Integration of Rules and Optimization in
Plant PowerOps

Thomas Bousonville, Filippo Focacci, Claude Le Pape, Wim Nuijten,
Frederic Paulin, Jean-Francois Puget, Anna Robert, and Alireza Sadeghin

ILOG S.A, 9 rue de Verdun, 94253 Gentilly, France
{tbousonville, ffocacci, clepape, wnuijten, fpaulin, jfpuget,
anrobert, asadeghin}@ilog.fr

Abstract. Plant PowerOps (PPO) [9] is a new ILOG product, based
on business rules and optimization technology, dedicated to production
planning and detailed scheduling for manufacturing. This paper describes
how PPO integrates a rule based system with the optimization engines
and the graphical user interface. The integration proposed is motivated
by the need to allow business users to manage unexpected changes in
their environment. It provides a flexible interface for configuring, main-
taining and tuning the system and for managing optimization scenarios.
The proposed approach is discussed via several use cases we encountered
in practice in supply chain management. Nevertheless, we believe that
most of the ideas described in this paper apply in almost any area of
optimization application.

1 Introduction

Most manufacturing companies are organized today around integrated programs
called Enterprise Resource Planning (ERP) systems. ERP systems provide the
information backbone needed to manage the day-to-day execution handling the
many transactions that document the activity of a company. Since the begin-
ning of the new century, Advanced Planning and Scheduling (APS) systems have
been increasingly adopted to plan the production taking into account capacity
and material flow constraints in order to meet customer demand. APS systems
embed algorithms for planning and scheduling spanning from the application of
very simple priority rules to complex optimization algorithms depending on the
needs of each customer. Although rule-based scheduling and simulation-based
scheduling are still widely used, today the best APS systems offer scheduling al-
gorithms based on Meta-heuristics, Constraint Programming and Mathematical
Programming.

The highly competitive marketplace on the one hand pushes to improve the
production efficiency; on the other hand it pushes to increase the flexibility
necessary to adapt to the continuous variations of customer demand. Today
manufacturing companies need to produce a higher variety of products and cus-
tomized products. The increasing needs for flexibility are pushing today’s APS

R. Bartdk and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 1{I5] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

2 T. Bousonville et al.

systems to their limits. Many companies are struggling with the limitation of
the first generation of APS systems and are looking for new solutions.

A company that needs to implement advanced supply chain optimization
tools has two possible choices: either it will implement an APS package or it
will build it using optimization components and technology via often long and
costly custom development. The drawback of buying an existing APS package
is that it provides a generic optimization model which will not take into con-
sideration all production constraints and policies characteristic of the company.
Often the company is forced to fit into the predefined model. The bottom line
can be a very high total cost of ownership combined with unhappy end users
who, in some cases, replace the system with their previously developed Excel
spreadsheet. The alternative of developing a custom solution is only viable for
few companies (often with large OR departments). And even in this case the
usability of custom development is not guaranteed. In both cases, changing the
supply chain optimization system to follow the rapidly evolving business condi-
tions is an issue.

The challenge for APS packages vendors is therefore to provide enough gen-
erality to avoid developing an optimization engine for each and every customer
and to build a flexible and configurable enough system to meet the real needs of
the customer. Ideally, such package should be configurable by its business users.
These are the people that actually solve a business problem, such as producing
the production plan for a plant. These business users usually do not possess the
IT skills that are needed for adapting an APS package to the peculiarities of
their plant.

There are many ways in which an IT package could be made more flexible.
One could add a scripting language to it for instance. Unfortunately, even script-
ing languages are deemed to be too complex to be learned and used by business
users. Another possibility could be to use tools that business users use, such as a
spreadsheet. However, a spreadsheet interface is not powerful enough to express
complex use cases such as business policies. A third approach to flexibility is
emerging nowadays. It is called business rules. This approach let business users
make statements about their business in a friendly way. These rules are then
used to preprocess (or postprocess) the input (or output) of an optimization
application. This use of rules is quite different than the so called rule inference
systems that were used in expert systems in the 80’s. Indeed, rules aren’t used
here to solve a problem. Rather, they are used to state what the problem is really
about. This difference is at the root of the current success of business rules in
the market place.

We are convinced that advances and the increased popularity of Business
Rules create the opportunity to provide the flexibility the lack of which was
limiting the applicability of APS systems. In this paper we describe how Plant
PowerOps [9] takes advantage of this technology and we claim that the proposed
rules interface can be generalized to the vast majority of optimization applica-
tions. Indeed, although this paper does not propose any advance in either rule
based systems or operations research, it presents a new, extremely pragmatic,

Integration of Rules and Optimization in Plant PowerOps 3

way of applying and integrating rule based systems to optimization models and
algorithms.

The structure of the paper is as follows: in section [2] we present an overview
of Plant PowerOps briefly describing the types of problems solved by PPO
and its architecture. Section [3] is devoted to present different use cases where
the integration of rules and optimization is demonstrated to be a powerful
combination to overcome the limits of today’s optimization software. Section
[explains the reasons behind some of the design decisions taken in the de-
velopment of the proposed integration, discusses open questions and future
work. Section [l presents some related approaches. Section [concludes the

paper.

2 Plant PowerOps Overview

Plant PowerOps (PPO) is a new Advanced Planning and Scheduling (APS) sys-
tem dedicated to production planning and detailed scheduling for manufacturing.
It enables users to plan the production taking into account capacity and material
flow constraints to meet customer demand.

Although Plant PowerOps provides production planning, lot sizing, and de-
tailed scheduling engines, due to space limitations, we will concentrate the ex-
amples to the detailed scheduling features of PPO. The scheduling engine is used
to schedule production activities (such as chemical reactions, mixing, forming,
assembling or separating), and setup activities (such as cleaning or preparing)
on different machines or production lines in order to efficiently produce quality
finished products in a timely manner, while satisfying customer demand for the
finished product.

Interactive Rule-based interface
User Interface Graphical Planning (maintenance, configuration,
Board what-if)

Algorithms |(_’ Data Model

Object model |

Middleware ‘ Input ‘ ‘ Output

Fig.1. Architecture

4 T. Bousonville et al.

As shown in figure 1, Plant PowerOps provides

— a pre-defined data model to capture intricacies of the manufacturing op-
erations. The pre-defined data model represents, for example, production
recipes, production orders, calendars (e.g. breaks, shifts, productivity pro-
files), resources, customer demands.

— effective optimization models and algorithms based on Mathematical Pro-
gramming, Constraint Programming and Local Search. These algorithms
automatically generate feasible, cost-effective detailed schedules minimizing
a combination of objective functions such as total tardiness, total earliness,
total setup cost, makespan, processing cost, etc.

— a graphical planning board to visualize, analyze, manually adjust and update
production schedules.

— a rule-based customization interface to configure and maintain over time
the graphical user interface and the parameters of the model and of the
algorithm. The rule-based interface provides also the ability to define opti-
mization scenarios and to modify problem data and solutions.

— an integration framework to connect PPO to a database, to an existing
ERP (Enterprise Resource Planning), or to an existing MES (Manufacturing
Execution System).

2.1 Rule-Based Interface

The integration between the business rules and the optimization model and
between the business rules and the graphical user interface is loose. Rules apply
either in a pre-processing step (i.e. before the execution of the engine) or in a
post-processing step (i.e. after the execution of the engine).

The rule interface of PPO is based on ILOG JRules [8] which parses and
interprets production rules and executes them in forward-chaining using the Rete
algorithm [5].

The typical syntax of the production rules interpreted by PPO is the follow-
ing:

when
conditions
then
actions

Conditions (or left hand side of the rule) are methods returning booleans on
objects of the PPO data model. For example, a condition looking for all activi-
ties which are due on Jan 1st is translated as evaluate(theActivity.getDueDate()
equals ”Jan 1, 2005”). Actions (or right hand side of the rule) can be (i) any
method (returning void) typically modifying the state of the objects, (ii) in-
sertion in the working memory, (iii) retraction from working memory. We use
actions to produce side effects on the model or on the solution. On top of the
rule language, JRules provides a syntax in natural language like flavor that is
used in all the examples shown in this paper.

Integration of Rules and Optimization in Plant PowerOps 5

The rule engine and the optimization engine are fully independent and com-
municate only through modification of the model and of the solutions. The Plant
PowerOps user selects the rules she/he wants to apply in a given scenario before
or after the optimization per se. Moreover, the optimization model is exposed
via a high level closed interface. The interface is closed in the sense that we do
not provide direct access to decision variables so that only predefined constraints
are possible.

The left hand side of a rule checks conditions on the model and its right
hand side produces side effects on the model if the conditions are met. Rules
apply either in a pre-processing step (i.e. before the execution of the engine)
or in a post-processing step (i.e. after the execution of the engine). Typically,
a pre-processing rule can be seen as a way to transform a model (coming from
the legacy system) into a new model upon which optimization is performed. The
optimization engine optimizes the transformed model and has no knowledge of
the rules that applied to generate it. Post-processing rules check the state of the
model and the solutions after optimization has occurred and possibly modify the
solutions. The advantage of the loose integration proposed relies on its simplicity
and modularity.

Note that the way rules are used in PPO is very different from the way
rules are used in expert systems. In expert systems rules are used to solve the
problem at hand. This usually requires complex sequences of rules firing, and
maintenance was a real concern. In PPO the number of rules we expect to
be active is very limited; the rules are often independent from each other and
rarely chained together. This simplifies the maintenance issue while still allowing
business users to understand and manage them.

3 Use Cases

3.1 The Chocolate Factory

In order to demonstrate the interest of integrating business rules and optimiza-
tion algorithms we will describe some use cases that could be faced by supply
chain managers and production planners of an imaginary chocolate factory.

This imaginary factory produces chocolate confections. Many production
steps and machines are required to complete the manufacturing process. The
manufacturing process is driven by customer demands and production orders,
these processes being driven by recipes and the materials they produce. Costly
setup times are required, and multiple process modes (e.g. an activity may be
performed in alterative machines) are possible and may be associated with dif-
ferent process costs. Also, activities have precedence constraints.

The factory produces chocolate eggs, rabbits and squirrels. These can be
made of either dark chocolate or milk chocolate. Each shape of product —egg
(E), rabbit (R), or squirrel (S)— made of either dark (D) or milk (M) chocolate,
can be filled with coconut cream (C), hazelnut cream (H), or filled with nothing
(N). The possible combinations are identified using three-letter acronym such

6 T. Bousonville et al.

as DCE for dark coconut egg, MHR for milk hazelnut rabbit, DNS for dark no
filling squirrel, etc.

The chocolate factory is composed of two production lines located in two
different cities in Switzerland. Each production line has the following production
equipment: a cocoa grinding machine, a chocolate mixing machine, a nut grinding
machine, a cream mixing machine, and a molding machine.

Recipes for the 12 products with cream filling consist of 5 activities (Cocoa
grinding, Chocolate mizing, Nut grinding, Cream mizing andMolding). Recipes
for the 6 products with no cream filling consist of only 3 activities (Cocoa grind-
ing, Chocolate mizing, Molding). For each recipe there are precedence constraints
such as Cocoa grinding must precede chocolate mizing.

There are 5 customer demands:

One for 3 batches of MNE due Jan. 2, 2005 at 6:00 am
— One for 2 batches of MHR due Jan. 3, 2005 at 6:00 am
— One for 3 batches of DCE due Jan. 4, 2005 at 6:00 am
One for 4 batches of MHR due Jan. 5, 2005 at 6:00 am
One for 7 batches of DNE due Jan. 6, 2005 at 6:00 am

These demands result in a total of 19 production orders, one for each batch.

In December, 2004, you are trying to solve a scheduling problem to com-
mence on January 1, 2005, 06:00 am. This example also includes setup times
and setup costs, and processing costs. For example, the chocolate mixer requires
cleaning when changing from mixing milk chocolate to mixing dark chocolate.
The objective is that manufacturing activities should finish as close as possible
to their ideal due dates. There are costs associated with late completion. There
are also costs associated with the choice of alternative resources that activities
are performed in, and with setup times required by those activities. These should
also be kept to a minimum.

Typically, the production planner runs Plant PowerOps once a day in order to
meet customer expectations and keep internal costs to a minimum. In addition,
the production planner runs Plant PowerOps whenever unexpected events (such
as a machine breakdown) occur, in order to repair the schedule adapting it to
the new situation of the factory. The supply chain manager uses Plant PowerOps
to run several simulation scenarios in order to adapt the supply chain business
policies to modifications of the market.

We first describe the activities of the supply chain manager; we will succes-
sively move to the description of the activities of the production planner.

3.2 What-If Analysis

One of the most important tasks of the supply chain manager is to design and
control the production system. A way to achieve supply chain efficiency is to
simulate and study the impact of external events and production policies. A
very first step is to modify the production data. This can clearly be done by
hand on a local copy of the legacy system. A much more effective way to per-
form massive and complex data modifications is to describe the modification

Integration of Rules and Optimization in Plant PowerOps 7

using a rule-based language. The examples of this section demonstrate how
business rules can be used to simulate events; in the examples of section B3]
we demonstrate how business rules can be used to define policies to be applied
upon these events. In particular, example 3 represents a business policy appli-
cable to example 1 and example 4 represents a business policy applicable to
example 2.

Example 1. Resource Shutdown. Although resource breakdowns are quite
infrequent, they may have very important consequences to the efficiency of the
production system. Also the supply chain manager may consider the possibility
to close part of the factory on a specific day (e.g. Jan 1st 2005). The simulation of
a resource shutdown is a necessary first step to try several action plans (business
policies) that will be executed upon such an event (see example 3).

Declarations
for the resource, instance of resource
where the name of the resource is Cream mixer 1
or the name of the resource is Chocolate mixer 1,
for the bucket, instance of bucket
where the bucket is between Jan 1, 2005 6:00am and Jan 2, 2005 6:00am
Then
the resource is unavailable in the bucket

Note that the left hand side of this rule is expressed by the Declarations sec-
tion which designates the matching objects. Note also that in this first example
the resource shutdown can easily be coded using a graphical user interface in-
stead of the rules interface. Section [£3] discusses the relation between GUI and
rules interface.

This rule is automatically translated into a production rule that has a side
effect on the model:

when {
the_resource:IloMSResource((getName() equals ” Cream mixer 17)
or (getName() equals ”Chocolate mixer 17));
the_bucket:IloMSBucket(isBetween(” Jan 1, 2005 6:00am”,
7 Jan 2, 2005 6:00am”));
} then
modify the_resource.setCapacity(0,the_bucket);

Example 2. Important Sales Agreement with a Customer. The con-
ditions of a big sales agreement are going to be negotiated with an impor-
tant customer of the company, which could result in doubling the business
made with this company. During the Sales and Operations Planning meet-
ing, the sales representative asks the supply chain manager to study the im-
pact on the production that would be caused by the deal (e.g. on production
capacity).

8 T. Bousonville et al.

Declarations
for the customer order, instance of demand
where this demand is a customer order
If
the name of the customer for the customer order is ” Hane”
Then
set the quantity of material requested by the customer order to
the quantity of material requested by the customer order x 2

3.3 Business Policies

As mentioned before, simulation in terms of massive and complex data modifica-
tion is only the first step for an effective management of the production system.
Once we are able to simulate events, we want to define those business policies
that enable us to best deal with the events.

Example 3. Reduce Safety Stock During a Resource Shutdown. Safety
stocks are necessary to face unexpected events and stochastic data. A resource
breakdown is one such event and it justifies the usage of safety stock. Combining
the optimization algorithm and the business rules capability of Plant PowerOps
the supply chain manager is able to find the following business policy:

Declarations
for the down bucket, instance of bucket,
for any resource, instance of resource,
for any material, instance of material,
for the impacted bucket, instance of bucket
where the start time of this bucket is greater
than the start time of the down bucket
and the start time of this bucket is less than
the start time of the down bucket + 15
If
the capacity of any resource in the down bucket is 0
Then
set the safety stock of any material in the down bucket to 0
and set the safety stock of any material in the impacted bucket to 0

This rule accounts for the fact that not only during the shutdown time, but also
during a given time that follows the resource unavailability it is appropriate to use
the safety stock in order to fulfill the demand. The rule is telling the optimizer to
accept a lower stock by reducing the desired safety stock level to 0. Note that by
using the rules in example 1 and 3 the supply chain manager is able to define an
appropriate policy to apply in case of resource breakdowns or decided shutdown.

Example 4. Gold Customer Production Policy. In order to obtain a piv-
otal selling agreement (see example 2), the CEO of the company has promised
to never deliver late large orders coming from the gold customer. The supply
chain manager has implemented the following business policy into the system.

Integration of Rules and Optimization in Plant PowerOps 9

Declarations
for the demand , instance of demand
where the demand is a customer order
If
the category of the customer for the demand is gold
Then
set the tardiness variable cost for the due date of the demand to ”high”

3.4 Model Preprocessing

Adding an APS on top of an ERP means stepping from pure transactional data pro-
cessing to the more complex optimization tasks. It often turns out that the existing
data in the ERP data base is not sufficient (i) to express all constraints that hold
for the production problem, (ii) to incorporate implicit preferences of the planner,
(iil) to balance between conflicting objectives in the evaluation of a solution.

While adding appropriate fields for static data to the legacy system is not a
big issue, there are numerous cases where this data has to be calculated dynam-
ically (optimization weights, load dependent preferences, etc.). Maintenance of
these data and procedures can become a nightmare.

Preprocessing rules help to express explicitly the necessary transformation
logic and avoid out-of-date and inconsistent data by creating it dynamically.
They also provide an easy way to build a set of preferences the user wants to
apply in a given context.

Example 5. Products for the Same Customer Demand are to be Pro-
duced on the Same Production Line. For some products a high degree in
regularity is important. Let’s assume a nearly identical molding quality can only
be guaranteed when the chocolate is processed on the same line. To dispatch
this constraint we can use the following rule:

Declarations
for the demand, instance of demand,
for order A, instance of production order
where the demand is satisfied by order A,
for order B, instance of production order
where the demand is satisfied by order B,
for activity 1, instance of the activities generated from order A,
for activity 2, instance of the activities generated from order B
If
the name of activity 1 contains Molding
and the name of activity 2 contains Molding
Then
insert in the working memory a new activity compatibility constraint
so that activity 1 and activity 2 are processed on the same line

Note that activity compatibility constraints are part of the object model of
Plant PowerOps [9]. This constraint forces two given activities to be executed in
resources belonging to the same production line.

10 T. Bousonville et al.

3.5 Tune the Engine

An effective plan is always a trade-off between conflicting objectives. For exam-
ple, in order to minimize the setup and production costs we should produce long
campaigns of similar products. Such a production policy will probably lead to
poor customer satisfaction because there is a continuous demand for a mix of dif-
ferent products. After having classified its possible customers in three categories
(normal, silver, gold), the supply chain manager decided to adapt the objectives
of the optimization to the configuration of the customer demands to be satisfied.
In case of large amounts of demands from gold customers, customer satisfaction
should be privileged. Otherwise production efficiency should be more important.

Example 6. Emphasize Customer Satisfaction.

If

the percentage of gold customers is less than 20
Then

set the total setup cost weight to ”high”

and set the total tardiness weight to ”low”
Else

set the total setup cost weight to ”low”

and set the total tardiness weight to ”high”

The last three following scenarios concern the use of the business rules in-
terface during the activity of the production planner. The production planner
uses Plant PowerOps for generating the day to day schedule of the factory and
is not allowed to change the business policies defined by the supply chain man-
ager. He/she is nevertheless able to use the rule based interface to configure the
system for his/her daily activities and to run validation tests.

3.6 Data Validation

Example 7. Minimal Order Quantity. For technical reasons (or by mistake)
the sales department may enter into the system customer orders with low quan-
tity of finished products. To prevent these orders from being considered in the
planning, the following rule enables the production planner to make sure that
only orders with more than two batch units are scheduled.

Declarations

for the demand, instance of demand

where the demand is a customer order

If

the quantity of material requested by it the demand is less than 3
Then

display the name of the demand

and display "requests less than 3 product units”

Integration of Rules and Optimization in Plant PowerOps 11

3.7 Solution Checking

In addition to built-in solution checking, PPO allows defining factory specific
checking rules applied to solutions. It does not matter if the solution has been
generated by the optimizer or by hand. This technique is well suited to check soft
constraints or desired properties that are not directly expressed in the constraint
model.

Example 8. Temporal Dispersion of Related Activities. The following
rule keeps the planner informed when two activities belonging to the same pro-
duction order have been scheduled far away from each other.

Declarations
for order A, instance of production order,
for activity 1, instance of the activities generated from order A,
for activity 2, instance of the activities generated from order A,
for the solution is the best scheduling solution
If
the start time of activity 2 in the solution is greater than
the end time of activity 1 in the solution + 15
Then
add in the checker of the solution a violation ”Dispersed activities”

3.8 Graphical Rules

Graphical actions include coloring, filtering and selection. While most of them
are predefined (filtering types of resources, color late activities), others have more
complex parameters.

Example 9. Select Late Activities That Belong to a Gold Customer.
As we have seen above, some orders may have a higher priority than others.
Therefore we would like to refine the information presented by selecting only the
late orders that are produced for a gold customer. Using the rule interface this
can be expressed as follows:

Declarations
for the customer order, instance of demand
where this demand is a customer order,
for the order, instance of production order
where the customer order is satisfied by the order,
for activity 1, instance of the activities generated from the order
If
the category of the customer for the customer order is gold
and the tardiness cost of activity 1 in the solution is greater than 0
Then
add activity 1 to selection
Else
remove activity 1 from selection

12 T. Bousonville et al.

For coloring different types of color schemas make sense: customer type, order
value, material properties, etc. Using a rule based configuration interface the user
can establish a series of commonly used coloring schemas without coding. The
gain against a call for application extension can be measured in money, time and
autonomy L.

All the scenarios presented demonstrate the flexibility of a rule-based inter-
face on top of optimization algorithms. Note that these scenarios could not have
been done on the any of the most popular APS in the market without a ma-
jor development effort. In fact either they do not provide any form of scripting
language (e.g. Oracle/APS), or the scripting language does not allow modifi-
cations of the optimization model (e.g. the ABAP language of SAP/APO). In
some cases it is possible to write special purpose optimization algorithms re-
placing the ones available in the APS (for example, this is true for both Or-
acle and SAP). However this implies a large project, including writing trans-
formation from and to business model and a brand new optimizer. It would
be overkill to achieve one of the scenarios described by such custom
development.

4 Open Questions and Future Work

4.1 Loose Integration or Tight Integration

Although conceptually interesting, we are convinced that, in general, a tighter
integration where the rules and the optimization engines directly communicate,
would be much more complex without bringing a sensible added value. A tighter
integration would end up being yet another high level optimization language
(based on business rules). Such an imaginary rule-based optimization language
would be far from being practical as supply chain optimization tool dedicated
to people with little optimization experience. Moreover, the interaction of op-
timization and rules engines would generate difficult robustness issues. On the
contrary, in the proposed approach, the robustness of embedded heuristics is en-
forced by the closed model. The end user may enrich the model using predefined
constraints and influence the search procedure, but not interact with it. There-
fore, once we are able to deal with infeasible input data, we do not have to deal
with issues such as rules that could make the optimization problem impossible
to handle as this translates into infeasible input data. Somewhere in between
the loose integration proposed in this paper and a tight integration is applied
in [4] for optimization systems used in the airline and railway industries and is
described in section

! Note that the manufacturing object model of Plant PowerOps does not provide the
concept of a customer category (normal, silver, gold). Plant PowerOps enables users
to dynamically attach properties to objects. These properties can be used in the left
hand side (the if statement) of business rules thus providing a powerful mechanism
to extend the object model and to write constraints (rules) based on these extensions
as shown in the examples 4 and 9.

Integration of Rules and Optimization in Plant PowerOps 13

4.2 Use Rules to Guide the Search Heuristics

Although we are convinced that a loose integration of rules and optimization is
better than a tight cooperative integration, nevertheless we are aware that busi-
ness rules may play an important role in a more sophisticated method to guide
the engine towards desired solutions. The design of methods to guide the search
based on business rules is subject of future work. We believe that the following
types of interactions could be highly interesting. Interaction of rules and opti-
mization in constructive search methods; definition of local moves via business
rules; use business rules to describe how to repair an infeasible schedule, and fi-
nally definition of soft constraints (preferences) via business rules. The challenge
of the design of rule-based methods to guide the search will be to keep the clear
separation between the rule based interface and the optimization engines.

4.3 Rules and GUI

Nowadays business rules systems such as ILOG JRules [§] provide a user friendly
interface to write rules in natural language (see all provided examples) or techni-
cal language (see example 1). Rules can be stored in rule repositories and saved.
Moreover, parametric rules or rule templates can be defined to enable users to
generate new rules by modifying (specializing) a given rule template. Despite all
that, writing a rule is always a complex task compared to a sequence of clicks
in a graphical user interface. Consider example 1 of section where a rule
defines a machine breakdown or shutdown. This is a typical case where a small
graphical item could provide the very same functionality with a much simpler
user interaction. In our experience, it is not always easy to decide which func-
tionality should be provided as GUI items and which should be provided via a
rules interface. Our current approach is to provide a set of pre-defined rules first,
which may become part of the graphical user interface later upon request.

5 Related Work

The integration of rule-based systems and optimization has been widely investi-
gated in the literature. For example, one of the first constraint-based scheduling
system, SOJA [10], used rules both to select the activities to schedule over the next
day and to heuristically guide the constraint-based search. A more systematic ap-
proach proposing integration of constraints and rules can be found in the program-
ming language LAURE [3] [1]. Caseau and Koppstein propose a multi-paradigm
object-oriented language integrating rule-based and constraint-based technology.
LAURE supports forward chaining production rules and backward chaining. In
LAURE rule-based programming provides deductive capabilities that is merged
with constraint satisfaction for improving the efficiency of constraint satisfaction.
The integration of rules and optimization in LAURE is tight, and the rule technol-
ogy is part of the optimization language used to solve the problems. The program-
ming language LAURE evolved in a new programming language called CLAIRE
[2] which packages the features proved useful in LAURE in a much simpler lan-

14 T. Bousonville et al.

guage. The backward chaining functionality of LAURE was removed, and the for-
ward chaining functionality was basically used to build propagation algorithms.

A different integration of rule technology and problem solving can be found in
the vast literature on Constraint Handling Rules (see e.g. [6]). Constraint Han-
dling Rules is a high-level rule-based language for writing constraint solvers and
reasoning systems. Again, the spirit of the integration of rules and optimization
is very different from the loose integration proposed in this paper.

A rule-based front end to optimization is available in the crew pairing opti-
mization system of Carmen Systems ([4], [7]) where the rule language Rave is
used to define feasible pairings. In the airline and railway industries, legal pair-
ings must satisfy a large number of governmental and collective agreements which
vary from an airline to another. Such rules are not hardwired, but rather speci-
fied by the user using the specific rule language Rave. The interaction between
the optimization engine and the rule engine is tighter than the one proposed in
this paper as the rule engine is called to validate possible pairings during column
generation. It is still a loose integration in the sense that the rule engine behaves
as a black box for the optimization engine and provides simply a yes/no answer
on the feasibility of possible pairings. The advantages of the integration of rules
and optimization of Carmen System are that the rules can be easily changed
and maintained by users and it is easy to perform what-it analysis.

6 Conclusions

We have proposed a new, pragmatic, approach for the integration of business
rules and optimization engines. The proposed integration provides the flexibil-
ity, adaptability and extensibility that was missing in today’s supply chain op-
timization systems. Besides the presentation of the integration framework, one
goal was to present a categorization of pertinent rules for optimization applica-
tions. This classification was done based on the rule purpose in the application
context: what-if analysis, business policies, model preprocessing, engine tuning,
data validation, graphical actions and solution checking. Although the proposed
approach is described on supply chain optimization, we believe it can be ap-
plied to most optimization applications. For example, similar investigation is
conducted at ILOG in the area of transportation. We hope that the flexibility
provided by the interaction of rules and optimization removes many obstacles in
the adoption of Advanced Planning and Scheduling systems.

References

1. Y. Caseau and P. Koppstein. A Rule-based approach to a Time-Constrainted
Traveling Salesman Problem. In Proceedings of Symposium of Artificial Intelligence
and Mathematics, 1992.

2. Y. Caseau and F. Laburthe. CLAIRE: Combining objects and rules for problem
solving. In T. Ida M.T. Chakravarty, Y. Guo, editor, Proceedings of the JICSLP’96
workshop on multi-paradigm logic programming, 1996.

Integration of Rules and Optimization in Plant PowerOps 15

. Yves Caseau and Peter Koppstein. A cooperative-architecture expert system for

solving large time/travel assignment problems. In Database and Expert Systems
Applications, pages 197-202, 1992.

. N. Kohl E. Andersson, E. Housos and D. Wedelin. Crew pairing optimization,

pages 228-258. Kluwer Academic Publishers, 1990. G. Yu, editor.

. C.L. Forgy. Rete: a fast algorithm for the many pattern/many object pattern

match problem. Artificial Intelligence, pages 17-37, 1982.

Thom Frithwirth. Theory and practice of constraint handling rules. Journal of
Logic Programming, Special Issue on Constraint Logic Programming, 37(1-3):95—
138, October 1998.

Curt A. Hjorring and Jesper Hansen. Column generation with a rule modelling
language for airline crew pairing. In Proceedings of the 34th Annual Conference of
the Operational Research Society of New Zealand, 1999.

ILOG. ILOG JRules 5.0 User’s Manual and Reference Manual.

ILOG. ILOG Plant PowerOps 1.0 User’s Manual and Reference Manual.

. C. Le Pape. Soja: A daily workshop scheduling system. soja’s system and inference

engine. In Proceedings of the Fifth Technical Conference of the British Computer
Society Specialist Group on Expert Systems, Warwick, United Kingdom, 1985.

	Introduction
	Plant PowerOps Overview
	Rule-Based Interface

	Use Cases
	The Chocolate Factory
	What-If Analysis
	Business Policies
	Model Preprocessing
	Tune the Engine
	Data Validation
	Solution Checking
	Graphical Rules

	Open Questions and Future Work
	Loose Integration or Tight Integration
	Use Rules to Guide the Search Heuristics
	Rules and GUI

	Related Work
	Conclusions

