
On the Minimal Steiner Tree Subproblem and
Its Application in Branch-and-Price

Wilhelm Cronholm1, Farid Ajili1, and Sofia Panagiotidi2

1 IC-Parc, Imperial College London, London SW7 2AZ, UK
{w.cronholm, f.ajili}@imperial.ac.uk

2 London e-Science Centre, Imperial College London, London, SW7 2AZ, UK
sp1003@imperial.ac.uk

Abstract. The minimal Steiner tree problem is a classical NP-complete
problem that has several applications in the communication and trans-
portation sectors. It has recently emerged as a subproblem in decomposi-
tion techniques such as column generation and Lagrangian schemes. This
has set new computational challenges to the state of the art solving ap-
proaches. Our goal is to improve on existing branch-and-cut algorithms
so that our approach successfully serves as a fast subproblem solver in a
decomposition context. Compared with existing literature, our technical
contributions include 1) a new preflow-push cutting strategy, revisiting
a little known graph algorithm, that halves the runtime of the separa-
tion step, and 2) a branching scheme that fairly balances the search tree
and speeds up the search. An evaluation in a multicast design appli-
cation shows that the algorithm enhances a column generation hybrid.
Moreover, our approach offers a significant speedup factor on a publicly
available set of challenging Steiner tree benchmarks.

Keywords: networks, preflow-push algorithms, branch-and-cut, Steiner
trees.

1 Introduction

The minimal Steiner Tree Problem (STP) consists of determining the least-cost
tree that connects a given set of nodes in a graph. This NP-complete problem
was originally formulated by Hakimi [10]. Since then, it has received considerable
attention in the literature as it has a wide range of applications, e.g. network
optimisation, distribution systems and VLSI layout [10, 18]. It is beyond the
scope of this paper to cover all the STP literature. Surveys can be found in e.g.
[10, 18]. Although useful in its own right, several network design models embed
the STP as a substructure. It then emerges as a subproblem in decomposition
algorithms such as column generation or Lagrangian relaxation.

If the aim is to compute fairly good solutions to the stand-alone Steiner
tree problem within a reasonable time, then it has been recommended to use
a variety of greedy “tree heuristics” [10, 18]. However, if the STP appears as
a subproblem in a branch-and-price setting [6] or Lagrangian context [5, 19],

R. Barták and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 125–139, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

126 W. Cronholm, F. Ajili, and S. Panagiotidi

existing algorithms require exact STP solvers that deliver an optimal tree. In
branch-and-price for instance, finding the most profitable tree not only offers the
best pricing strategy, but also enables exploiting the lower bound and achieving
early termination and cost-based filtering at any column generation iteration.
This is because the column generation bound plus the subproblem reduced cost
is a valid lower bound even at non-optimal iterations.

Several authors have proposed approaches for solving the minimal STP, in-
cluding Lagrangian relaxation [10] and branch-and-cut [3, 12, 15]. Previous em-
pirical evaluation has suggested that the fastest approach is the branch-and-cut
solver of Koch & Martin [12]. The authors showed that their solver is superior
to other approaches, as it succeeded in solving almost all existing benchmarks
for the first time. Several decomposition methods to solve the multicast net-
work design have embedded [12] as a subproblem solver, e.g. [6] deploys column
generation and [5, 19] exploit a special Lagrangian scheme.

A necessary ingredient for a decomposition method to be sufficiently compet-
itive is an efficient subproblem solver. However, we have noticed that the hybrid
branch-and-price algorithm of [6] spends nearly two thirds of the runtime in solv-
ing the Steiner tree subproblems in the pricing phase. Our performance analysis
has demonstrated that the separation (i.e. cutting) phase of the branch-and-cut
solver [12] is the largest computational bottleneck since the algorithm spends at
least half of its runtime in identifying the inequalities whose addition cuts off
the relaxed solution.

Another drawback of existing literature is that most exact STP algorithms,
[3, 12, 15] included, use traditional Integer Programming (IP) branching on single
arc variables. This is not well-suited, as it potentially leads to an unbalanced
(binary) search tree: the weak branch forbidding an edge often barely changes
the relaxation.

This paper proposes an innovative and non-trivial variation of branch-and-
cut STP algorithms that successfully serves as a subproblem solver in decompo-
sition methods. The solver also substantially improves the best known runtimes
of a publicly available set of benchmarks as a stand-alone Steiner tree solver.

The contents of the paper are as follows. Section 2 outlines related work and
our contributions. Section 3 overviews our branch-and-cut solver, in particular
an enhanced branching scheme and a new cost-based filtering rule that exploits
reduced costs. Section 4 discusses some separation issues and proposes a new
cutting strategy. Section 5 presents a computational discussion of our approach
under two use cases 1) run it as a stand-alone STP solver, 2) invoke it as a
branch-and-price subproblem. Section 6 concludes the paper.

2 Related Work and Overview of Contributions

Exact algorithms for the minimal Steiner tree problem include Lagrangian re-
laxation and branch-and-cut, e.g. [10]. Because [12] is considered the most ef-
ficient algorithm for solving STP to optimality, multicast network design ap-
proaches [5, 6, 19] exploiting decomposition methods have all used it. In [6] it is

On the Minimal Steiner Tree Subproblem and Its Application 127

reported that the invocations of [12] are by far the largest bottleneck on some
challenging multicast design datasets. We also note that in the results of [19]
around 45 minutes are spent at the root node of the search tree, even for quite
small networks and reasonable number of multicast groups. This is likely spent
in solving STP subproblems.

Most Steiner tree solvers rely heavily on reduction techniques [10, 12, 18] to
reduce graph size (i.e. edge set and vertex set). These act as a preprocessing step
that includes (resp. excludes) edges/nodes that do (resp. not) belong to at least
one minimal Steiner tree.

The preprocessing, which often requires careful implementation, exploits spe-
cial configurations in the graph. Since those tests often change the set of edges
and/or nodes, they are difficult to accommodate in a decomposition-based search
as they conflict with the much needed incrementality of the subproblem solver:
we may have to re-setup a subproblem model/solver as soon as the graph
changes. Indeed, some changes, such as node contraction, could result in deleting
and adding variables and make several constraints invalid. In the decomposition
methods [5, 6, 19], applying “non-logical” reduction tests every time the sub-
problem is solved can introduce a substantial overhead as the constraint part of
the subproblem is kept unchanged throughout the search: only the cost vector
changes.

Painful reduction techniques are not included in our algorithm. Because we
are losing their strength, it is crucial to somehow compensate for this. It is done
through 1) designing a new separation phase by carefully merging an algorithm
proposed in [9] to compute a generalised form of a cut in a graph, 2) introducing
a harmless cost-based pruning rule that reasons about optimality to exclude
nodes from the solution. In fact, our focus on speeding up the separation phase
began when our experimentation clearly revealed that it is very costly.

Despite the efficiency of [9] for computing the minimum unrestricted cut [14],
this algorithm is not widely known in the literature. Koch & Martin [12] briefly
mention that [9] is modified and used at the separation phase of their STP
solver. However, they gave no details of how the algorithm is to be used within
their solver and failed to provide a computational evaluation whether such an
approach is beneficial. Moreover, recent publications [18, 19] do not seem to be
aware of the idea of using [9].

From this regard, our contributions are two-fold. We demonstrate that us-
ing [9] as a black-box, or through a trivial adaptation, does not work and identify
a straightforward counter-example. Our technical contribution is to detail a care-
ful adaptation of [9]. In fact, the resulting preflow-push cutting strategy could be
used in other areas such as survivable networks [11] and the travelling salesman
methods, e.g. [16].

Strengthening the cutting strategy of the branch-and-cut was useful in en-
hancing the performance of a a branch-and-price method even with “easy” STP
instances. Our evaluation in the stand-alone setting showed that the speedup
factor is much clearer as soon as the instances get harder.

128 W. Cronholm, F. Ajili, and S. Panagiotidi

Yet another serious drawback of existing branch-and-cut approaches lies in
the branching itself. Our runs showed that branching on a binary variable in
the integer programming fashion tends to create search branches that cause
unbalanced changes on the linear relaxation. To overcome this, we suggest a new
branching scheme that leads to branches potentially having the same likelihood
of containing the best solution.

3 Branch-and-Cut Approach

In this section we present our improved branch-and-cut approach. It builds on
top of previous literature such as Koch & Martin [12]. We first introduce some
notation and definitions.

Let G = (V,A) be a directed graph, where V is its node set and A is its set
of arcs. Let n = |V | and m = |A|. An arc in A from node i to node j, is denoted
(i, j). If H is a subset of nodes, then we denote by H̄ = V \H its set complement
in V . A cut (H, H̄) is a non-trivial partition of V . An S − t cut is a cut (H, H̄)
such that S ⊆ H and t ∈ H̄. If S = {s} then we use the shorter notation s − t
cut. Usually H is called the source side and H̄ the sink side of the cut. The set
of arcs in the cut is denoted by δ(H, H̄), so δ(H, H̄) = {(i, j)|i ∈ H, j ∈ H̄}. If
w is a set of weights attached to the arcs A we denote by w(H, H̄) the weight of
the cut, i.e. w(H, H̄) =

∑
a∈δ(H,H̄) wa. The minimum s − t cut problem is that

of finding the minimum weight s − t cut.
The minimal STP consists of determining the least-cost tree in a graph, that

connects a given set of nodes. We use a similar directed version instead since it
is known to give a tighter bound [4]. The directed version is named the Steiner
arborescence problem. The transformation from the undirected Steiner tree prob-
lem to the directed problem is simple: replace, in the obvious way, every edge by
two directed arcs with the same cost and select one terminal as the root. It is well
known that this does not alter the solution set. For convenience we shall refer to
an arborescence with the more general term tree throughout this document.

The Steiner tree problem can be formulated as follows: given a directed graph
G = (V,A), non-negative weights w : A → R

+, a non-empty subset T ⊆ V of
terminals, and a root r �∈ T , find a directed subset of arcs R such that there is a
path from r to every terminal and

∑
a∈R ca is minimised. A node not in T ∪{r}

is called a nonterminal.
We introduce decision variables: let xa be a binary variable that is 1 if and

only if arc a is used in the Steiner tree.
The solver uses a standard branch-and-cut approach outlined in Figure 1.

The inner loop is a separation procedure which finds violated inequalities or
proves that none exits. The algorithm calls the reduction technique described in
Section 3.3. The LP is a continuous relaxation of the cut formulation of a tree.
It is initialised with the flow inequalities described in [12]. The search separates
Steiner cuts and adds them to the relaxation. A Steiner cut (H, H̄) is a cut that
separates the root r from at least one terminal: r ∈ H and there exists a t ∈ T
such that t ∈ H̄. To each Steiner cut (H, H̄) in G is associated the following
inequality:

On the Minimal Steiner Tree Subproblem and Its Application 129

Branch-and-Cut:
apply reduction techniques
initialise search
repeat

select a leaf from the tree and consider the associated LP
repeat

solve the LP relaxation
separate violated inequalities and add them to the LP

until there are no violated inequalities
branch if necessary otherwise remove the leaf from the tree

until there are no leaves in the branch-and-bound tree

Fig. 1. A general branch-and-cut algorithm

∑

a∈δ(H,H̄)

xa ≥ 1 . (1)

The Steiner cut inequalities (1) ensure reachability from the root to every termi-
nal. At each iteration of the separation algorithm described in Section 3.1, the
LP-relaxation suggests a value x̄ij for every variable xij . These values are then
used to identify violated inequalities to be added to the LP to cut off the current
solution. If no violated inequality exists the search branches as in Section 3.2.

3.1 Separation of Violated Inequalities

The separation algorithm is the most critical step in branch-and-cut. It finds,
if any, relaxed inequalities (1) violated by the suggested solution x̄ of the LP
relaxation. The inequalities (1) can be separated as follows: for each t ∈ T find
the minimum cost r− t cut in G using x̄ as weights. This is commonly done with
any max-flow/min-cut algorithm, see e.g. [1]. If, for some t, the cost w∗

r−t of the
minimum r − t cut in G is below 1 then the associated inequality is violated.
If w∗

r−t exceeds 1 for each terminal t, then there is no violated inequalities and
the search branches. Inequalities are added only if they are violated by a small
tolerance. In fact, we use the “creep-flow” strategy [12] that favours least-cost
r − t cuts having minimum number of arcs. This makes the separation harder,
but in practice is compensated for by the strength of the inequalities.

Note that all Steiner cuts are found in the input graph G. That is because
the graph is not affected by the branching decisions of Section 3.2. Therefore the
cuts generated are valid throughout the branch-and-cut search.

Section 4 describes a fast separation algorithm by adapting [9]. It considerably
enhances the performance of the branch-and-cut search.

3.2 Branching Strategy

Branching is an essential part of the exact algorithm and has to be carefully
designed to reach optimal performance. There are several requirements on the
branching strategy. In particular it has to:

– substantially affect the relaxation and the LP cost
– yield a balanced search tree, with equal likelihood of the best solution being

in the different branches.

130 W. Cronholm, F. Ajili, and S. Panagiotidi

In [12] IP branching is used; it branches on a single arc variable. Disallowing an
arc is unlikely to change the problem significantly since most arcs will not be
in the optimal tree anyway. On the other hand, including an arc has a larger
impact on the LP since it severely restricts the number of feasible (shortest)
trees. This results in an unbalanced search tree in practice.

To overcome this difficulty we apply a new hierarchical branching strategy. It
commits decisions to several variables by first focusing on node membership. This
is motivated by the fact that the difficulty in the STP is to decide which nodes
are to appear in the minimal tree. Vertex oriented branching is also mentioned
in [10] and used in [18]. However, it has not been used in the context of branch-
and-cut.

For each node v, its “likelihood” hv of being a member of the minimal Steiner
tree is estimated by hv =

∑
(j,v)∈A x̄(j,v). In a primal solution, hv is either 0 or 1.

The nonterminal having the maximal integrality violation of hv is selected, i.e.
the node v that minimises |0.5−hv| over the nonterminals for which 1 > hv > 0.
The branching first includes v and excludes v on backtrack. It is accomplished
by posting the following inequality with b = 1 on the forward branch and b = 0
on backtrack:

∑

(j,v)∈A

xjv = b . (2)

The exclusion effectively disallows all arcs having one end in v as a result of
flow inequalities [12]. Note that the branching decision is easily incorporated in
the LP since each branching decision is the same as adding a cut. Clearly both
branches cut off the relaxed solution x̄ provided that there exists a nonterminal
v such that hv is fractional.

Whenever the node branching does not apply, x̄ is often primal feasible.
However, in rare cases it might not be. An example is when there are several
optimal Steiner trees spanning the same nodes but crossing different arc sets. In
such a case, we resort to IP branching for completeness by branching on the arc
variable xa that minimises |0.5 − x̄a| over the set of fractional x̄a. The search
sets xa = 1 and xa = 0 on backtrack.

3.3 A New Cost-Based Reduction Technique

Preprocessing that alters the graph is difficult to implement when the STP is a
subproblem. However, there are still harmless reductions that can be exploited
in a decomposition context. Here, the focus is on a reduction technique that only
removes nodes/arcs that can not participate in any optimal Steiner tree. This
type of reduction can be easily encoded by setting some arc variables to zero in
the LP.

We now introduce a new reduction rule that exploits reduced costs extracted
from solving the linear programming relaxation. We observed that applying stan-
dard reduced cost fixing is weak as the cut formulation of a tree is known to be
highly degenerate. This same observation is supported by the results of [12].

On the Minimal Steiner Tree Subproblem and Its Application 131

Our technique is stronger than the standard reduced cost fixing. Its design
has been inspired by our previous work in strengthening optimality reasoning
in network routing [7]. We exploit the additivity of the reduced costs and the
tree structure to infer an estimation of the cost incurred on the relaxation lower
bound LB by including a node into the Steiner tree.

The incumbent cost of the branch-and-cut is denoted by UB. Let ra denote
the reduced cost of variable xa; further let r+

a = max{0, ra}. Consider a nonter-
minal node v that the relaxed solution suggests not to be in the optimal tree,
i.e. hv = 0. If v was to be included in the minimal Steiner tree (i.e. the value of
hv switches from 0 to 1), then some path p from the root r to v must exist in
any feasible tree. All arcs a in p such that x̄a = 0 have to be included. The cost
of including a is ra (resp. 0) if x̄a = 0 (resp. x̄a > 0). Thus, the incurred cost
of ensuring xa is 1 is r+

a . The incurred cost of including the path p is the sum
of r+

a for each a in p. A valid under-estimate of that is the length, say ψv(r), of
the shortest path from r to v in the graph where the weight of an arc a is r+

a .
This is captured by the following reduction test:

if LB + ψv(r) ≥ UB then
∑

(j,v)∈A

xjv = 0 (3)

This rule can be used every time the relaxation is re-optimised. The effect of (3)
can be enhanced by using a CP-relaxation [5]. This would enable the inference
of even more fixings. We have used the same constraint programming store as
have been used in [5]. It makes some significant inference at the root, but less
fixings afterwards. The reduction rule (3) has not been extensively tested and
was therefore switched off in our experimentation.

4 A More Efficient Separation Algorithm

This section describes a new separation algorithm for the branch-and-cut Steiner
tree solver. Normally, as described in Section 3.1, the separation is done by
solving |T | min-cut problems independently. Here we adapt ideas presented by
Hao & Orlin [9] to be able to solve the separation problem much more efficiently
in one go. The speed up is gained by re-using information from previous min-cut
computations.

The rest of this section first briefly presents the Hao & Orlin algorithm (HO)
in Section 4.1 and then explains in Section 4.2 the adaptation needed to find
Steiner cuts.

4.1 Overview of the Hao and Orlin Algorithm

This section briefly describes HO [9]. It is assumed the reader is familiar with
the preflow-push algorithm, first presented by Goldberg & Tarjan [8] to some
extent. For general graph topics we refer the reader to [1]. Most of the materials
in this section are from [9].

132 W. Cronholm, F. Ajili, and S. Panagiotidi

HO is a modified version of the algorithm by Goldberg & Tarjan [8]. It finds
the minimum cut in a directed graph where only a set S of sources are specified
to be in the source side. We denote this by a S − ∗ cut.

The unrestricted min-cut problem is to find the minimum weight cut in the
graph without restrictions on any nodes. It has many applications in network
reliability and is useful as a separation algorithm for the travelling salesman
problem. This can easily be solved by 2(n− 1) s− t cut computations. However,
for a directed graph, the unrestricted min-cut problem can be solved by two
invocations of HO, the second where all arcs are reoriented. The total runtime
is comparable to the time of one s − t computation.

Recall that the preflow-push algorithm works with a preflow. A preflow is a
flow except that the entering flow of a node v can exceed the leaving flow v.
The excess is the difference between the last two. The preflow-push algorithm
pushes flow from active nodes, nodes with positive excess, along estimated short-
est paths in the residual graph, the “remaining flow graph”. The shortest path
estimation is done by distance labels of the nodes. The distance label of a node
is a lower bound on the length of a path from the node to the sink in the residual
graph. An overview of the preflow-push algorithm can be found on the right-hand
side of Figure 2. During a min-cut computation of the preflow-push algorithm
it is first assumed that all nodes, apart from the source node, are on the sink
side W of the cut, but as the computation progresses nodes are transferred to
the source side D. Specifically they are moved to D when there is no longer a
path from the node to the sink in the residual graph. The algorithm maintains
the invariant that there is no arc of the residual graph directed from any node
in D to any node in W .

find-min-cut(G, w, s): preflow-push(G, w, S, t):
S = {s}, Best = ∞ (iii) initialise
repeat repeat

(i) select a node t′ ∈ V \ S (iv) select an active node i
(ii) find minimal S − t′ cut (H∗, H̄∗) push/relabel (i)

z = w(H∗, H̄∗) until there are no active nodes
if z < Best then return (H, H̄)

Cut= (H∗, H̄∗), Best = z
endif
add t′ to S

until S = V
return (Cut, Best)

Fig. 2. Outline of the Hao and Orlin algorithm for computation of the minimum S −∗
cut

HO exploits the preflow-push algorithm to find the least-cost S − ∗ cut.
An overview can be found on the left-hand side of Figure 2. The preflow-push
algorithm is invoked at (ii). The faster runtime of HO stems from the reuse of
information from min-cut computations: the ending state of the last preflow-push
computation is reused (at (iii)). Also, information from the min-cut computation
is used to force an ordering in the selection of sinks at (i). Specifically, the
distance labels are re-used, as well as information about nodes that have been

On the Minimal Steiner Tree Subproblem and Its Application 133

transferred to the source side. These nodes are divided into “dormant” layers
according to the time they where moved to the source side. These nodes will be
moved back, “awakened”, in reverse order at a later stage so all nodes will be
selected at (i) during the execution. The new sink is selected as the node in the
source side of the last computation with the smallest distance label. If there is
no awake node then a layer of dormant nodes are woken up and the selection
procedure is repeated. The algorithm terminates when all nodes are in S.

We now present the problems with adapting HO to the context of find-
ing violated inequalities of form (1). In the light of that, we derive a sound
adaptation.

4.2 Adapting HO for Computing Steiner Cuts

First, HO cannot be used as it is, since the cut found is not guaranteed to be a
Steiner cut. Indeed, it is likely that the minimum cut will have weight 0 as is the
case when the sink side consists of a set of nonterminals that are not suggested
should be used. Clearly, this is not a Steiner cut.

A trivial modification is to only consider cuts that are found whenever the
sink is a terminal. However, this does not guarantee finding a violated cut if there
is one [17]. The reason is that the algorithm does not necessarily find the minimal
s− t cut when t is the sink. Instead, properties of the algorithm certify that the
minimal s− t cut has been found in previous iterations, if the current cut is not
the one sought after. However, when considering Steiner cuts these properties
do not hold since there is a difference between terminals and nonterminals. The
example below illustrates this. In fact, it is not enough to consider all Steiner
cuts generated during the execution of the algorithm since the optimal cut can
be missed by moving a nonterminal to S too early.

Example 1. Consider Figure 3. Node s is the root, t is a terminal and v is a
nonterminal. During the execution of HO, v is selected as the first sink. The
minimal r − v cut is found, which is ({s, t}, {v}) with a weight of 3. However, it
is not a valid Steiner cut since there is no terminal on the sink side. Next, v is
moved to the set of sources S and t is selected as the next sink. In this iteration
the cut ({s, v}, {t}) is returned with a weight of 13. The cut is a valid Steiner
cut since t is on the sink side. It is also the minimal Steiner cut found by the
algorithm. However, as can easily be seen in Figure 3, the optimal Steiner cut is
({s}, {t, v}) with a weight of 4. This cut was missed since v was moved into S
too early and the cut found when v was sink was not a Steiner cut. �

It follows from Example 1 that in order for the adaptation to work we need to
make sure that every cut found is a Steiner cut. This is ensured by only selecting
terminals as sinks at step (i). Then every minimum cut found is a valid Steiner cut.
However, there is a problem with this approach. The problem relates to the dis-
tance labels. Recall that preflow-push algorithms use distance labels of the nodes
to approximate the minimum number of arcs to reach the sink. When a terminal
is selected as sink it might not have the minimum distance label, so other awake
nodes may have smaller distance labels. This is a problem for two reasons.

134 W. Cronholm, F. Ajili, and S. Panagiotidi

terminal

non-terminal 1

3

2
10

v

ts

Fig. 3. Counter-example showing how the Hao and Orlin algorithm could miss the

optimal Steiner cut. Arcs are labelled with costs

First, it interferes with the widely used and efficient gap-relabelling heuris-
tic [2], which is included in the relabel procedure in [9]. The heuristic moves
nodes that are known to be disconnected from the sink into the dormant set by
detecting “gaps” in the distance labels. This is much quicker than the naive so-
lution which only moves nodes to the dormant set as the distance label increases
above a limit (usually n). However if nodes are allowed to have a smaller distance
label than the sink, a gap does not guarantee that nodes are disconnected.

Second, the number of nodes that are not in the source set will be larger than
the difference between n and the distance label of the current sink, if it is kept
unchanged. This means that the aforementioned limit is hard to establish. The
result is a bad performance since efficient data structures as well as the runtime
complexity rely on a tight bound on the limit, see [17].

The interference with the gap-relabelling is easy to handle by taking the dis-
tance label of the current sink into account. However, the second problem still
remains. We overcome both difficulties by setting the distance label of the new
sink to 0 and resetting all the awake nodes’ distances by the exact distance, in
terms of number of arcs, to the new sink in the residual graph. This is called
global relabelling and is an important feature in competitive preflow-push algo-
rithms [2].

To speed up the computation even more, we always stop and select a new
sink whenever we detect that the minimum cut for the current sink will not be
the minimum one, for instance when we have already found a smaller cut. Also,
we store all violated sub-optimal cuts found throughout the iterations, since they
may benefit the LP.

To summarise: our change to HO is that we select the terminal in the awake
set with the minimum distance label. We then reset the distance labels for that
node to 0 and recalculate the exact distances for all other awake nodes. We
transfer nodes that do not have a residual path to the new sink into the dormant
set. If necessary we wake up layers from the dormant set when selecting a new
sink until there is a terminal in the awake set, even if there are non-terminal
nodes in the awake set.

It is easy to see that the algorithm is still correct with this modification.
The dormant nodes do not play a role in finding the current minimum cut so
changing the distance labels of the awake nodes does not alter the correctness.
Also, whenever nodes are woken up from the dormant set, they are given a new

On the Minimal Steiner Tree Subproblem and Its Application 135

distance label. We note that we might have to wake up several layers before a
terminal is found.

5 Experimental Results

This section presents a computational discussion of our approach under two use
cases 1) in a stand-alone context and 2) invoked in a branch-and-price solver.
The aim is to assess the contribution of the new branching strategy and the
improved separation. The techniques have been implemented in the Constraint
Logic Programming language ECLiPSe.

We evaluate four parameter settings: n-ff, n-ho, a-ff and a-ho, where the first
letter of the parameter setting describes the branching strategy: IP branching
(a) or our branching (n). The second part describes the separation strategy: |T |
max-flow/min-cut computations (ff) or our strategy (ho).

5.1 Evaluation in Stand-Alone Context

Results for 42 instances from SteinLib [13] are reported. SteinLib is a set of
publicly available benchmarks for the Steiner tree problem. The results can be
seen in Table 1. SP-t designates the total separation time in seconds, LP-t is
the total LP time in seconds, #N presents the size of the search tree and the
upper bound UB is labelled with a star if the instance was proved optimal. First,
we compare the contribution of the new separation strategy. Table 1 reveal that
our cutting strategy is clearly superior. Indeed, the results show that the ho-
strategy always enables significantly faster optimality proofs. Compared to a-ff,
the improved algorithm a-ho finds a better primal solution on 2 instances, proves
optimality on 2 instances when a-ff fails to do so. It also proves optimality on
1 instance when a-ff fails to find the optimal solution at all. In fact, the n-ho
strategy manages to significantly improve the best known runtime on one of the
most challenging instances (bipe2u) in SteinLib. The latter instance was only
recently solved to optimality by [18]. It is not surprising that the ho strategy
requires more separation iterations since it only generates the most violated
Steiner cuts. The ff strategy generates almost one r−t cut for each t ∈ T at every
iteration. However, the majority of the latter cuts are useless because for those
examples where both cut strategies proved optimality ho required considerably
less cuts in total. This supports the view that the most violated cut is the most
beneficial.

The ho strategy more than halves the runtime in some cases. The faster
separation enables ho to prove optimality quicker or explore a larger part of the
search tree. This is especially apparent for the instances with a large number of
terminals, suggesting that the gain from the ho strategy is clearer as the number
of terminals increases.

We now turn our attention to the contribution of the branching. The new
branching enables n-ho to prove optimality of 3 instances where a-ho fails to do so.

136 W. Cronholm, F. Ajili, and S. Panagiotidi

T
a
b
le

1
.

R
es

u
lt

s
fo

r
so

m
e

S
te

in
L
ib

in
st

a
n
ce

s

a
-f
f

a
-h
o

n
-f
f

n
-h
o

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

T
es

t
U

B
T

im
e

S
P
-t

L
P
-t

#
cu

ts
#

it
er

#
N

U
B

T
im

e
S
P
-t

L
P
-t

#
cu

ts
#

it
er

#
N

U
B

T
im

e
S
P
-t

L
P
-t

#
cu

ts
#

it
er

#
N

U
B

T
im

e
S
P
-t

L
P
-t

#
cu

ts
#

it
er

#
N

b
ip

e2
p

5
7
6
6

5
0
1
1

4
9
1
6

2
2

1
3
7

6
2

5
6
6
1

4
9
2
3

2
7
6
8

3
9
1

6
3
7

1
2
5
0

8
8
5

5
8
5
1

5
0
0
8

4
7
6
8

2
1

1
3
1

6
2

5
6
5
3

4
9
4
0

1
7
0
6

6
4
7

5
6
1

7
4
4

4
6
0

b
ip

e2
u

5
5

5
0
1
1

4
7
9
6

2
3

1
4
2

6
2

5
4

4
9
5
4

1
2
5
8

3
5
3
8

6
9
8

3
9
8

1
9

5
5

5
0
0
9

4
3
8
2

1
9

9
6

5
2

5
4
*

2
5
7
1

9
3
7

7
8
6

4
4
5

3
2
6

8
5

cc
3
-4

p
2
3
3
8

4
9
7
8

1
2
7
2

2
0
6
1

8
5
0
1

4
8
7
7

3
0
2
3

2
3
3
8

4
9
3
3

5
7
2

2
3
7
2

7
0
9
4

6
7
0
0

3
6
3
4

2
3
3
8

4
9
6
1

1
5
3
7

2
7
7
8

1
1
2
5
1

3
4
9
7

1
6
0
0

2
3
3
8

4
9
1
5

5
1
5

3
5
7
2

8
1
1
0

5
4
0
9

2
1
6
5

cc
3
-4

u
2
3
*

1
9
3
7

1
5
5
1

1
0
9
0

4
8
6
4

8
1
8

5
7

2
3
*

1
0
3
8

1
7
9

7
6
5

3
3
8
8

1
2
5
1

1
0
9

2
3
*

1
2
5
5

1
2
8
2

5
7
8

4
2
9
5

7
2
2

4
3

2
3
*

6
3
2

1
3
7

4
6
0

3
1
0
5

9
8
7

2
1

cc
3
-5

p
3
6
7
6

4
9
8
0

3
4
0
0

1
5
2
7

3
2
4
2

4
7
1

6
3
6
6
9

4
9
3
9

7
6
6

3
2
5
0

3
4
3
5

1
0
5
6

8
4

3
6
8
1

4
9
8
0

3
5
5
1

1
3
7
0

3
4
8
1

4
8
8

5
3
6
7
0

4
9
1
2

8
3
1

3
8
8
3

3
9
4
6

1
1
5
4

2
9

cc
3
-5

u
3
6

4
9
8
0

2
9
4
4

1
9
8
2

3
2
2
5

4
3
1

1
3
6

4
8
8
4

1
1
5
1

3
6
0
1

4
9
3
8

1
4
6
1

1
3
6

4
9
8
0

2
9
7
9

1
9
5
4

3
2
8
5

4
4
6

1
3
6

4
8
6
5

1
1
5
4

3
5
8
6

4
9
8
8

1
4
8
7

1
cc

6
-3

p
2
1
6
0
8

5
0
0
5

4
5
1
0

7
3

5
9
9

9
1
2
1
1
3
4

4
8
8
5

4
2
8
1

5
2
2

4
2
8

8
5

1
2
1
6
0
8

5
0
0
3

4
4
6
7

7
1

5
9
9

9
1
2
1
1
3
4

4
8
6
3

4
2
8
9

5
2
4

4
3
6

8
7

1
cc

6
-3

u
2
0
6

5
0
0
4

4
7
9
1

1
4
0

7
4
9

1
1

1
2
0
9

4
9
0
5

3
4
8
6

1
3
6
2

3
2
5

8
2

1
2
0
6

5
0
0
2

4
7
4
3

1
3
4

7
4
9

1
1

1
2
0
9

4
8
9
7

3
4
8
6

1
3
4
2

3
3
7

8
4

1
h
c6

p
4
0
1
3

4
9
8
1

4
6
3
7

1
3
4

3
8
3
9
0

8
0
0
9

5
1
2
6

4
0
1
1

4
7
5
8

3
4
8
3

4
1
3

5
4
4
7
8

5
5
4
3
2

2
3
6
4
7

4
0
0
3
*

3
9
9
2

3
7
3
2

1
4
6

4
2
9
1
7

4
9
1
8

1
9
1
9

4
0
0
3
*

6
7
2

5
1
1

6
5

9
9
0
1

7
3
8
5

1
7
6
7

h
c6

u
3
9

4
9
8
3

4
6
6
0

2
0
0

3
7
5
3
9

4
5
2
6

1
4
9
6

3
9
*

1
5
1
1

1
1
5
5

1
7
2

1
7
5
7
3

1
5
0
1
5

3
1
4
3

3
9
*

1
7
4
9

1
6
6
0

6
1

1
4
9
3
6

1
7
3
3

3
0
9

3
9
*

2
8
3

2
2
1

3
4

3
6
1
8

2
7
6
2

3
0
5

h
c7

p
7
9
4
4

4
9
8
9

4
4
4
8

2
9
7

1
1
1
3
1

6
4
1

3
3
4

7
9
3
8

4
8
0
8

2
3
6
4

9
8
3

1
0
6
9
1

1
1
2
2
8

6
6
2
9

7
9
0
5

4
9
7
7

4
5
1
6

3
1
3

1
1
9
7
5

7
0
2

2
2
4

7
9
0
5

4
7
6
1

3
2
3
4

1
0
1
6

2
0
9
4
1

1
2
6
5
3

3
1
0
9

h
c7

u
7
7

4
9
8
4

4
3
2
5

4
3
7

1
0
1
0
1

3
1
8

2
2

7
7

4
7
6
6

1
9
3
7

2
2
2
4

1
3
1
5
8

6
6
4
9

5
0
9

7
7

4
9
8
2

4
5
4
0

3
0
8

8
7
2
4

3
4
6

9
7
7

4
7
8
4

2
0
8
4

2
3
6
0

1
4
7
9
4

8
3
8
5

4
9
6

1
6
0
-0

4
1

1
4
9
4
*

5
0

4
1

3
4
1

8
1

1
4
9
4
*

1
6

6
4

2
4

1
1

1
1
4
9
4
*

5
0

4
1

3
4
1

8
1

1
4
9
4
*

1
5

6
4

2
4

1
1

1
1
6
0
-0

4
2

1
4
8
6
*

3
4

2
7

1
1
7

4
1

1
4
8
6
*

9
2

1
1
0

4
1

1
4
8
6
*

3
4

2
7

1
1
7

4
1

1
4
8
6
*

9
2

1
1
0

4
1

1
6
0
-0

4
3

1
5
4
9
*

9
0
1

8
3
3

4
3

2
4
8

5
9

1
3

1
5
4
9
*

1
0
9

4
9

3
8

1
6
4

8
3

1
3

1
5
4
9
*

1
1
6
2

1
0
5
6

7
2

2
8
7

6
7

1
7

1
5
4
9
*

1
1
9

4
8

4
7

1
5
0

8
2

1
1

1
6
0
-0

4
4

1
4
7
8
*

1
0

3
1

6
2

1
1
4
7
8
*

7
0

2
2

2
1

1
4
7
8
*

1
0

3
1

6
2

1
1
4
7
8
*

7
0

1
2

2
1

1
6
0
-0

4
5

1
5
5
4
*

4
8
1

4
4
6

1
8

1
8
6

4
3

9
1
5
5
4
*

8
5

4
7

2
2

1
3
8

6
8

7
1
5
5
4
*

4
4
3

4
0
5

1
8

1
8
6

4
4

1
1

1
5
5
4
*

8
4

4
5

2
1

1
3
2

6
8

9
1
6
0
-1

1
1

2
8
6
9
*

1
8

1
6

1
6
6

7
1

2
8
6
9
*

7
5

1
3
1

1
1

1
2
8
6
9
*

1
8

1
6

1
6
6

7
1

2
8
6
9
*

7
5

1
3
1

1
1

1
1
6
0
-1

1
2

2
9
2
4
*

1
8
2

1
6
6

1
0

2
9
5

4
1

1
1

2
9
2
4
*

5
6

4
0

1
1

1
3
0

5
1

1
1

2
9
2
4
*

1
5
3

1
4
3

8
2
6
4

2
7

3
2
9
2
4
*

6
4

4
9

1
0

1
6
8

5
7

7
1
6
0
-1

1
3

2
8
6
6
*

4
9

4
6

2
1
2
8

1
3

1
2
8
6
6
*

2
8

2
4

3
9
7

2
9

1
2
8
6
6
*

4
8

4
5

2
1
2
8

1
3

1
2
8
6
6
*

2
8

2
3

3
9
7

2
9

1
1
6
0
-1

1
4

2
9
8
9
*

1
7
7

1
6
7

8
2
8
0

2
7

1
2
9
8
9
*

6
9

5
5

1
1

1
9
1

6
0

1
2
9
8
9
*

1
7
5

1
6
5

7
2
8
0

2
7

1
2
9
8
9
*

6
7

5
4

1
0

1
9
1

6
0

1
1
6
0
-1

1
5

2
9
3
7
*

1
2
4
1

9
7
0

2
1
4

1
3
0
4

1
8
3

5
9

2
9
3
7
*

6
3
8

3
1
9

2
4
2

1
0
8
1

3
5
4

5
5

2
9
3
7
*

5
7
9

4
1
8

1
3
0

6
7
3

9
6

3
3

2
9
3
7
*

3
6
0

1
6
3

1
6
4

6
3
4

2
0
6

3
7

1
6
0
-1

4
1

2
5
4
9
*

3
0
7

2
8
7

1
3

1
1
0

1
1

1
2
5
4
9
*

6
3

3
6

1
9

7
6

2
8

1
2
5
4
9
*

3
0
2

2
8
2

1
2

1
1
0

1
1

1
2
5
4
9
*

6
3

3
6

1
9

7
6

2
8

1
1
6
0
-1

4
2

2
5
6
2
*

1
2
7
2

1
2
2
8

3
1

2
7
4

2
8

3
2
5
6
2
*

1
7
8

1
1
0

5
0

2
3
7

6
6

3
2
5
6
2
*

1
1
1
3

1
0
7
0

2
7

2
5
2

2
8

5
2
5
6
2
*

1
7
5

1
0
9

4
9

2
3
7

6
6

3
1
6
0
-1

4
3

2
5
5
7
*

1
9
4

1
8
0

7
7
6

8
1

2
5
5
7
*

3
2

1
7

8
4
3

1
2

1
2
5
5
7
*

1
9
0

1
7
7

7
6

8
1

1
2
5
5
7
*

3
1

1
6

8
4
3

1
2

1
1
6
0
-1

4
4

2
6
1
7

5
0
0
0

4
6
6
0

2
8
2

7
3
7

7
2

5
2
6
0
7
*

1
4
5
7

5
6
9

7
0
7

9
4
3

2
6
1

1
5

2
6
0
7
*

4
1
5
5

3
7
4
2

3
8
4

6
4
9

6
6

7
2
6
0
7
*

1
5
2
3

5
6
1

8
3
4

9
2
4

2
6
0

1
5

1
6
0
-1

4
5

2
5
7
8
*

7
8
2

7
4
6

2
7

2
0
9

2
0

1
2
5
7
8
*

1
1
4

6
9

3
5

1
4
1

4
1

1
2
5
7
8
*

7
6
8

7
3
2

2
6

2
0
9

2
0

1
2
5
7
8
*

1
1
3

6
8

3
4

1
4
1

4
1

1
1
6
0
-2

1
1

5
5
8
3
*

4
5
2
0

3
7
8
0

6
0
9

2
9
9
0

1
8
2

2
9

5
5
8
3
*

1
8
7
7

1
1
0
6

6
7
1

2
2
5
9

5
3
4

2
1

5
5
8
3
*

3
3
5
7

2
7
6
3

5
0
6

2
4
7
6

1
3
7

2
1

5
5
8
3
*

1
3
6
9

8
1
0

5
1
3

1
8
1
7

4
0
7

1
3

1
6
0
-2

1
2

5
6
4
3

4
9
9
3

3
7
2
4

9
9
8

3
0
4
9

2
9
8

9
5

5
6
4
3

4
8
8
2

2
2
0
6

2
2
3
0

4
0
4
6

1
0
5
4

1
3
3

5
6
4
3

4
9
9
1

3
5
2
2

1
3
7
3

3
3
5
0

2
2
5

4
9

5
6
4
3
*

3
5
1
6

1
3
9
4

1
9
9
3

3
0
5
6

6
8
3

5
1

1
6
0
-2

1
3

5
6
4
7
*

2
7
3
0

2
3
4
1

3
4
5

2
2
1
7

1
3
9

2
3

5
6
4
7
*

1
2
1
0

7
3
3

4
2
6

1
4
3
3

3
5
5

2
5

5
6
4
7
*

2
2
8
1

1
9
8
4

2
7
2

1
7
2
4

1
1
0

1
3

5
6
4
7
*

1
4
7
1

7
6
7

6
5
7

1
5
9
3

3
9
9

2
9

1
6
0
-2

1
4

5
7
2
0

4
9
9
4

3
8
3
1

9
6
1

3
5
3
0

2
5
8

6
4

5
7
2
0
*

3
5
0
5

1
7
4
7

1
5
2
8

3
5
1
4

8
6
7

7
5

5
7
2
0

4
9
9
1

3
6
2
7

1
1
7
7

3
1
7
3

2
1
3

4
7

5
7
2
0
*

4
2
1
1

1
7
1
7

2
2
3
7

3
9
0
5

9
2
4

7
3

1
6
0
-2

1
5

5
5
1
8
*

1
3
5
7

1
2
7
3

6
9

1
1
8
9

6
0

3
5
5
1
8
*

5
7
8

4
4
6

1
1
4

9
0
9

2
1
1

3
5
5
1
8
*

1
2
7
8

1
2
1
7

5
5

1
1
4
4

5
8

3
5
5
1
8
*

5
5
1

4
3
3

1
0
0

9
0
4

2
1
0

3
3
2
0
-0

1
1

2
0
5
3
*

2
4
2

2
2
5

1
1

1
7
4

2
9

3
2
0
5
3
*

7
7

5
2

1
7

1
4
6

4
4

3
2
0
5
3
*

2
4
9

2
3
3

1
1

1
8
1

3
0

3
2
0
5
3
*

7
7

5
2

1
6

1
4
5

4
4

3
3
2
0
-0

1
2

1
9
9
7
*

1
4

1
0

1
2
1

5
1

1
9
9
7
*

6
2

1
7

4
1

1
9
9
7
*

1
4

1
0

1
2
1

5
1

1
9
9
7
*

6
2

1
7

4
1

3
2
0
-0

1
3

2
0
7
2
*

2
9
2

2
7
7

1
0

1
6
1

2
4

1
2
0
7
2
*

1
1
6

8
9

2
0

1
9
2

6
4

1
2
0
7
2
*

2
8
6

2
7
2

9
1
6
1

2
4

1
2
0
7
2
*

1
1
4

8
8

1
8

1
9
2

6
4

1
3
2
0
-0

1
4

2
0
6
1
*

1
0
9
2

1
0
2
1

5
3

4
4
6

7
2

7
2
0
6
1
*

3
2
4

2
2
8

7
8

4
7
5

1
4
5

5
2
0
6
1
*

5
2
5

4
6
8

4
7

3
2
0

5
3

7
2
0
6
1
*

1
9
2

1
3
1

4
8

2
7
9

9
9

7
3
2
0
-0

1
5

2
0
5
9
*

7
5
4

6
9
2

4
9

3
5
5

5
9

7
2
0
5
9
*

1
8
8

1
2
1

5
6

2
6
3

9
1

5
2
0
5
9
*

5
1
7

4
7
8

3
1

2
7
2

4
5

5
2
0
5
9
*

1
9
2

1
0
8

6
8

2
4
7

8
6

7
3
2
0
-0

4
1

1
7
0
7
*

9
2
3

8
1
2

5
4

7
6

1
3

1
1
7
0
7
*

1
7
5

5
7

5
7

4
7

1
8

1
1
7
0
7
*

9
1
4

8
0
4

5
4

7
6

1
3

1
1
7
0
7
*

1
6
9

5
5

5
6

4
7

1
8

1
3
2
0
-0

4
2

1
6
8
2
*

2
4
2

1
6
8

2
1

1
9

4
1

1
6
8
2
*

9
0

1
2

2
1

1
1

5
1

1
6
8
2
*

2
3
9

1
6
6

2
1

1
9

4
1

1
6
8
2
*

8
5

1
1

2
1

1
1

5
1

3
2
0
-0

4
3

1
7
2
3

5
0
4
0

4
8
6
8

1
2
6

2
2
4

6
2

1
3

1
7
2
3
*

5
7
9

3
0
2

1
6
0

2
2
3

1
0
1

7
1
7
2
6

5
0
3
9

4
7
0
3

1
1
4

2
0
3

3
8

5
1
7
2
3
*

6
3
0

2
8
2

2
2
2

2
2
0

9
4

7
3
2
0
-0

4
4

1
6
8
1
*

3
1
4

2
3
8

2
3

2
6

5
1

1
6
8
1
*

1
0
7

2
0

2
8

1
5

9
1

1
6
8
1
*

3
1
0

2
3
5

2
2

2
6

5
1

1
6
8
1
*

1
0
1

1
9

2
8

1
5

9
1

3
2
0
-0

4
5

1
6
8
6
*

9
6

1
4

3
0

6
2

1
1
6
8
6
*

8
7

1
3
0

1
2

1
1
6
8
6
*

9
5

1
4

3
0

6
2

1
1
6
8
6
*

8
2

1
3
0

1
2

1

On the Minimal Steiner Tree Subproblem and Its Application 137

The node branching is much faster on some instances and has roughly the same
runtime on other ones. On the larger instances, except one, n-ho often finds a
significantly better solution. This is a clear indication of the benefits of node
branching. Moreover, the results show that the search tree is smaller for n-ho,
compared to a-ho. This may be explained by the fact that the new branching
evenly strengthens LB on both branches which result in stronger pruning of
the search. Also, n-ho requires fewer cuts to prove a test optimal. This may be
explained by the fact that when an arc is included it makes several previously
computed cuts useless.

5.2 Branch-and-Price Evaluation

There are several difficulties that appear during the integration of the Steiner tree
algorithm in a branch-and-price framework. We briefly mention some of them.

The Steiner cuts that are generated are valid not only within the branch-and-
cut tree, but also throughout the branch-and-price tree itself. It is important
that the implementation exploits that by maintaining a “cut pool” containing
all previously generated Steiner cuts. These can be re-used at separation.

It is important to exclude trees that correspond to columns that already exist
in the branch-and-price master. It is easily done with the solver described in this
paper since we can add a linear inequality to the STP for each existing, and
therefore non-improving, tree.

We have included the branch-and-cut solver into the branch-and-price ap-
proach of [6]. The solver was modified to return the first beneficial Steiner tree
to enable fast progress of the column generation. Extra effort in optimising the
subproblem is not necessarily beneficial for reaching global convergence fast. Two
sets of instances occurring in a multicast network design application were con-
sidered. The first one, comprising 28 instances, considers less than 5 multicast
commodities and the second one, with 12 instances, has around 19 commodities.

Curiously, there is little difference between the two branching strategies. Only
in one case did n enable the search to find a slightly better solution. The ex-
planation for this is probably that the emerged Steiner subproblems needed no
branching: the root LP was integral. This is consistent with what appears to be
the case in [19]. It is worth mentioning that commercial Internet topologies, like
the ones we considered, are typically sparse: the number of edges is below 4|V |.
This explains why the branching is not beneficial for Internet-like topologies.

Table 2. Aggregated results for branch-and-price method [6] with instances

UB ratio Time ratio SP-t ratio LP-t ratio #cuts ratio #bp-nodes
|K| avg min max avg min max avg min max avg min max avg min max avg min max

18–20 1.00 0.97 1.00 1.00 1.00 1.00 0.88 0.59 1.27 0.94 0.79 1.18 0.59 0.42 0.84 0.90 0.75 1.13
2–5 0.99 0.80 1.00 1.09 0.99 1.45 0.88 0.56 1.51 0.93 0.77 1.12 0.59 0.30 1.00 0.89 0.40 1.10

We now compare two variants n-ff and n-ho as subproblem solvers. Figure 2
presents an aggregated form of the results. The values are the ratio between n-ho

138 W. Cronholm, F. Ajili, and S. Panagiotidi

and n-ff. For example, the average incumbent n-ho solution was 1% better than
the one found by n-ff for small the instances. The column #bp-nodes describes
the size of the branch-and-price tree.

Although it is marginally slower on average, the ho cutting strategy enables
the branch-and-price algorithm to find slightly better solutions on average. The
results also show that the separation is quicker and the number of cuts is drasti-
cally reduced. Again, this suggests that the most violated cuts are the important
ones.

Interestingly, the ho cutting strategy enables the search to use fewer number
of nodes. This may be because faster subproblem solving enables the encounter-
ing of primal solutions earlier and thus makes bound pruning possible.

6 Conclusion

Motivated by a multicast network design application, our work focuses on tai-
loring an existing Steiner tree approach so that it successfully serves as a fast
subproblem solver in a branch-and-price framework. We adapt a little known
preflow-push approach and demonstrate how to turn it into an effective sepa-
ration algorithm. The search is also enhanced with a vertex oriented branching
rule. We show that they both improve the performance in the decomposition
context. We expect that our techniques will be more beneficial if the Steiner
subproblems are hard to solve, unlike the reported multicast instances.

Even though our work originated in a decomposition framework, its bene-
fits also unfold when solving stand-alone Steiner tree problems. In particular it
succeeds in significantly improving the best known runtime for a test that was
recently solved for the first time by [18].

There are many important applications which admit a natural formulation as
a collection of cut-based covering inequalities similar to the Steiner tree problem.
These include survivable networks e.g. [11]. Such applications often consist of
finding several minimum s− t cuts. It may be possible to adapt and exploit our
cutting strategy in order to efficiently compute violated cuts.

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows: theory, algorithms and
applications. Prentice-Hall, New Jersey, 1993.

2. B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel method
for the maximum flow problem. Algorithmica, 19:390–410, 1997.

3. S. Chopra, E.R. Gorres, and M. R. Rao. Solving the Steiner tree problem on a
graph using branch and cut. Journal on Computing, 4(3):320–335, 1992.

4. S. Chopra and M.R. Rao. The Steiner tree problem I: Formulations, compositions
and extension of facets. Mathematical Programming, 64:209–229, 1994.

5. W. Cronholm and F. Ajili. Strong cost-based filtering for Lagrange decomposition
applied to network design. In M. Wallace, editor, CP’04, number 3258 in LNCS,
pages 726–730, Toronto, Canada, September 2004.

On the Minimal Steiner Tree Subproblem and Its Application 139

6. W. Cronholm and F. Ajili. Hybrid branch-and-price for multicast network design.
In Proceedings of the 2nd International Network Optimization Conference, March
2005. To appear.

7. W. Cronholm, W. Ouaja, and F. Ajili. Strengthening optimality reasoning for a
network routing application. In Proceedings of the Fourth Workshop on Cooperative
Solvers in Constraint Programming, COSOLV’04, Toronto, Canada, September
2004.

8. A.V. Goldberg and R.E. Tarjan. A new approach to the maximum-flow problem.
Journal of the Association for Computing Machinery, 35(4):921–940, October 1988.

9. J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in a
directed graph. Journal of Algorithms, 17:424–446, 1994.

10. F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem, volume 53
of Annals of Discrete Mathematics. Elsevier Science Publishers B. V., 1992.

11. H. Kerivin and A.R. Mahjoub. Separation of partition inequalities for the (1, 2)-
survivable network design problem. Operations Research Letters, 30(4):265–268,
August 2002.

12. T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality.
Networks, 32(3):207–232, 1998.

13. T. Koch, A. Martin, and S. Voß. SteinLib: An updated library on steiner tree
problems in graphs. Technical Report ZIB-Report 00-37, Konrad-Zuse-Zentrum
für Informationstechnik Berlin, Takustr. 7, Berlin, 2000.

14. M.S. Levine. Experimental study of minimum cut algorithms. Master’s thesis,
Massachusetts Institute of Technology, 1995.

15. A. Lucena and J. E. Beasley. A branch and cut algorithm for the Steiner problem
in graphs. Networks, an International Journal, 31(1):39–59, 1998.

16. M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut
problem. Mathematical Programming, 47:19–36, 1990.

17. S. Panagiotidi. Efficient implementation of a preflow push solver and its application
to network design. Master’s thesis, Imperial College London, September 2004.

18. T. Polzin. Algorithms for the Steiner Problem in Networks. PhD thesis, Faculty
of Science and Technology, University of Saarlandes, May 2003.

19. M. Prytz and A. Forsgren. Dimensioning multicast-enabled communications net-
works. Networks, 39(4):216–231, 2002.

	Introduction
	Related Work and Overview of Contributions
	Branch-and-Cut Approach
	Separation of Violated Inequalities
	Branching Strategy
	A New Cost-Based Reduction Technique

	A More Efficient Separation Algorithm
	Overview of the Hao and Orlin Algorithm
	Adapting HO for Computing Steiner Cuts

	Experimental Results
	Evaluation in Stand-Alone Context
	Branch-and-Price Evaluation

	Conclusion

