
A Hybrid Algorithm for a Class of Resource
Constrained Scheduling Problems

Yingyi Chu and Quanshi Xia

IC-Parc, Imperial College London,
London SW7 2AZ, UK

{yyc, qx1}@imperial.ac.uk

Abstract. This paper presents a hybrid algorithm for a class of re-
source constrained scheduling problems based on decomposition. The
general minimum completion time problem is considered, which has not
been solved in a decomposed way by existing methods. The problem is
first decomposed into an assignment master problem and a number of
scheduling subproblems. The subproblem is formulated as both a con-
straint programming model and an integer programming model. The
hybrid algorithm then combines constraint programming, integer pro-
gramming and linear programming solvers in its three steps: the master
problem solving, the subproblems solving and the cut generation. In par-
ticular, the cut generation method is based on the integer programming
model, and in practice it is done by solving a linear program. Compu-
tational experiments have been carried out for the considered minimum
completion time problems. The results show that the proposed algorithm
could substantially reduce the solving time, compared with directly solv-
ing by mixed integer solvers.

1 Introduction

This paper studies an important class of resource constrained scheduling prob-
lems, where a set of jobs are assigned to and processed by a set of facilities,
subject to resource constraints and release/due date constraints. Depending on
the objective function, there are different versions of the problem, e.g. minimum
cost problem, minimum completion time problem, etc.

These problems have attracted substantial research interests due to its impor-
tance in many application domains. Solution methods based on Benders decom-
position have been proposed recently [12, 8, 13, 9] for some of the problems. A
decomposition method partitions the problem into an assignment master prob-
lem and a number of independent scheduling subproblems, each for one facility.
The master problem and the subproblems are solved iteratively and in particu-
lar the scheduling subproblems are often solved by constraint solvers as strong
reasoning techniques are available. The key step is to generate valid cuts from
the subproblems, guiding the search of the assignment solution in the master
problem.

R. Barták and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 110–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Resource Constrained Scheduling Problems 111

For minimum cost problems, Jain and Grossmann (2001), Harjunkoski and
Grossmann (2002) and Hooker (2004) employ the no good cut that excludes sets
of incompatible jobs assigned to a facility. For minimum makespan problems,
a valid cut is proposed by Hooker (2004), but under the assumption of same
release dates for all jobs (and same due dates in the computational study). As
is pointed out in [9, 10], all these cuts are based on the logical explanation of
the individual solution processes for the specific problems, instead of the dual
information from the linear integer formulation of the subproblems.

This paper presents a general approach for tackling the resource constrained
scheduling problems. A hybrid method is proposed where the necessary cuts
are generated based on the dual information from the subproblem’s formula-
tion. The subproblem is formulated as equivalent integer programming (IP) and
constraint programming (CP) models. The IP formulation is used to generate
the integer Benders cuts by exploiting the dual information, while the CP for-
mulation is used to efficiently solve the scheduling subproblems using strong
constraint propagations for cumulative scheduling. To be concrete, this hybrid
approach is instantiated to a solution algorithm for the general minimum com-
pletion time problem, which is not solvable by previous decomposition methods,
as different release/due dates are allowed.

The paper is organized as follows. Section 2 introduces the considered prob-
lems. Section 3 presents the hybrid method. Section 4 details the key step in the
proposed method, i.e., the cut generation. Section 5 presents the computational
experiments and results. Section 6 concludes the paper.

2 The Resource Constrained Scheduling Problems

This section introduces the considered scheduling problems. A formulation of
the general minimum completion time problem is given, which is used for the
subsequent algorithm development and the computational experiments.

Consider a set of jobs, denoted by J , and a set of facilities (machines),
denoted by M. Each job j ∈ J has a release date rj and a due date dj . Each
facility m ∈ M provides a fixed amount of resources specified by Cm. The
processing time of job j on facility m is given by pjm, and the job j consumes
the amount Cjm of resources during its processing time on m.

Following [9], we employ a discrete time formulation (where times are dis-
cretized to integers), instead of the continuous time model used in [12, 8, 15],
because the discrete time formulation is often easier to solve, especially when
the cumulative constraint (instead of the simpler disjunctive constraint) is con-
sidered. Let T denote the whole set of discrete time points in the considered
problem, {minj{rj}, · · · ,maxj{dj}}.

Define binary variables xjmt for any job j, any facility m and any time point
t in Tjm, where Tjm ≡ {rj , · · · , dj − pjm} represents the possible starting times
of job j on facility m. The variables are used to indicate when and on which
facility a job starts, i.e. xjmt = 1 if and only if job j starts from the discrete
time point t at facility m. Variable H denotes the overall completion time of all



112 Y. Chu and Q. Xia

jobs. Using these variables, the following constraint states that each job must be
processed by exactly one facility:

∀j ∈ J :
∑

m∈M
∑

t∈Tjm
xjmt = 1 (1)

and the resource constraints have to be observed on every facility at any time:

∀t ∈ T ,∀m ∈ M :
∑

j∈J
∑t

t′=t−pjm+1 Cjmxjmt′ ≤ Cm (2)

By definition, the completion time variable H satisfies:

∀j ∈ J ,∀m ∈ M :
∑

t∈Tjm
(t + pjm)xjmt ≤ H (3)

The minimum completion time problem is formulated as:

P : min
xjmt,H

H

s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑
m∈M

∑
t∈Tjm

xjmt = 1 ∀j ∈ J
∑

j∈J
∑t

t′=t−pjm+1 Cjmxjmt′ ≤ Cm ∀t ∈ T ,∀m ∈ M
∑

t∈Tjm
(t + pjm)xjmt ≤ H ∀j ∈ J ,∀m ∈ M

xjmt ∈ {0, 1} ∀j ∈ J ,∀m ∈ M,∀t ∈ Tjm

H ∈ ZZ[maxj{rj + minm{pjm}},maxj{dj}]

3 A Hybrid Algorithm Framework

3.1 Decomposition

To decompose the problem, we first reformulate the problem P by disaggregating
the variables. Introducing the assignment variables yjm, to indicate whether job
j is assigned to facility m or not, we can rewrite the problem as:

P′ : min
yjm,xjmt,H

H

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
m∈M yjm = 1 ∀j ∈ J∑
t∈Tjm

xjmt = yjm ∀j ∈ J ,∀m ∈ M
∑

j∈J
∑t

t′=t−pjm+1 Cjmxjmt′ ≤ Cm ∀t ∈ T ,∀m ∈ M
∑

t∈Tjm
(t + pjm)xjmt ≤ H ∀j ∈ J ,∀m ∈ M

yjm ∈ {0, 1} ∀j ∈ J ,∀m ∈ M
xjmt ∈ {0, 1} ∀j ∈ J ,∀m ∈ M,∀t ∈ Tjm

H ∈ ZZ[maxj{rj + minm{pjm}},maxj{dj}]

A decomposition is based on a partition of variables. For the problem P′,
the variables yjm and H are solved in an assignment master problem. If these
variables are tentatively fixed, the rest of the problem, pertaining the variables
xjmt, further decomposes into |M| smaller subproblems, one for each facility m.



Resource Constrained Scheduling Problems 113

The master problem is written as:

MP : min
yjm,H

H

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
m∈M yjm = 1 ∀j ∈ J∑
j∈J Cjmpjmyjm ≤ Cm(H − minj{rj}) ∀m ∈ M

cuts generated from subproblems
yjm ∈ {0, 1} ∀j ∈ J
H ∈ ZZ[maxj{rj + minm{pjm}},maxj{dj}]

The second constraint is a strengthening valid constraint, asserting that, for each
facility, the total ‘volume’ of resources consumed by the assigned jobs cannot
exceed the available ‘volume’ of resources up to the completion time H.

Based on the idea of Benders decomposition, the master problem is solved
to obtain a tentative assignment ȳjm, and a tentative completion time H̄. Fix-
ing the tentative assignment, the subproblem is obtained, and it is immediately
decomposed according to the facilities. The subproblems try to schedule the
tentatively assigned jobs to minimize the completion time, subject to resource
constraint and release/due date constraint. If at all facilities the jobs are indeed
finished within H̄, then the optimal solution is found. Otherwise, a cut is gener-
ated from each subproblem where a feasible schedule within H̄ is impossible, and
the master problem is resolved with the new cuts added. The algorithm iterates
until the optimal solution is attained.

Given the tentative solution, the subproblem for each facility is a cumulative
scheduling problem for the assigned jobs. In our method, the subproblems have
to be formulated in two different ways, serving different functionalities in the
hybrid scheme.

3.2 Subproblem Formulations

The most parsimonious formulation of the subproblems is the constraint pro-
gramming formulation, where variables tj are defined to denote the starting
time of the job j and Jm denotes the set of assigned jobs {j|j ∈ J , ȳjm = 1}.

∀m : SPm
CP(ȳjm, H̄) : H̄ ≥ min

tj :j∈Jm

max
j∈Jm

{tj + pjm}

s.t.

{
cumulative([tj : j ∈ Jm], [pjm : j ∈ Jm], [Cjm : j ∈ Jm], Cm)
tj ∈ ZZ[rj , dj − pjm] ∀j ∈ Jm

The subproblem minimizes the completion time on facility m subject to the
cumulative constraint on the tentatively assigned jobs, and then the optimal
value of it is compared with the tentative value H̄.

In order to generate cuts based on Benders decomposition, the subproblems
are also formulated as an integer programming model. In problem P′, by fixing
the master problem variables, we obtain the following subproblems:



114 Y. Chu and Q. Xia

∀m : SPm
IP(ȳjm, H̄) : min

xjmt

0

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
t∈Tjm

xjmt = ȳjm ∀j ∈ J
∑

j∈J
∑t

t′=t−pjm+1 Cjmxjmt′ ≤ Cm ∀t ∈ T
∑

t∈Tjm
(t + pjm)xjmt ≤ H̄ ∀j ∈ J

xjmt ∈ {0, 1} ∀j ∈ J ,∀t ∈ Tjm

In this case the subproblems are feasibility problems as the variables xjmt do
not contribute to the objective function in P′.

Note that the subproblems are obtained based on formulation P′, following
the classic Benders decomposition procedure (ref. [2, 7]). The tentative master
problem solution values only appear in the right hand sides. Yet the only diffi-
culty is that the subproblems are now integer programs.

3.3 Hybrid Algorithm

The hybrid scheme is partitioned into three functional modules: the solution
of the master problem, the solution of the subproblems, and the generation of
cuts. This partition of functionality makes the hybridization of solvers and for-
mulations possible. Different models and solvers are used for different modules:
the master problem, given as an IP model, is solved by an integer programming
solver; the subproblem is solved by a constraint solver using its CP formulation;
the cut generation is based on the IP formulation of the subproblem and it is
done by solving a linear program. The cut generation, which is the key step, will
be detailed in Section 4, while this section presents the hybrid framework, and
discusses the solution method of the master problem and the subproblems.

Algorithm 1 Hybrid Algorithm for Problem P′

1. INITIALIZATION. Setup the initial master problem MP(0) with no cut; set
k = 0.
2. ITERATION.
(1) Master Problem Phase. Solve the integer linear program MP(k) to obtain the

tentative solution ȳ
(k)
jm and H̄(k); if MP(k) is infeasible, then exit with the original

problem infeasible.
(2) Subproblems Phase. For each facility m, solve the corresponding subproblem

using the CP formulation SPm
CP(ȳ

(k)
jm, H̄(k)); if all subproblems are feasible, then exit

with the optimal solution found; otherwise continue to phase (3).
(3) Cut Generation Phase. For each subproblem that is infeasible, generate a

Benders cut based on the IP formulation SPm
IP(ȳ

(k)
jm, H̄(k)); add the new cuts to the

master problem to construct MP(k+1); set k = k + 1 and go back to phase (1).

The hybrid algorithm for the problem P′ is summarized in the Algorithm 1. In
step 2.(1), the master problem is solved by a standard mixed integer program-
ming (MIP) solver, using the formulation MP. In step 2.(2), the subproblem



Resource Constrained Scheduling Problems 115

is solved by constraint programming. In particular, the edge-finding constraint
propagation algorithm is applied to the cumulative constraint in SPm

CP(ȳjm, H̄).
The edge-finding algorithm reduces the domain of the tj variables by finding the
jobs that have to precede or succeed a set of other jobs, based on the volume of
resources they consume (ref. [1]). Furthermore, the branching search is enhanced
by a probe backtracking technique, which uses a forward probing method (in ad-
dition to the conventional forward local consistency checking) to prune and guide
the search (ref. [6]). The constraint solving algorithms used here are provided
as libraries of the ECLiPSe [11] platform. The step 2.(3) is unspecified in the
Algorithm 1, but it will be completed at the end of Section 4.

4 Cut Generation

4.1 Benders Cuts from Integer Subproblems

The Benders cut generation from integer subproblems is developed in a gen-
eral setting, and it is then applied to the considered scheduling problem. This
approach is based on the earlier idea reported in [4], but here a more general
method is developed and a more efficient way of cut generation is presented.

Consider the following generic program Pg in the general decomposed form.

Pg : min
y,xm

cT y + dT
1 x1 + dT

2 x2 + · · · + dT
MxM

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A0y ≥ b0

A1y + B1x1 ≥ b1

A2y + B2x2 ≥ b2

...
...

. . .
...

...
AMy + BMxM ≥ bM

y ∈ Dy, xm ∈ {0, 1}nm

where the vector y represents the master problem variables, and the subproblem
variables are divided to the vectors xm (m = 1, · · · ,M). In Benders decomposi-
tion, when y is fixed, the rest of the problem is decomposed into M subproblems.
The master problem variables belong to a finite domain Dy, while the subprob-
lem variables are considered as binary.

The formulation P′ for the scheduling problem fits into the above generic
model. However we develop the cut generation method in a general setting using
the problem Pg.

According to Benders decomposition, the master problem and the subprob-
lems are written as:

MPg : min
y,zm

cT y + z1 + · · · + zM

s.t.

{
A0y ≥ b0

Benders cuts



116 Y. Chu and Q. Xia

∀m : SPm
g (ȳ) : min

xm

dT
mxm

s.t.

{
Bmxm ≥ bm − Amȳ
xm ∈ {0, 1}nm

where variables zm represent the objective value of the subproblems. The master
problem is solved to give a tentative solution (ȳ, z̄1, · · · , z̄M ). For each m, if
the resulting SPm

g is infeasible or the value z̄m cannot be reached by SPm
g ,

then a Benders cut (over the master problem variables y and zm) is generated.
While there is a standard way of generating Benders cut when the subproblem
is continuous, difficulties arise when the subproblem is an integer program. Next
we focus on the Benders cut generation from the mth subproblem SPm

g .
It is essential that the Benders cut to be generated is valid, which means

that it does not cut off any feasible combination of the values of y and zm (i.e.
the value of zm can be reached by the subproblem parameterized by the value
of y). A valid Benders cut is often derived using the dual information from the
subproblem. In order to extract dual information from the integer subproblem
SPm

g , we define the fixed subproblems by fixing the integer variables xm to a
given value x̃m:

∀x̃m ∈ {0, 1}nm : SPm
g F(ȳ, x̃m) : min

xm

dT
mxm

s.t.

⎧
⎨

⎩

Bmxm ≥ bm − Amȳ
xm = x̃m

xm ≥ 0

For each subproblem there are totally 2nm number of fixed subproblems. As
xm is fixed to an integer value, the integrality constraint is dropped. The fixed
subproblems are dualized to DSPm

g F(ȳ, x̃m) in order to elicit dual values.

∀x̃m ∈ {0, 1}nm : DSPm
g F(ȳ, x̃m) : max

u,v
(bm − Amȳ)T u + x̃T

mv

s.t.

{
BT

mu + v ≤ dm

u ≥ 0, v : free

If SPm
g F(ȳ, x̃m) is infeasible (and thus DSPm

g F(ȳ, x̃m) is unbounded), then we
use the homogeneous dual HDSPm

g F(ȳ, x̃m).

∀x̃m ∈ {0, 1}nm : HDSPm
g F(ȳ, x̃m) : max

u,v
(bm − Amȳ)T u + x̃T

mv

s.t.

{
BT

mu + v ≤ 0
0 ≤ u ≤ 1, −1 ≤ v ≤ 1

In the programs, u,v are dual variables. As SPm
g F(ȳ, x̃m) is a linear program,

strong duality property holds.
Much dual information can be extracted from the above dual programs. From

an arbitrary feasible solution of any DSPm
g F(ȳ, x̃m), we can derive an optimality

inequality over the master problem variables:

(bm − Amy)T ũ + x̃T
mṽ ≤ zm (4)



Resource Constrained Scheduling Problems 117

From an arbitrary feasible solution of any HDSPm
g F(ȳ, x̃m), we can derive a

feasibility inequality over the master problem variables:

(bm − Amy)T ũ + x̃T
mṽ ≤ 0 (5)

However, not all these inequalities are valid. The following lemmas identify the
valid ones among them1.

Lemma 1. An optimality inequality (4) is valid if the following sign condition
is satisfied:

{
ṽi ≤ 0 if (x̃m)i = 1
ṽi ≥ 0 if (x̃m)i = 0 ∀i = 1, · · · , nm (6)

Lemma 2. A feasibility inequality (5) is valid if the sign condition (6) is satis-
fied.

Using the above condition, one can find valid Benders cuts from the large family
of inequalities specified by (4) and (5).

While any valid cut can be added to the master problem, it is desirable to
find one that is as tight as possible with respect to the tentative solution (ȳ, z̄m).
Formally, a tightest valid optimality cut with respect to (ȳ, z̄m) is defined as a
valid cut

(bm − Amy)T ũ∗ + x̃∗T
m ṽ∗ ≤ zm

such that

(bm − Amȳ)T ũ∗ + x̃∗T
m ṽ∗ = max

x̃m,ũ,ṽ
{(bm − Amȳ)T ũ + x̃T

mṽ : s.t.(6)}

The tightest valid feasibility cut is defined similarly. In other words, it is a matter
of choice of x̃m and (ũ, ṽ), to maximize the left hand side value of the cut (with
y instantiated to ȳ), giving a tightest cut with respect to (ȳ, z̄m).

4.2 Cut Generation Programs

To elicit a valid optimality or feasibility cut, one needs to find out an assignment
x̃m and a dual feasible value (ũ, ṽ) such that the sign condition is satisfied. The
sign condition (6) can be expressed as the following constraints:

{
(x̃m)iṽi ≤ 0
(1 − x̃m)iṽi ≥ 0 ∀i ∈ 1, · · · , nm (7)

To find a tightest cut, one could maximize the left hand side value with y
instantiated to ȳ:

max
x̃m,ũ,ṽ

(bm − Amȳ)T ũ + x̃T
mṽ (8)

1 The proofs of all lemmas are given in the appendix.



118 Y. Chu and Q. Xia

Therefore, a tightest valid optimality cut can be generated using the dual con-
straint from DSPm

g F(ȳ, x̃m), the sign condition constraints (7) and the objective
function (8):

CGPm
g (ȳ) : max

x̃m,ũ,ṽ
(bm − Amȳ)T ũ + x̃T

mṽ

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x̃m)iṽi ≤ 0 ∀i ∈ 1, · · · , nm

(1 − x̃m)iṽi ≥ 0 ∀i ∈ 1, · · · , nm

BT
mũ + ṽ ≤ dm

ũ ≥ 0, ṽ : free
x̃m ∈ {0, 1}nm

A tightest valid feasibility cut can be generated using the dual constraint from
DSPm

g F(ȳ, x̃m), the sign condition constraints (7) and the objective function (8):

HCGPm
g (ȳ) : max

x̃m,ũ,ṽ
(bm − Amȳ)T ũ + x̃T

mṽ

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x̃m)iṽi ≤ 0 ∀i ∈ 1, · · · , nm

(1 − x̃m)iṽi ≥ 0 ∀i ∈ 1, · · · , nm

BT
mũ + ṽ ≤ 0

0 ≤ ũ ≤ 1,−1 ≤ ṽ ≤ 1
x̃m ∈ {0, 1}nm

However, the above nonlinear mixed integer programs can be simplified to
linear cut generation programs. Define ṽ+

i ≡ (1 − x̃m)iṽi and ṽ−
i ≡ (x̃m)iṽi.

Obviously, ṽi = ṽ+
i + ṽ−

i . By this way the variables x̃m and ṽ can be eliminated.
A tightest valid optimality cut is generated by the following cut generation
program:

CGP′m
g (ȳ) : max

ũ,ṽ+,ṽ−
(bm − Amȳ)T ũ + 1T ṽ−

s.t.

⎧
⎨

⎩

BT
mũ + ṽ+ + ṽ− ≤ dm

ṽ+ ≥ 0, ṽ− ≤ 0
ũ ≥ 0

A tightest valid feasibility cut is generated by the following cut generation pro-
gram:

HCGP′m
g (ȳ) : max

ũ,ṽ+,ṽ−
(bm − Amȳ)T ũ + 1T ṽ−

s.t.

⎧
⎨

⎩

BT
mũ + ṽ+ + ṽ− ≤ 0

0 ≤ ṽ+ ≤ 1,−1 ≤ ṽ− ≤ 0
0 ≤ ũ ≤ 1

It is worth noticing that, to generate cuts, it is only necessary to construct
the above cut generation programs, but not the fixed subproblems or their duals.

Although the generated Benders cut is valid, it may not be tight enough to
cut off the current tentative master problem solution. This causes a problem for
an iterative Benders algorithm such as the Algorithm 1. If, in some iteration, the
tentative master problem solution is not cut off by any generated cut, then the
subsequent iterations will stuck at the same tentative solution. Note that there



Resource Constrained Scheduling Problems 119

is no such problem if a branch-and-cut based Benders algorithm, as is suggested
in [14, 3], is used, where the master problem is only solved once by a branching
procedure and the Benders cuts are accumulated to guide the search.

However, the problem for iterative algorithms can be remedied by excluding
the tentative solution from subsequent master problems with a no-good cut. As
long as the master problem variables have a finite domain Dy, one can formulate
a no-good cut that only excludes (ȳ, z̄m). For example, consider Dy = {0, 1}ny .
When the subproblem SPm

g F(ȳ) is infeasible, the following no-good cut excludes
only ȳ:

∑ny

i=1 ȳi(1 − yi) +
∑ny

i=1(1 − ȳi)yi ≥ 1 (9)

When the subproblem SPm
g F(ȳ) is feasible but cannot reach the tentative z̄m,

the following no-good cut excludes (ȳ, z̄m):

zm ≥ φSP − (φSP − zL
m)[

∑ny

i=1 ȳi(1 − yi) +
∑ny

i=1(1 − ȳi)yi] (10)

where zL
m ≡

∑
(dm)i<0(dm)i is a lower bound of the variable zm in MP, and

φSP is the subproblem’s objective value in the current iteration.

4.3 Generating Cuts from SPm
IP(ȳjm, H̄)

Applying the general method to problem P′, we are now able to generate Ben-
ders cuts based on the subproblem formulations SPm

IP(ȳjm, H̄). In this case the
subproblems SPm

IP(ȳjm, H̄) are feasibility problems, and therefore only feasibil-
ity cuts will be generated based on the homogeneous duals. Let M′ denote the
set of facilities where a cut needs to be generated. The corresponding cut gener-
ation programs can be formulated as is following. Note that in practice the IP
formulations of the subproblems never need to be explicitly setup or solved.

∀m ∈ M′ : HCGP′m
IP(ȳjm, H̄) :

max
ũA

j
,ũB

t ,ũC
j

,ṽ+
jt

,ṽ−
jt

∑

j∈J
ȳjmũA

j +
∑

t∈T
CmũB

t +
∑

j∈J
H̄ũC

j +
∑

j∈J

∑

t∈Tjm

ṽ−
jt

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ũA
j +

t+pjm−1∑

t′=t

CjmũB
t′ + (t + pjm)ũC

j + ṽ+
jt + ṽ−

jt ≤ 0 ∀j ∈ J ,∀t ∈ Tjm

−1 ≤ ũA
j ≤ 1, −1 ≤ ũB

t ≤ 0, −1 ≤ ũC
j ≤ 0

0 ≤ ṽ+
jt ≤ 1, −1 ≤ ṽ−

jt ≤ 0

The subscript IP is used to emphasize that it is derived based on the IP for-
mulation of the subproblem. Variables ũA

j , ũB
t , ũC

j represent the dual variables
associated with the first, second and third constraint of SPm

IP(ȳjm, H̄) respec-
tively.

Using the optimal values solved from the HCGP′m
IP(ȳjm, H̄), a Benders cut

over the master problem variables can be generated:

∀m ∈ M′ :
∑

j∈J
yjmũA

j
∗ +

∑

t∈T
CmũB

t
∗ +

∑

j∈J
HũC

j
∗ +

∑

j∈J

∑

t∈Tjm

ṽ−
jt

∗ ≤ 0 (11)



120 Y. Chu and Q. Xia

The above cut is valid according to Section 4.1 and Section 4.2, and it is eligible
to be added to the master problem MP.

In case the cut (11) is not tight enough, a no-good cut needs to be formulated
if the Algorithm 1 is used. If, on the mth facility, the tentatively assigned jobs
cannot be scheduled in the facility at all (i.e. the optimization problem in SPm

CP

is already infeasible), then the no-good cut is given as:
∑

j∈Jm
ȳjm(1 − yjm) ≥ 1 (12)

If the assigned jobs can be scheduled but not within the tentative completion
time H̄, then the no-good cut is given as:

H ≥ H∗
SP − H∗

SP

∑
j∈Jm

ȳjm(1 − yjm) (13)

where H∗
SP is the minimum completion time can be attained by the optimization

problem in SPm
CP.

The cut generation phase (step 2.(3)) in the Algorithm 1 can now be specified
as the Procedure 2, and the finite convergence of the algorithm is guaranteed.

Procedure 2 Cut Generation Phase for Problem P′

2.(3) Cut Generation Phase.
For each m belonging to M′:
(a) construct the cut generation program HCGP′m

IP(ȳ
(k)
jm, H̄(k)).

(b) generate a valid Benders cut (11) using the solution.

(c) if (11) does not cut off (ȳ
(k)
jm, H̄(k)), then generate a no-good cut (12) or (13).

Add the generated cuts to the master problem to construct MP(k+1); set k = k + 1
and go back to phase (1).

Lemma 3. The Algorithm 1, with its Cut Generation Phase instantiated by
the Procedure 2, converges to the optimal solution of P′ in a finite number of
iterations.

5 Computational Experiments

The proposed algorithm is implemented to solve the general minimum comple-
tion time problem. Problem instances are randomly generated by a similar way
as in [9], but different release and due dates are allowed. The size of a problem
instance is specified by the number of facilities M and the number of jobs J .
For each problem size configuration, 10 problem instances are randomly gener-
ated. The capacity Cm of each facility is set to 10. The consumption of resources
Cjm is drawn from a uniform distribution on [1, 10]. The processing time pjm

for each job j on a certain facility m is drawn from a uniform distribution on
[m, 20m], rounded to the nearest integer. Thus the average processing speeds of
the facilities are different. As the average of 20m over all facilities is 10(M + 1),
the total processing time for the jobs is roughly proportional to 10J(M + 1)/M
per facility (ref. [9]). The release date rj for each job is drawn from a uniform



Resource Constrained Scheduling Problems 121

distribution on [1, 10], rounded to the nearest integer. The due date dj is calcu-
lated by rj plus a time window wj , which is calculated at one third of the value
10J(M + 1)/M .

The algorithm is implemented in the ECLiPSe 5.8 [11] platform. The ex-
ternal solver used for solving the master problems and the cut generation pro-
grams is the XPRESS-MP 14.27 [5]. The cumulative scheduling subproblems
are solved by constraint programming using the ic_probe_for_scheduling and
ic_edge_finding libraries in the ECLiPSe. For comparison purpose, the test
problems are also solved directly by the same external MIP solver. The formu-
lation used for directly solving is P, instead of P′. To investigate the benefits
of the Benders cuts of the form (11), we also implemented the hybrid algorithm
with only the no-good cuts being generated. To show the effects of the CP com-
ponent of the hybrid scheme, we implemented the decomposition algorithm with
the subproblems solved by the MIP solver using the IP formulation. For all the
algorithms, we set the timeout to 1800 seconds.

The computational results are summarized in Table 1. All numbers except for
those in columns ‘M ’, ‘J ’ and ‘#TO’ are average values. The first two columns
record the problem size. The ‘Optimal’ shows the average optimal objective val-
ues. The computational results of the proposed algorithm are summarized under
the heading ‘Hybrid’. The solving times and numbers of iterations of the hybrid
decomposition algorithm are shown in ‘CPU’ and ‘#Iter’ respectively. In col-
umn ‘CGT%’, we give the percentage of solving time spent in the cut generation
step. The results for the algorithm with no-good cuts only are recorded in ‘Hy-
brid (NGC)’. The solving times and numbers of iterations are shown. The results
for the non-hybrid algorithm without using CP for the subproblems (but still
using the proposed Benders cuts) are shown in ‘Non-hybrid’. As this variation
of the algorithm dose not solve all instances within the time limit, we show the
number of timeout cases (out of 10) in the column ‘#TO’. The solving times
are given in ‘CPU’. For comparison, the performance of directly MIP solving is
summarized under ‘Direct MIP’. Again as the MIP solver does not solve every
problem instance within 1800 seconds, we show in column ‘#TO’ the number of
instances (out of 10) for which the MIP solving times out, and ‘CPU’ gives the
solving time. Note that the values with a plus sign are computed using only the
instances for which the corresponding solver does not time out. All other values
are the average of 10 instances. The unit of times in the table is second.

The results show that the solving times of all methods increase as the problem
scales, reflecting the growing complexity of the problem. Using the proposed
hybrid method, all the tested problem instances are solved to optimality within
the time limit, while directly MIP solving fails finding the optimality for some
instances, and there are more timeout cases as the problem size increases. For
smaller problems where both algorithms can prove optimality, the decomposition
algorithm also spends much less solving time than the MIP solver. The results
suggest that the proposed algorithm could be very useful in solving the minimum
completion time problems efficiently. For other objectives, similar performance
might be expected, but it is subject to further empirical study.



122 Y. Chu and Q. Xia

Table 1. Computational Results

M J Optimal Hybrid Hybrid (NGC) Non-hybrid Direct MIP
CPU #Iter CGT% CPU #Iter #TO CPU #TO CPU

2 8 31.2 0.87 10.7 13.3% 1.02 15.0 0 4.62 0 9.93
2 10 35.8 4.45 15.4 10.7% 6.03 25.3 0 53.06 1 213.29+

2 12 38.9 131.11 48.0 6.3% 159.43 61.2 4 472.02+ 5 600.67+

3 10 32.9 3.89 28.8 14.9% 4.03 33.6 0 19.24 0 115.25
3 12 36.2 19.89 53.0 11.5% 24.85 63.7 0 145.48 4 96.51+

3 14 39.5 129.66 85.0 8.2% 153.59 102.7 3 448.52+ 6 735.87+

4 12 31.6 4.28 19.6 12.6% 7.66 32.6 0 51.14 5 109.46+

4 14 34.6 47.26 54.1 7.8% 135.43 83.3 2 427.69+ 8 132.25+

4 16 34.0 148.97 78.8 7.4% 396.48 105.8 4 209.34+ 7 159.26+

Next, the effects of incorporating the proposed Benders cuts are studied.
Firstly, the results show that the overheads of cut generation account for a
small portion of the total solving time, and the percentage decreases as the
problem scales. Secondly, compared with the alternative algorithm with no-good
cuts only, the algorithm that uses the proposed Benders cuts experiences less
iterations. This difference becomes substantial in some larger problems. In terms
of solving time, the algorithm also consistently outperforms the one with no-good
cuts, in spite of the overheads incurred by solving the cut generation programs.
The comparison indicates that the Benders cuts of the form (11) are indeed
useful in improving the performance, yet without incurring too much overheads.

Finally, to show the effects of the CP component in the hybrid scheme, we
compare the hybrid algorithm with an algorithm that uses MIP to solve both
the master problem and the subproblems. The results show that the non-hybrid
algorithm is substantially slower than the hybrid one, although its performance
is still much better than that of directly MIP solving. Without CP, the algorithm
even fails finding the optimal solution (within 1800 seconds) for a few instances.
This difference could be attributed to the fact that the scheduling subproblems
are often hard to solve, and that the employed CP methods, which are specially
designed for single machine scheduling problems, are much more efficient than
the MIP solver. The results show that the incorporation of CP solution methods
indeed plays an important role in the proposed algorithm, in reducing the solving
times for the considered class of problems.

6 Conclusions

This paper presents a hybrid method for the resource constrained scheduling prob-
lems. Different models and solvers are used in the three components of the hybrid
scheme. In particular, the cut generation uses the dual information based on the
integer programming model under a Benders decomposition framework. The ap-
proach has been instantiated to an algorithm for the minimum completion time
problem. Computational results have shown that the proposed algorithm achieves
substantial reduction of solving times, especially for larger problem instances.



Resource Constrained Scheduling Problems 123

References

1. P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based Scheduling: Applying
Constraint Programming to Scheduling Problems. Kluwer, 2001.

2. J.F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

3. A. Bockmayr and N. Pisaruk. Detecting infeasibility and generating cuts for mip
using cp. In Proc.of CPAIOR 03, Montreal, Canada, 2003.

4. Y. Chu and Q. Xia. Generating benders cuts for a general class of integer pro-
gramming problems. In M. Rueher J.-C. Regin, editor, Lecture Notes in Computer
Science 3011 – CPAIOR 04, pages 127–141. Springer-Verlag, 2004.

5. Dash Inc. Dash XPRESS-MP 14.27 User’s Manual, 2003.
6. H. El Sakkout and M. Wallace. Probe backtrack search for minimal perturbation

in dynamic scheduling. Constraints, 5(4):359–388, 2000.
7. A.M. Geoffrion. Generalised benders decomposition. Journal of Optimization

Theory and Application, 10:237–260, 1972.
8. Iiro Harjunkoski and I.E. Grossmann. Decomposition techniques for multistage

scheduling problems using mixed-integer and constraint programming methods.
Comp. and Chem. Engineering, 26:1533–1552, 2002.

9. J.N. Hooker. A hybrid method for planning and scheduling. In M. Wallace, editor,
Lecture Notes in Computer Science 3258 – Principles and Practice of Constraint
Programming CP 04, pages 305–316. Springer-Verlag, 2004.

10. J.N. Hooker and G. Ottosson. Logic-based benders decomposition. Mathematical
Programming, 96:33–60, 2003.

11. Imperial College London. ECLiPSe 5.8 User’s Manual, 2004.
12. V. Jain and I.E. Grossmann. Algorithms for hybrid milp/cp models for a class of

optimisation problems. INFORMS Journal on Computing, 13:258–276, 2001.
13. R. Sadykov. A hybrid branch-and-cut algorithm for the one-machine scheduling

problem. In M. Rueher J.-C. Regin, editor, Lecture Notes in Computer Science
3011 – CPAIOR 04, pages 409–415. Springer-Verlag, 2004.

14. E.S. Thorsteinsson. Branch-and-check: A hybrid framework integrating mixed in-
teger programming and constraint logic programming. In T. Walsh, editor, Lecture
Notes in Computer Science 2239 – Principles and Practice of Constraint Program-
ming CP 01, pages 16–30. Springer-Verlag, 2001.

15. M. Turkay and I.E. Grossmann. Logic-based minlp algorithms for the optimal
synthesis of process networks. Comp. and Chem. Engineering, 20:959–978, 1996.

Appendix: Proofs of Lemmas

Lemma 1:

Proof. To prove the validity, let (ŷ, ẑ1, · · · , ẑM ) be any solution of MPg such
that the value of ẑm can be reached by the subproblem parameterized by ŷ for
each m. We prove that this solution is not cut off by the optimality inequality (4)
Consider the mth subproblem. We have:

ẑm ≥ φ(SPm
g (ŷ)) = min

xm

{dT
mxm : Bmxm ≥ bm − Amŷ,xm ∈ {0, 1}nm} (14)



124 Y. Chu and Q. Xia

where φ(·) is the value function of a program. Then there must exist a value
x̂m such that ẑm ≥ φ(SPm

g F(ŷ, x̂m)) = φ(DSPm
g F(ŷ, x̂m)), i.e., ẑm ≥ (bm −

Amŷ)T û + x̂T
mv̂, where (û, v̂) is an optimal solution of DSPm

g F(ŷ, x̂m).
Note that the feasible region of DSPm

g F(y,xm) is independent of the value
of y and xm. Therefore, the dual value (ũ, ṽ) (used by the optimality in-
equality (4)), which is feasible for DSPm

g F(ȳ, x̃m), is also a feasible solution
of DSPm

g F(ŷ, x̂m). This implies that

(bm − Amŷ)T ũ + x̂T
mṽ ≤ (bm − Amŷ)T û + x̂T

mv̂ ≤ ẑm

Due to the assumption (6), we have x̃T
mṽ ≤ x̂T

mṽ no matter which binary values
the variables x̂m take. Thus,

(bm − Amŷ)T ũ + x̃T
mṽ ≤ (bm − Amŷ)T ũ + x̂T

mṽ ≤ ẑm

i.e. the optimality inequality (4) is satisfied by (ŷ, ẑm). ��

Lemma 2:

Proof. Similar to the proof of Lemma 1, let (ŷ, ẑ1, · · · , ẑM ) be any feasible solu-
tion of MPg. We prove that it is not cut off by the feasibility inequality (5). Con-
sider the mth subproblem. Since it is feasible, there must exist a value x̂m such
that SPm

g F(ŷ, x̂m) is feasible, and therefore the corresponding homogeneous
dual HDSPm

g F(ŷ, x̂m) has a non-positive optimal value, i.e., (bm −Amŷ)T û+
x̂T

mv̂ ≤ 0, where (û, v̂) is an optimal solution of HDSPm
g F(ŷ, x̂m). Then apply-

ing the same reasoning as in the proof of Lemma 1, the conclusion follows. ��

Lemma 3:

Proof. First we show that the algorithm terminates in a finite number of itera-
tions. Due to the cut generation procedure, in each iteration except for the last,
the current tentative solution from the master problem is cut off, and the value
of (ȳjm, H̄) is different in different iterations. Since the master problem variables
have a finite domain, the algorithm has to terminate in finite iterations.
Next we show that the algorithm returns the optimal solution of the original
program P′. Note that the master problem MP(k) is always a relaxation of P′

as all the cuts added are valid. If the Algorithm 1 terminates in step 2.(1), then
the original problem has to be infeasible as well. If it terminates in step 2.(2) of
some iteration k, then the tentative assignment in this iteration renders feasible
subproblems on every machine, and the value of H̄(k) can be attained by the
subproblems. As MP(k) is a relaxation of P′, H̄(k) is always a lower bound of
the optimal solution of P′. Thus, H̄(k) is a minimum completion time that can
be achieved. The current assignment is the optimal solution for variables yjm.
The optimal starting times of the assigned jobs can be obtained from the sub-
problems. ��


	Introduction
	The Resource Constrained Scheduling Problems
	A Hybrid Algorithm Framework
	Decomposition
	Subproblem Formulations
	Hybrid Algorithm

	Cut Generation
	Benders Cuts from Integer Subproblems
	Cut Generation Programs
	Generating Cuts from SP$^m_{\rm IP}(\overline{y}_{jm}, \overline{H})$

	Computational Experiments
	Conclusions
	References



