and state of the automaton.
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Instead of simply maintaining paths, the filtering algorithm must from now
on consider the cost of these paths. Supports do not come from just any path
but rather from a path whose length falls within the domain of z. To check this
efficiently, it is sufficient to compute and maintain shortest and longest paths
from the first layer to every vertex and from every vertex to the last layer: if
the shortest way to build a path through a given arc is larger than the upper
limit of the interval for z, the arc cannot participate in a solution and can thus
be removed; if the longest way to build a path through a given arc is smaller
than the lower limit of that interval, the arc can again be removed. In this way,
domain consistency is achieved for the variables of X. The domain of z can also
be trimmed using the shortest and longest paths from the first to the last layer.

The time complexity for the initial computation of the shortest and longest
paths is linear in the size of X and in the number of transitions appearing in the
automaton, due to the special structure of the graph. Subsequently these paths
are updated incrementally.

5 Integer Linear Formulations and Column Generation

This section presents linear programs modeling three different ETP. These lin-
ear programs are based on a well-known Dantzig formulation for this kind of
problems, involving integer variables indexed by the set of valid schedules. Solv-
ing these programs yields an optimal staff timetable by selecting the best set
of individual schedules and choosing how many employees (or which employees)
will be assigned to each of these schedules.

The first two problems differ on the definition of the overall cost of the staff
schedule. In the first one, the overall cost equals the sum of the costs of the
schedules assigned to each employees, while in the second one it includes also
an additional cost of overcoverage and undercoverage for each work activity on
each period. Both models assume that employees are interchangeable. In other
words, any schedule in S is valid for any employee. The problem is then to find
how many employees will be assigned to each schedule in S.

On the contrary, the last problem takes into account individual preferences
and skills, which requires to define a different set Se of valid schedules for each
employee e. Here, the problem consists of choosing one schedule in Se for each
employee e (or none if e is not used).

In this kind of formulations, the number of variables grows exponentially with
the number of activities. Beyond two work activities, the set of valid schedules
which is the set of solutions of the CSP presented in Section 3, becomes too large
to be computed. At this point, we use a column generation procedure to solve
the linear relaxation of the integer program.

The column generation algorithm is detailed in Section 5.1 for the first for-
mulation while the corresponding pricing problem alone is described for the two
other variants.
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5.1 Column Generation

The first ETP problem is to minimize the sum of the costs of the schedules
while covering all the workforce requirements. The following linear formulation
(ETP ) uses an integer variable xs for each valid schedule s ∈ S, standing for
the number of employees assigned to schedule s:

min
∑

s∈S
csxs (9)

s.t.
∑

s∈S
bs
atxs ≥ rat ∀ a ∈ W,∀ t ∈ [1..T ], (10)

xs ≥ 0 ∀ s ∈ S, (11)
xs ∈ Z ∀ s ∈ S. (12)

Let (P ) :
(
(9)s.t.(10), (11)

)
be the linear relaxation of (ETP ). The dual (D)

of (P ) can be written as:

max
∑

a∈W

T∑

t=1

ratλat (13)

s.t.
∑

a∈W

T∑

t=1

bs
atλat ≤ cs ∀ s ∈ S, (14)

λat ≥ 0 ∀ a ∈ W,∀ t ∈ [1..T ]. (15)

Column generation applied to (P ) is an iterative algorithm where, at each
iteration, the so-called master problem (P ′), that is linear program (P ) restricted
to a subset of columns, is solved to optimality. Duality considerations allow to
formulate a pricing problem (SP ) such that: 1) the unfeasiblity of (SP ) proves
that the optimal solution of the master problem can be extended to an optimal
solution of (P ) by setting to 0 any variables xs that are not present in the
restricted master program. 2) if (SP ) is feasible then its solutions correspond
to columns that can improve the solution of the master problem when added at
the next iteration.

More precisely, let S ′ ⊂ S be the subset of valid schedules corresponding to
the restricted set of columns of master problem (P ′) at a given iteration. If x, x′

and λ′ are optimal solutions for (P ), (P ′) and (D′), the dual of P ′, respectively,
then weak duality says that:

∑

a∈W

T∑

t=1

ratλ
′
at =

∑

s∈S′
csx′

s ≥
∑

s∈S
csxs.

Hence, x′ (completed with 0) is an optimal solution of (P ) if λ′ is a feasible
solution of (D), or in other words, if λ′ satisfies all constraints (14), that is if:

{s ∈ S | cs −
∑

a∈W

T∑

t=1

bs
atλ

′
at < 0} = ∅.
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At each iteration, the pricing problem (SP ) is to find valid schedules s ∈ S
with negative reduced costs rc′s, where:

rc′s = cs −
∑

a∈W

T∑

t=1

bs
atλ

′
at.

Section 3.2 gives a CSP formulation (CP ) for the problem of finding valid
schedules. At each iteration, the pricing problem can be solved by adding to
(CP ) a negative reduced cost constraint. One way is to add this constraint to
(CP ) by using global constraint element :

T∑

t=1

(cstt − λ′
stt) < 0.

We propose a more efficient way to tackle this additional constraint by re-
placing in (CP ) the regular constraint (5) by its variant detailed in Section 4:

cost-regular(< s1, . . . , sT >,Π, z,< cat − λ′
at, a ∈ A, t = 1, . . . , T >). (16)

This constraint ensures, as constraint (5), that the sequence of values taken by
< s1, . . . , sT > belongs to the language defined by automaton Π of Section 3.2.
But it also forces variable z to be equal to the sum of the costs of the variable
assignments for s1, . . . , sT , the cost of assigning variable st to activity a ∈ A
being set to cat − λ′

at. In order to model the negative reduced cost constraint
within the (CP ) model we just need to define such an additional variable z with
the appropriate domain:

z ∈ ] −∞, 0[. (17)

Hence, the filtering algorithm of cost-regular processes simultanously the do-
mains of variables s1, . . . , sT and z such that schedules with non-negative reduced
cost are removed from the search space by this algorithm alone.

5.2 Overcoverage and Undercoverage

Overcoverage and undercoverage costs may be taken into account by slightly
modifying the previous formulation of (ETP ) in this way: for each activity a
and period t, let variables x̂at ∈ Z and x̌at ∈ Z represent the overcoverage and
the undercoverage respectively. In other words, when N employees are assigned
to activity a at period t in the timetable, then x̂at = N − rat and x̌at = 0 if N
is greater than the request rat (overcoverage) and x̌at = rat − N and x̂at = 0 in
the other case (undercoverage).
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The modified problem (ETPl) becomes set partitioning problem:

min
∑

s∈S
csxs +

∑

a∈W

T∑

t=1

(ĉatx̂at + čatx̌at) (18)

s.t.
∑

s∈S
bs
atxs + x̌at − x̂at = rat ∀ a ∈ W,∀ t ∈ [1..T ], (19)

xs ∈ N ∀ s ∈ S, (20)
x̂at ∈ N, x̌at ∈ N ∀ a ∈ W,∀ t ∈ [1..T ]. (21)

Since (ETPl) simply contains additional columns (and no more constraints
than ETP ), the pricing problem associated to a Dantzig-Wolfe decomposition
of (ETPl) is identical to the pricing problem for (ETP ) (denoted (SP )).

5.3 Individual Shift Scheduling

Most practical timetabling problems take into consideration the preferences and
skills of the employees, for instance excluding them from specific activities or
work periods. The set Se of possible schedules is thus different for each employee
e ∈ E . Such a variant of the ETP can be modeled by the following binary linear
program (ETPe):

min
∑

e∈E

∑

s∈Se

cesxes (22)

s.t.
∑

e∈E

∑

s∈Se

bs
atxes ≥ rat ∀ a ∈ W,∀ t ∈ [1..T ], (23)

∑

s∈Se

xes ≤ 1 ∀ e ∈ E , (24)

xes ∈ {0, 1} ∀ e ∈ E ,∀ s ∈ Se, (25)

In this model, xes is a binary variable that is equal to 1 if and only if employee
e ∈ E is assigned to schedule s ∈ Se. Constraints (24) enforce that at most one
schedule is assigned to each employee.

Within a column generation approach for this problem, the pricing problem
(SPe) can be written2:

{(e, s) ∈ E × Se | ces −
T∑

t=1

λstt + µe < 0},

where (λ, µ) are the current dual values (associated to constraints (23) and (24),
respectively) of the master problem at a given iteration of the column generation

2 Note that constraints (25) are redundant and that in practice x is simply set to
be greater or equal to 0. Otherwise, (25) requires the introduction of another dual
variable.
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process. (SPe) can clearly be decomposed as several problems (one for each
employee), which are treated in the same way as problem (SP ). The CSP to
solve for each employee e includes the personal constraints for e as well as the
cost-regular constraint and the cost variable z with initial domain equal to
] −∞,−µe[.

6 Computational Results

We ran some preliminary experiments on a set of generated benchmarks. The
data of these instances are based on a realistic ETP for a retail store where
employees can be assigned to many sale activities and the work regulation con-
straints are the ones described in the example of Section 3.2. As a first step, we
evaluate the efficiency of our algorithm on the first formulation of ETP presented
in Section 5.1. In other words, we assume that employees are interchangeable
and that the objective is to minimize the sum of the employee schedule costs
while covering the demand curves on the activities.

Generated benchmarks are distributed into eight groups of instances denoted
ETP1, . . . , ETP8. Each set ETPn contains 10 instances of the timetabling prob-
lem with parameter n indicating the number of work activities. In these in-
stances, the demand curves can require the presence of up to 12 employees at
the same period. Even for instances in group ETP1, the set of valid schedules is
too large to be pre-generated quickly. Remember that for benchmarks in ETP1,
schedules are potentially any assignment from the set T of 96 periods to the set
A of 4 activities.

For this reason, we directly apply the column generation algorithm to the
linear relaxation (P ) of program (ETP ) as described in Section 5.1. In the rest
of this section, we present the details of the implementation of this algorithm,
a summary of the computational results obtained on the 80 generated instances
and a discussion about these results as well as future research directions for
improvements.

Our program was implemented in C++ using ILOG Concert libraries (ILOG
Solver 6.0 to solve the CP models and ILOG Cplex 9.0 to solve the linear re-
laxation), compiled using g++ 3.3 and run on a biprocessor Intel Xeon 2.8GHz
under Gnu/Linux 2.6.

The column generation proceeds as follows: An initial minimal set of columns
is generated in order to make feasible the master linear program (P ) at the first
iteration. These columns correspond to mono-activity shedules worked for only
four consecutive periods (one hour). Since these schedules are not valid (they
violate constraint (7)), we give them “infinite” costs in the LP. At each iteration
of the column generation process, the reduced costs returned by the resolution
of (P ) are used to update the subproblem (SP ) of finding improving columns.
(SP ) is formulated as the CSP of Section 3.2 with the cost constraints (16) and
(17) and it is solved by a backtracking algorithm returning the 50 (or less) first
computed valid schedules of negative reduced cost. These schedules are then
added as new columns to the master program. The algorithm stops when the
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subproblem of a given iteration is unfeasible. The optimal value of the master
problem at the last iteration is then a lower bound LB of the optimal value of the
original problem (equal to the linear relaxation bound). To estimate the quality
of LB we compute an upper bound UB by solving the integer linear program
with the generated columns alone. UB is the value of the best integer solution
obtained by the default branch-and-bound of Cplex ran during one hour.

Table 1. Column generation algorithm results on the generated instances ETP

Groupnb ∆LB/UB nb iterationsnb columns CPU in sec.
av. (max) av. (max) av. (max) av. (max)CPav. (CPmax)

ETP1 10 4.9%(16.6%) 20 (29) 914 (1361) 1.9 (5.7) 0.1 (2.3)
ETP2 10 5.6%(15.6%) 51 (76) 2466 (3722) 6.1 (12.0) 0.1 (3.3)
ETP3 10 5.5% (9.2%) 76 (106) 3749 (5226) 16.7 (45.6) 0.2 (5.8)
ETP4 10 4.6% (8.7%) 137 (204) 6818(10142) 92.9 (452.4) 0.6 (13.9)
ETP5 10 5.4%(12.6%) 132 (207) 6558(10300) 108.4 (354.4) 0.7 (24.6)
ETP6 10 5.0%(11.0%) 203 (337) 10103(16798) 355.6 (884.6) 1.6 (268.8)
ETP7 9 5.6% (7.9%) 244 (337) 12186(16814) 793.6 (2115.1) 3.1 (130.9)
ETP8 9 5.4% (8.5%) 296 (548) 14776(27377) 950.3 (2531.2) 3.0 (159.9)

Table 1 provides details of the algorithm execution on each problem set
ETPn. The first column gives for each set of 10 instances the number of in-
stances among them that have been processed by column generation in at most
one hour. The following columns give, by pair, average and maximal results on
these sets of solved instances. These results are, in order: the deviation of LB to
the upper bound UB, the number of iterations of the column generation process,
the number of generated columns, the total computation time in seconds and
the time spent to solve the subproblem (SP) at one iteration.

Computation results given here come from preliminary experiments but give
some insight on how to improve the general algorithm. In order to decrease the
computational times, we aim to improve the subproblem resolution since the
processing time is mainly spent in the CP phases. A good branching strategy
has to be found for solving the CSP. For instance, it would be interesting to
implement a value ordering heuristic based on the shortest path computed by
the filtering algorithm of cost-regular. Something similar is performed in the
Branch and Price library Maestro [2].

In fact, our random generated instances seem to be really diversified in each
group. While, for some of them, we hardly find schedules at each iteration, some
others contain a large number of valid schedules. For these last instances, the
computation of the (negative reduced cost) schedules is very quick but the num-
ber of iterations of the column generation process can then be more important.
In these cases, a basic backtracking algorithm has a tendency to provide a set
of solutions that are almost identical. Convergence of the column generation
process can then be slower when columns added at each iteration are too simi-
lar. Many stabilization techniques have been proposed to accelerate convergence
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([11]). Another simple way (suggested in [10]) is to add diversity in the set of so-
lutions generated by CP with a multi-start search process, by introducing some
randomization in the variable ordering heuristic or by implementing a dedicated
diversity constraint.

7 Conclusion

This paper presented a hybrid constraint programming-linear programming so-
lution method for employee timetabing problems. The proposed decomposition
applies to several formulations of this kind of problem. By using CP to generate
the permitted shift schedules, it also offers a flexible way to tackle the various
work regulation constraints that arise in real world timetabling problems.

The optimization criterion on the staff scheduling is handled by LP when
assigning shift schedules to employees. With a column generation approach, only
“lowest cost” schedules are iteratively generated by CP. The newly introduced
global constraint cost-regular allows to efficiently take into account the cost
of the schedules within their generation process by CP.

The method has now only been implemented to compute lower bounds on
generated benchmarks for a first formulation of ETP with general regulation
constraints. An obvious continuation of this work is to elaborate branch-and-
price algorithms based on these bounds in order to solve at optimality various
realistic timetabling problems.
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