
On the Computational Complexity of
P Automata�

Erzsébet Csuhaj-Varjú1, Oscar H. Ibarra2, and György Vaszil1

1 Computer and Automation Research Institute, Hungarian Academy of Sciences,
Kende utca 13-17, 1111 Budapest, Hungary

{csuhaj, vaszil}@sztaki.hu
2 Department of Computer Science, University of California,

Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

Abstract. We characterize the classes of languages described by P au-
tomata, i.e., accepting P systems with communication rules only. Mo-
tivated by properties of natural computing systems, we study compu-
tational complexity classes with a certain restriction on the use of the
available workspace in the course of computations and relate these to the
language classes described by P automata. We prove that if the rules of
the P system are applied sequentially, then the accepted language class
is strictly included in the class of languages accepted by one-way Tur-
ing machines with a logarithmically bounded workspace, and if the rules
are applied in the maximal parallel manner, then the class of context-
sensitive languages is obtained.

1 Introduction

Membrane systems, or P systems, are biomolecular computing devices working
in a distributed and parallel manner inspired by the functioning of the living
cell. The main ingredient of a P system is a hierarchically embedded structure
of membranes with rules associated to the regions describing the evolution of the
objects present in the membranes. The evolution of the system corresponds to
a computation. P systems have intensively been studied in the past few years,
the interested reader might consult the monograph [10] for a systematic study
of the area.

The introduction of P automata in [1] was motivated by an idea recently
attracting researchers, namely, to use P systems as language acceptors. The ob-
jects in a P automaton may move through the membranes from region to region,
but they may not be modified during the functioning of the systems, and further-
more, the described languages are obtained as the set of accepted sequences of

� The research of E. Csuhaj-Varjú and Gy. Vaszil was supported in part by the
Hungarian Scientific Research Fund “OTKA” grant no. T 042529. The research of
O. H. Ibarra was supported in part by NSF Grants IIS-0101134 and CCR02-08595.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 76–89, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Computational Complexity of P Automata 77

multisets containing the objects entering from the environment during the evo-
lution of the system. The environment is considered to have an infinite supply
of objects, any number of symbols may be requested by the application of one
or more rules associated to the skin membrane, and these symbols may traverse
this membrane and enter when they are requested to do so.

A result on the accepting power of P automata was already established in
[1] stating that for any recursively enumerable language, there is a P automaton
accepting the image of the language under a certain mapping. Similar results
were also obtained in [3], [4], and [7], for P automata with different features and
different mappings to obtain the recursively enumerable language.

In the present paper we continue the study of the power of P automata,
but this time we are interested in the exact characterization of the languages of
the multiset sequences entering the system through the skin membrane during
a computation. We do this by establishing a correspondence between the sym-
bols of an alphabet and the multisets that might ever enter the P automaton,
and characterize the set of words corresponding to the set of accepted multiset
sequences. This approach differs from the ones mentioned above because we do
not allow erasing, that is, each nonempty multiset corresponds to a symbol of
the alphabet when defining the string represented by the multiset sequence. This
means that the workspace of the P automaton is provided only by the objects
of the input obtained from the environment during a computation, which is a
very natural way of restricting the use of the resources: As the processing of the
input progresses, additional parts of the workspace become available with each
step. Thus, the workspace which can be used in the course of the computation
is provided in accordance with the number of symbols actually read from the
input, in other words, the computation is made possible by manipulating what is
already obtained from the input. This idea agrees very well with the behaviour
of natural systems where the result of a computation is also obtained by using
the resources provided by the input, the object of the computation itself.

We consider the sequential and the so-called maximal parallel way of rule
application. In the sequential case, the number of different multisets that may
ever enter the system is finite which means that there is a natural one-to-one
correspondence between these multisets and the symbols of a finite alphabet.
This is not necessarily so when the rules are applied in the maximal parallel way,
in this case P automata can be considered as devices accepting finite strings over
an infinite alphabet. In this paper we do not study the case of infinite alphabets,
we use instead a mapping that maps the infinite set of different multisets to
a finite alphabet, thus we will be able to speak of languages accepted by P
automata using the rules in the sequential or in the maximal parallel manner,
the languages being in both cases over a finite alphabet.

We show that the languages which can be characterized by P automata in
this sense using the rules in the sequential manner are strictly included in the
class of languages accepted by one-way Turing machines using logarithmically
bounded workspace, while if the rules are used in the maximal parallel way, the
class of context-sensitive languages is obtained.

78 E. Csuhaj-Varjú, O.H. Ibarra, and Gy. Vaszil

2 Definitions

We first recall the notions and the notations we use. Let V be an alphabet, let
V ∗ be the set of all words over V , and let V + = V ∗ − {ε} where ε denotes the
empty word. We denote the length of a word w ∈ V ∗ by |w|, and the number
of occurrences of a symbol a ∈ V in w by |w|a. The set of natural numbers is
denoted by N.

A multiset is a pair M = (V, f), where V is an arbitrary (not necessarily
finite) set of objects and f : V → N is a mapping which assigns to each object its
multiplicity. The support of M = (V, f) is the set supp(M) = {a ∈ V | f(a) ≥ 1}.
If V is a finite set, then M is called a finite multiset. The set of all finite multisets
over the set V is denoted by V ◦.

We say that a ∈ M = (V, f) if a ∈ supp(M), and M1 = (V1, f1) ⊆ M2 =
(V2, f2) if supp(M1) ⊆ supp(M2) and for all a ∈ V1, f1(a) ≤ f2(a). The union of
two multisets is defined as (M1 ∪ M2) = (V1 ∪ V2, f

′) where for all a ∈ V1 ∪ V2,
f ′(a) = f1(a) + f2(a), the difference is defined for M2 ⊆ M1 as (M1 − M2) =
(V1−V2, f

′′) where f ′′(a) = f1(a)−f2(a) for all a ∈ V1−V2, and the intersection
of two multisets is (M1 ∩ M2) = (V1 ∩ V2, f

′′′) where for a ∈ V1 ∩ V2, f ′′′(a) =
min(f1(a), f2(a)), min(x, y) denoting the minimum of x, y ∈ N. We say that M
is empty, denoted by ε, if its support is empty, supp(M) = ∅.

A multiset M over the finite set of objects V can be represented as a string w
over the alphabet V with |w|a = f(a), a ∈ V , and with ε representing the empty
multiset ε. In the following we sometimes identify the finite multiset of objects
M = (V, f) with the word w over V representing M , thus we write w ∈ V ◦, or
sometimes we enumerate the elements of w = a1 . . . at ∈ V ◦ in double brackets
(to distinguish from the usual set notation) as {{a1, . . . , at}}.

Now we present the basic notions of membrane computing; the interested
reader may find more detailed information on the theory of P systems in the
monograph [10]. A P system is a structure of hierarchically embedded mem-
branes, each having a label and enclosing a region containing a multiset of ob-
jects and possibly other membranes. The out-most membrane which is unique
and usually labelled with 1, is called the skin membrane. The membrane struc-
ture is denoted by a sequence of matching parentheses where the matching pairs
have the same label as the membranes they represent. If x ∈ {[i,]i | 1 ≤ i ≤ n}∗
is such a string of matching parentheses of length 2n, denoting a structure where
membrane i contains membrane j, then x = x1 [i x2 [j x3]j x4]i x5 for some
xk ∈ {[l,]l | 1 ≤ l ≤ n, l 	= i, j}∗, 1 ≤ k ≤ 5. If membrane i contains membrane
j, and there is no other membrane, k, such that k contains j and i contains k
(x2 and x4 above are strings of matching parentheses themselves), then we say
that membrane i is the parent membrane of j, denoted by i = parent(j), and at
the same time, membrane j is one of the child membranes of i.

By the contents of a region we mean the multiset of objects which is contained
by the corresponding membrane excluding those objects which are contained by
any of its child membranes.

The evolution of the contents of the regions of a P system is described by
rules associated to the regions. Applying the rules synchronously in each region,

On the Computational Complexity of P Automata 79

the system performs a computation by passing from one configuration to another
one. In the following we concentrate on communication rules called symport or
antiport rules.

A symport rule is of the form (x, in) or (x, out), x ∈ V ◦. If such a rule
is present in a region i, then the objects of the multiset x must enter from the
parent region or must leave to the parent region, parent(i). An antiport rule is of
the form (x, in; y, out), x, y ∈ V ◦, in this case, objects of x enter from the parent
region and in the same step, objects of y leave to the parent region. All types
of these rules might be equipped with a promoter or inhibitor multiset, denoted
as (x, in)|Z , (x, out)|Z , or (x, in; y, out)|Z , x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦}, in
which case they can only be applied if region i contains the objects of multiset
z, or if Z = ¬z, then region i must not contain the elements of z. (For more on
symport/antiport see [9], for the use of promoters see [8].)

The rules can be applied in the maximal parallel or in the sequential manner.
When they are applied in the sequential manner, one rule is applied in each
region in each derivation step, when they are applied in the parallel manner, as
many rules are applied in each region as possible. See Definition 2 for the formal
description of these modes.

The end of the computation is defined by halting: A P system halts when
no more rules can be applied in any of the regions. In the case of P automata,
however, we consider predefined accepting configurations called final states, by
associating a finite set of multisets to each region. The P automaton accepts the
input sequence when the contents of each region coincides with one element of
these previously given finite sets of multisets.

The result of the computation can also be given in several ways, see [10] for
more details. In the case of P automata, the result of the computation is an ac-
cepted multiset sequence, the sequence of multisets entering the skin membrane
during a successful computation.

Now we present the formal definition of a P automaton.

Definition 1. A P automaton with n membranes is defined as Γ =
(V, µ, (w1, P1, F1), . . . , (wn, Pn, Fn)) where n ≥ 1, V is a finite alphabet of ob-
jects, µ is a membrane structure of n membranes with membrane 1 being the
skin membrane, and for all i, 1 ≤ i ≤ n,

– wi ∈ V ◦ is the initial contents (state) of region i, that is, it is the finite
multiset of all objects contained by region i,

– Pi is a finite set of communication rules associated to membrane i, they can
be symport rules or antiport rules, with or without promoters or inhibitors,
as above, and

– Fi ⊆ V ◦ is a finite set of finite multisets over V called the set of final states
of region i. If Fi = ∅, then all the states of membrane i are considered to be
final.

To simplify the notations we denote symport and antiport rules with or without
promoters/inhibitors as (x, in; y, out)|Z , x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦} where
we also allow x, y, z to be the empty string. If y = ε or x = ε, then the notation

80 E. Csuhaj-Varjú, O.H. Ibarra, and Gy. Vaszil

above denotes the symport rule (x, in)|Z or (y, out)|Z , respectively, if Z = ε,
then the rules above are without promoters or inhibitors.

The n-tuple of finite multisets of objects present in the n regions of the
P automaton Γ describes a configuration of Γ ; (w1, . . . , wn) ∈ (V ◦)n is the
initial configuration.

Definition 2. The transition mapping of a P automaton is a partial mapping
δX : V ◦× (V ◦)n → 2(V ◦)n

, with X ∈ {seq, par} for sequential or for parallel rule
application. These mappings are defined implicitly by the rules of the rule sets
Pi, 1 ≤ i ≤ n. For a configuration (u1, . . . , un),

(u′
1, . . . , u

′
n) ∈ δX(u, (u1, . . . , un))

holds, that is, while reading the input u ∈ V ◦ the automaton may enter the new
configuration (u′

1, . . . , u
′
n) ∈ (V ◦)n, if there exist rules as follows.

– If X = seq, then for all i, 1 ≤ i ≤ n, there is a rule (xi, in; yi, out)|Zi
∈ Pi

with z ⊆ ui for Zi = z ∈ V ◦, and z ∩ ui = ε for Zi = ¬z, z ∈ V ◦, satisfying
the conditions below, or

– if X = par, then for all i, 1 ≤ i ≤ n, there is a multiset of rules Ri =
{{ri,1, . . . , ri,mi

}}, where ri,j = (xi,j , in; yi,j , out)|Zi,j
∈ Pi with z ⊆ ui for

Zi,j = z ∈ V ◦, and z ∩ ui = ε for Zi,j = ¬z, z ∈ V ◦, 1 ≤ j ≤ mi, satisfying
the conditions below, where xi, yi denote the multisets

⋃
1≤j≤mi

xi,j and⋃
1≤j≤mi

yi,j , respectively. Furthermore, there is no r ∈ Pj , for any j, 1 ≤
j ≤ n, such that the rule multisets R′

i with R′
i = Ri for i 	= j and R′

j =
{{r}} ∪ Rj , also satisfy the conditions.

The conditions are given as

1. x1 = u, and
2.

⋃
parent(j)=i xj ∪ yi ⊆ ui, 1 ≤ i ≤ n,

and then the new configuration is obtained by

u′
i = ui ∪ xi − yi ∪

⋃

parent(j)=i

yj −
⋃

parent(j)=i

xj , 1 ≤ i ≤ n.

We define the sequence of multisets of objects accepted by the P automaton as
an input sequence which is consumed by the skin membrane while the system
reaches a final state, a configuration where for all j with Fj 	= ∅, the contents
uj ∈ V ◦ of membrane j is “final”, i.e., uj ∈ Fj .

Note that in the case of parallel rule application, the set of multisets which
may enter the system in one step is not necessarily bounded, thus, this type of
automata may work with strings over infinite alphabets. In this paper however,
we study languages over finite alphabets, so we apply a mapping to produce
a finite set of symbols from a possibly infinite set of multisets, and in order
not to “encode” the computational power in this mapping, we assume that it is
computable by a linear space bounded Turing machine.

On the Computational Complexity of P Automata 81

Definition 3. Let us extend δX to δ̄X ,X ∈ {seq, par}, a function mapping
(V ◦)∗, the sequences of finite multisets over V , and (V ◦)n, the configurations of
Γ , to new configurations. We define δ̄X as

1. δ̄X(v, (u1, . . . , un)) = δX(v, (u1, . . . , un)), v, ui ∈ V ◦, 1 ≤ i ≤ n, and
2. δ̄X((v1) . . . (vs+1), (u1, . . . , un)) =

⋃
δX(vs+1, (u′

1, . . . , u
′
n))

for all (u′
1, . . . , u

′
n) ∈ δ̄X((v1) . . . (vs), (u1, . . . , un)), vj , ui, u

′
i ∈ V ◦,

1 ≤ i ≤ n, 1 ≤ j ≤ s + 1.

Note that we use brackets in the multiset sequence (v1) . . . (vs+1) ∈ (V ◦)∗ in
order to distinguish it from the multiset v1 ∪ . . . ∪ vs+1 ∈ V ◦.

Definition 4. Let Γ be a P automaton as above with initial configuration
(w1, . . . , wn) and let Σ be a finite alphabet. The language accepted by Γ in
the sequential way of rule application, Lseq, or in the maximal parallel way of
rule application, Lpar, is

LX(Γ) =
{f(v1) . . . f(vs) ∈ Σ∗ | (u1, . . . , un) ∈ δ̄X((v1) . . . (vs), (w1, . . . , wn))

with uj ∈ Fj for all j with Fj 	= ∅, 1 ≤ j ≤ n, 1 ≤ s},
for X ∈ {seq, par}, and for a linear space computable mapping f : V ◦ −→
Σ ∪ {ε} with f(x) = ε if and only if x = ε. Let us denote the class of languages
accepted by P automata with sequential or parallel rule application as LX(PA),
X ∈ {seq, par}.

3 The Power of P Automata

Now we consider the accepting power of P automata. We follow ideas from [5]
and [6] in relating this power to well-known machine based complexity classes.
There, among other similar models, the so-called symport/antiport P system
acceptors are studied. These are accepting membrane systems similar to P au-
tomata, the main difference in the two models is the fact that the alphabet
of symport/antiport acceptors is divided into a set of terminals and nontermi-
nals. During the work of these systems both types of objects may leave or en-
ter the membrane structure but only the objects which are terminal constitute
the part of the input sequence which is accepted in a successful computation.
Thus, the nonterminal objects are used to provide additional workspace for the
computation.

This feature motivated the introduction of so-called S(n) space bounded
symport/antiport acceptors, systems where the total number of objects used in
an accepting computation on a sequence of length n is bounded by a function
S(n). As shown in [5] and [6], a language L is accepted by an nk space bounded
symport/antiport acceptor, if and only if, it is accepted by a nondeterministic
log n space bounded one-way Turing machine, or by a cn space bounded sym-
port/antiport acceptor, if and only if it is accepted by a one-way linear space
bounded Turing machine, that is, if and only if it is context-sensitive.

82 E. Csuhaj-Varjú, O.H. Ibarra, and Gy. Vaszil

Since in P automata the workspace is provided by the objects of the accepted
or rejected input only, the maximal number of objects present inside the mem-
brane structure during a computation is bounded by the length of the input
sequence. Furthermore, even this “space” can only be used with a strong restric-
tion since it becomes available step-by-step, as more and more symbols of the
input are read. Thus, when looking for a Turing machine model corresponding to
P automata, some restriction on the use of the available workspace is necessary.

Definition 5. A nondeterministic one-way Turing machine is restricted S(n)
space bounded if for every accepted input of length n, there is an accepting
computation where the number of nonempty cells on the work-tape(s) is bounded
by S(d) where d ≤ n, and d is the number of input tape cells already read, that
is, the distance of the reading head from the left end of the one-way input tape.

Let L(1LOG), L(1LIN), L(restricted−1LOG), and L(resticted−1LIN) denote
the class of languages accepted by one-way nondeterministic Turing machines
with logarithmic space bound, linear space bound, restricted logarithmic space
bound, and restricted linear space bound, respectively.

Let L denote the language

L = {xy | x ∈ {1, 2, . . . , 9}{0, 1, . . . , 9}∗, y ∈ {#}+, with val(x) = |y|}
where val(x) is the value of x as a decimal number.

As we shall see later, L(restricted − 1LIN) = L(1LIN), but the class
L(restricted − 1LOG) is strictly a subclass of L(1LOG) since L, the language
defined above, is in the latter class but not in the former. Still, L(restricted −
1LOG) contains some very interesting languages, e.g., {anbncn | n ≥ 1} and
{a2n | n ≥ 0} are both in L(restricted − 1LOG), as they can be accepted by
Turing machines capable of recording the distance of the reading head from the
left-end of the one-way input tape which can be achieved in restricted logarithmic
space.

Theorem 1.

Lseq(PA) = L(restricted − 1LOG) and Lpar(PA) = L(restricted − 1LIN).

Proof. First we prove the inclusions from left to right in both equations. Con-
sider the P automaton Γ = (V, µ, (w1, P1, F1), . . . , (wn, Pn, Fn)), n ≥ 1, with
L(Γ) ⊆ Σ∗ where f : V ◦ −→ Σ ∪ {ε} is a linear space computable mapping
with f(x) = ε if and only if x = ε. We show how to construct a one-way Turing
machine M which simulates the work of Γ using restricted logarithmic space if
Γ applies the rules sequentially, or restricted linear space if Γ applies the rules
in the maximal parallel manner. Let M = (k,Σ,A,Q, q0, qF , δM) be a Turing
machine with a one-way read only input tape where

– k = (|V | · n2 + |V |) is the number of work-tapes,
– Σ is the finite input alphabet,
– A = {0, . . . , 9} is the work-tape alphabet,

On the Computational Complexity of P Automata 83

– Q is the set of internal states, q0, qF ∈ Q are the starting and the final states,
and

– δM is the transition function of M .

Let M have n work-tapes assigned to each region and symbol pair (i, a) ∈
{1, . . . , n} × V , and an additional tape for each symbol of V . Using the digits
of the tape alphabet, {0, . . . , 9}, M keeps track of the configurations of Γ by
having an integer written on the first one of the work-tape n-tuple assigned to
(i, a) denoting the number of a objects present in region i.

Let these configurations of M be denoted as

(q, w, α1,1, 0n−1, . . . , αn,|V |, 0n−1, 0|V |)

where q ∈ Q is the current state, w ∈ Σ∗ is the part of the input that is not yet
read, (αi,j , 0n−1) ∈ (A+)n, 1 ≤ i ≤ n, 1 ≤ j ≤ |V |, are the values written on
the work-tape n-tuple corresponding to region i and symbol aj ∈ V , the value
of αi,j denoting the number of such objects present in region i. For the sake of
notational convenience, in the following we will use αi,j to represent both the
string of digits on the work-tape and the decimal value of this string.

Now let us consider the transitions of Γ . Let δΓ be δseq or δpar as defined
above for the case of sequential or maximal parallel way of rule application. The
transition function of M is defined in such a way that if and only if

(u′
1, . . . , u

′
n) ∈ δΓ (v, (u1, . . . , un)),

then

(q, w, α1,1, 0n−1, . . . , αn,|V |, 0n−1, 0|V |) −→
(q, w′, α′

1,1, 0
n−1, . . . , α′

n,|V |, 0
n−1, 0|V |)

is a possible transition in M where αi,j = |ui|aj
and α′

i,j = |u′
i|aj

for all 1 ≤
i ≤ n, 1 ≤ j ≤ |V |, and if f(v) = a then w = aw′, or if v = ε, then w = w′.
Note that this is possible because the finite set of rules can be encoded in the
finite control, and all the information necessary to record a configuration of the
P automaton is stored on the work-tapes. First, for each region and symbol pair,
(i, a), M writes the number of a objects leaving from region i to region j to the
jth tape of the work-tape n-tuple corresponding to (i, a), and also records the
number of symbols entering from the environment using the |V | additional work-
tapes. Then in a final round, it creates the description of the new configuration
by adding the appropriate values to the integers stored on the first tapes of each
work-tape n-tuple, and using the collection of objects, v ∈ V ◦, which enter from
the environment, M computes f(v) = a ∈ Σ and reads a from the input tape.

If Γ is a sequential P automaton, then this whole process can be realized
in restricted logarithmic space since the number of cells used on the work-tapes
is the logarithm of the number of objects present in the P system which is at
most c · d where c is some constant and d is the number of nonempty multisets
read by the P automaton, or in terms of the Turing machine, the distance of
the reading head from the left end of the input tape. Furthermore, the function

84 E. Csuhaj-Varjú, O.H. Ibarra, and Gy. Vaszil

f maps a finite domain to a finite set of values, so its computation does not
require any additional space. If Γ works in the maximal parallel manner, then
the computation of M requires restricted linear space because the number of
symbols inside the P systems is at most cd with c, d as above, so the integers
describing the configurations can be represented by decimal numbers in restricted
linear space. The values of f(x) ∈ Σ ∪ {ε} can also be computed inside the
restricted linear space bound, since the cardinality of any x ∈ V ◦ for which the
computation is needed is at most cd, and the computation of f(x) itself uses
linear space measured in the size of the argument, so it is still restricted linear.

The transition function of M should also enable an initialization phase,

(q0, w, ε, . . . , ε) −→ (q, w, α1,1, 0n−1, . . . , αn,m, 0n−1, 0|V |)

where αi,j = |wi|aj
, 1 ≤ i ≤ n, 1 ≤ j ≤ |V |.

The input is accepted by M if and only if it is accepted by Γ , that is,

(q, ε, α1,1, 0n−1, . . . , αn,m, 0n−1, 0|V |) −→
(qF , ε, α1,1, 0n−1, . . . , αn,m, 0n−1, 0|V |)

where for each Fi 	= ∅, there is an ui ∈ Fi such that for all aj ∈ V, αi,j = |ui|aj
.

The precise construction of M is left to the reader.
Now we prove the inclusions from right to left. To do this we need the notion

of a two-counter automaton. A two-counter machine is an automaton with a
one-way read only input tape and two counters capable of storing any non-
negative integer. Formally it can be given as M = (Σ,Q, q0, qF , δM) where Σ is
an input alphabet, Q is a set of internal states containing the initial and accepting
states q0, qF ∈ Q respectively, and δM is a transition function which maps the
quadruple of state, input symbol, and zero or non-zero counter contents to the
triple of a new state and two instructions to increment, unchange, or decrement
the counters. As the work-tapes of any Turing machine can be simulated with
two counters, two-counter machines accept the class of recursively enumerable
languages (see [2]).

However, if the sum of the counter contents is bounded, that is, the two-
counter automaton has limited workspace, then its power is decreased. If we
define S(n) space bounded two-counter machines as S(n) being the bound on
the sum of the counter contents during any accepting computation on an input
of length n, then we obtain a model equivalent to log S(n) space bounded one-
way Turing machines because an integer i stored in a counter can be written
on the work-tapes using log i tape cells. We may also introduce the restricted
S(n) space bounded variant exactly as above, in which case we obtain a machine
equivalent to restricted log S(n) space bounded one-way Turing machines.

Consider now a two-counter machine M . If x is an element of the domain of
δM , then a transition is given by the pair (x, δM (x)). Let these pairs be labelled
by elements of the finite set of labels TRANS .

Let Γ = (V, µ, (w1, P1, ∅), (w2, P2, F2), (w3, P3, ∅), (w4, P4, ∅)) be a P automa-
ton with the membrane structure µ = [1 [2]2 [3]3 [4]4]1. Inside the skin
membrane, it has a controlling region, region 2, for storing and manipulating

On the Computational Complexity of P Automata 85

symbols corresponding to the states of M , and a pair of membranes, 3 and 4,
for maintaining the values of the two counters.

Let V = Σ ∪ {〈q〉, 〈t〉, 〈t〉a | q ∈ Q, t ∈ TRANS , a ∈ Σ}. The symbols of
V − Σ govern the work of Γ . The presence of 〈q〉 ∈ V in the skin membrane
indicates that Γ simulates a configuration of the two-counter machine when it
is in state q ∈ Q. While simulating a transition from state q to state q′ labelled
by t ∈ TRANS , Γ needs extra steps for reading the input and manipulating
the symbols which keep track of the counter values. During these steps the skin
membrane contains one of the symbols 〈t〉, 〈t〉a, for some a ∈ Σ, and when the
simulation of the transition is complete, 〈q′〉 ∈ V appears in the skin membrane.

The simulation of M starts in the initial state with w1 = 〈q0〉〈q0〉〈q0〉a, for
some a ∈ Σ, and for 2 ≤ i ≤ 4, wi = {{ 〈q〉, 〈t〉, 〈t〉a | q ∈ Q, q 	= q0, t ∈
TRANS , a ∈ Σ }}. The rule sets belonging to the regions are as follows. Let

P1 = {(ε, in)|〈q〉〈q〉〈q〉, (ε, in)|〈t〉a〈t〉a〈t〉a
| q ∈ Q, t ∈ TRANS , a ∈ Σ} ∪

{(xk, in; y, out)|〈t〉〈t〉〈t〉 | x ∈ Σ, y ∈ Σ, t ∈ TRANS , x is read
during the transition t} ∪

{(ε, in)|〈t〉〈t〉〈t〉 | t ∈ TRANS , ε is read during the transition t},
and k ≥ 1 is a suitable constant. In the case of sequential rule application, if
transition t is simulated, as indicated by the presence of 〈t〉, then k copies of
the corresponding input symbol are read into the skin membrane, and one other
symbol is sent out in the first simulating step. If the rules are applied in the
maximal parallel manner, then after the first simulating step, the number of
symbols in the skin region is k times as much, as the number that was already
present.

Before the simulation starts, that is, when a state symbol 〈q〉 is present, or in
the later simulating steps, when the symbols 〈t〉a, for some a ∈ Σ, are present,
then nothing is read from the input.

In what follows, let us assume that Σ = {a1, . . . , am}. Now let

P2 = {(〈q〉, in; 〈t〉, out), (〈t〉, in; 〈t〉a1 , out), (〈t〉ai
, in; 〈t〉ai+1 , out),

(〈t〉am
, in; 〈q′〉, out) | 1 ≤ i ≤ m − 1, t ∈ TRANS is a

transition from q to q′},
and let F2 = { {{ 〈q〉, 〈t〉, 〈t〉a | q ∈ Q, q 	= qF , t ∈ TRANS , a ∈ Σ }} }.
The second region is responsible for keeping track of the simulated states and
transitions. The simulation is finished if qF , the final state is exported from this
region to the first one as indicated by F2 above. Now for 3 ≤ i ≤ 4, let

Pi = {(〈q〉, in; 〈t〉x, out), (〈t〉, in; 〈t〉a1 , out), (〈t〉aj
, in; 〈t〉aj+1 , out),

(〈t〉am
, in; 〈q′〉, out) | x ∈ Σ, 1 ≤ j ≤ m − 1, t ∈ TRANS

is a transition from q to q′ decreasing the ith counter } ∪
{(〈q〉, in; 〈t〉, out), (〈t〉, in; 〈t〉a1 , out)|Z1 , (〈t〉aj

, in; 〈t〉aj+1 , out)|Zj+1 ,

(〈t〉am
x, in; 〈q′〉, out) | 1 ≤ j ≤ m − 1, t ∈ TRANS is a transition

86 E. Csuhaj-Varjú, O.H. Ibarra, and Gy. Vaszil

from q to q′, and
x ∈ Σ if the (i − 2)th counter is increased during t, or
x = ε if the (i − 2)th counter is not changed during t, or
Zj = ε for all aj ∈ Σ if the (i − 2)th counter can be nonempty
before t, or
Zj = ¬aj for all aj ∈ Σ if the (i − 2)th counter must be empty
before t}.

Region 3 and 4 keep track of the values stored in the counters of M by the
help of the rules above. Together with moving the transition symbols 〈t〉a, for
some a ∈ Σ, they import and export the symbols originating from the input as
necessary to maintain the correct counter contents, the emptiness of the counters
are checked by the use of the forbidding promoters.

In the case of sequential rule application, the possible inputs are the mul-
tisets containing the elements of Σ in k copies, so we can use the mapping
fseq({{xk}}) = x, x ∈ Σ to map V ◦ to Σ. In the parallel case, the input multi-
sets are of the form xik for some x ∈ Σ, i ≥ 1, so we might use fpar(xik) = x,
for all i ∈ N, to produce the string corresponding to an input sequence.

Now, if M is restricted S(n) space bounded with S(n) = c ·n for a constant c,
then it can be simulated by the P automaton Γ with sequential rule application,
since if k ≥ c + 1, then the number of objects (the bound on the sum of the
counter values) is d(k − 1) + 1 ≥ d · c where d is the number of already read
nonempty multisets. If M is restricted S(n) space bounded with S(n) = cn for
a constant c, then it can be simulated by Γ with parallel rule application, since
if k ≥ 2 · c, then the amount of imported objects during the computation is
sufficient to make sure that in each step the number of available objects which
can be used to keep track of the counter values is cd, where d is the number
of nonempty multisets read. Since restricted S(n) space bounded two-counter
machines are equivalent to restricted log S(n) space bounded one-way Turing
machines, our statement is proved. �

Based on this theorem, we can show that the class of languages accepted by
P automata in the sequential way is strictly included in the class of languages
accepted by logarithmic space bounded one-way Turing machines, that is, in
L(1LOG).

Theorem 2. Lseq(PA) ⊂ L(1LOG).

Proof. To prove our statement we show that L(restricted − 1LOG) is strictly
included in L(1LOG). The inclusion is obvious, so it is enough to show that the
difference of the two classes is nonempty. Consider the language L as defined
above in Section 2. It is clear that L can be accepted by a one-way Turing
machine using logarithmic space: First the initial part, x ∈ {1, . . . , 9}{0, . . . , 9}∗,
of the input is copied to a work-tape then the number of # symbols are checked
against this integer by reading further and decreasing the stored integer by one
in each step.

On the Computational Complexity of P Automata 87

To see that L cannot be accepted by a one-way restricted logarithmic space
bounded Turing machine, suppose that M is such a machine accepting L. With-
out loss of generality, assume that M has only one work-tape. Then there is a
constant c (which only depends on the specification of M) such that for every k,
after reading k input symbols, M uses at most c·log k cells on the work-tape. (All
logarithms are base 10.) Also, the number of possible configurations on a work-
tape of at most c · log k cells (a configuration is a triple consisting of the state,
work-tape contents, work-tape head position) is at most dlog k = klog d ≤ ke for
some constants d and e. Now for any given k, consider the set of all strings of
the form: w#val(w), where |w| = k. Clearly, k ≤ g · log n for some constant g,
where n = |w#val(w)|. Since the machine is one-way restricted logarithmic space
bounded, there exist an n (and therefore k) big enough and two inputs w#val(w)

and w′#val(w′) with |w| = |w′| = k and w 	= w′ for which M will be in the same
configuration after reading w and after reading w′. This is because M can be in
one of at most ke ≤ (g · log n)e configurations after reading a string of length
k. Now there are 10k ≥ h · n strings w whose lengths are k for some positive
constant h. If we choose n big enough, (g · log n)e < h · n. It follows that the
machine when given the string w′#val(w) will also accept. This is a contradiction
since w′#val(w) is not in L. �

It is interesting to look at the closure properties of Lseq(PA) which, as shown
in Theorem 1 is identical to L(restricted − 1LOG).

Theorem 3. Lseq(PA) is closed under union, intersection, concatenation,
Kleene ∗ and +, inverse homomorphism, and ε-free homomorphism. It is not
closed under (unrestricted) homomorphism, reversal, and complementation.

Proof. It is straightforward to verify that Lseq(PA) = L(restricted − 1LOG)
is closed under union, intersection, concatenation, Kleene ∗ and +, inverse ho-
momorphism, and ε-free homomorphism. By using L′ = {xyz | x ∈ {&}+, y ∈
{1, . . . , 9}{0, . . . 9}∗, z ∈ {#}+, |x| = |z| = val(y)}, a variant of the language de-
fined above, it is easy to see that L(restricted−1LOG) is not closed under unre-
stricted homomorphism, since erasing the symbol & produces L from L′. It is also
not closed under reversal since the reverse of L is clearly in L(restricted−1LOG),
but as we have seen, L is not. To see that L(restricted − 1LOG) is not closed
under complementation, consider L̄, the complement of L. L̄ can be accepted
by a one-way Turing machine M ′ using restricted logarithmic space, as follows.
Inputs that do not have the form xy with x ∈ {1, . . . , 9}{0, . . . , 9}∗, y ∈ {#}+

can easily be accepted by M ′. For an input of the form xy, M ′ needs to check
that val(x) 	= |y|. To do this, M ′ scans the segment x using its work-tape as
a counter (in base 10) to record the position of the input head as it scans x.
At some point, nondeterministically chosen, M ′ stops incrementing the counter
and remembers the symbol d under the input head. Note that at this point, the
counter has value log i and d is the i-th symbol of x. M ′ then scans the segment
y while recording the length of y on another work-tape (again use as a counter in
base 10). Let w be the count after processing y. M ′ then checks that the symbol

88 E. Csuhaj-Varjú, O.H. Ibarra, and Gy. Vaszil

in position i of w is not equal to d. Clearly M ′ accepts L̄. Since L is not in
L(restricted− 1LOG), it follows that L(restricted− 1LOG) is not closed under
complementation. �

Now consider the deterministic version of a one-way restricted logarithmic space
bounded Turing machine. It is easy to show that L(restricted−1DLOG) is closed
under complementation. Hence, from Theorem 2 we have L(restricted−1LOG)−
L(restricted − 1DLOG) 	= ∅. This is an interesting example of nondeterminism
being better than determinism for a restricted type of space-bounded Turing
machine.

Unlike in the case of the logarithmic space bound, the restricted use of linear
space does not influence the power of a linear space bounded Turing machine.
To see this, consider the machine which first copies its input to an additional
work-tape, then works with it as with the input tape, and with the rest of its
work-tapes exactly as before. This machine uses restricted linear space, and
it clearly accepts the same set of input words as before. Thus, since linearly
bounded Turing machines characterize the class of context-sensitive languages,
we have:

Theorem 4. Lpar(PA) = L(1LIN) = L(CS).

References

1. Csuhaj-Varjú, E., Vaszil, Gy.: P Automata. In: Păun, Gh., Zandron, C. (eds.): Pre-
Proceedings of the Workshop on Membrane Computing WMC-CdeA 2002, Curtea
de Argeş, Romania, August 19-23, 2002. Pub. No. 1 of MolCoNet-IST-2001-32008
(2002) 177-192, and also in
Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing.
Lecture Notes in Computer Science, Vol. 2597. Springer, Berlin (2003) 219-233

2. Fischer, P. C.: Turing Machines with Restricted Memory Access. Information and
Control 9 (1966) 364-379

3. Freund, R., Mart́ın-Vide, C., Obtu�lowicz, A., Păun, Gh.: On Three Classes of
Automata-like P Systems. In: Ésik, Z., Fülöp, Z. (eds.): Developments in Lan-
guage Theory. 7th International Conference, DLT 2003, Szeged, Hungary, July
2003. Proceedings. Lecture Notes in Computer Science, Vol. 2710. Springer, Berlin
(2003) 292-303

4. Freund, R., Oswald, M.: A Short Note on Analysing P Systems. Bulletin of the
EATCS 78 (October 2002) 231-236

5. Ibarra, O. H.: On the Computational Complexity of Membrane Systems. To appear
in Theoretical Computer Science C

6. Ibarra, O. H.: The Number of Membranes Matters. In: Alhazov, A., Mart́ın-Vide,
C., Păun, Gh. (eds.): Workshop on Membrane Computing, WMC-2003, Tarragona,
July 17-22, 2003. Technical Report 28/03 of the Research Group on Mathematical
Linguistics, Rovira i Virgili University, Tarragona, Spain (2003) 273-285

7. Madhu, M., Krithivasan, K.: On a Class of P Automata. Submitted
8. Mart́ın-Vide, C., Păun, A., Păun, Gh.: On the Power of P Systems with Symport

Rules. Journal of Universal Computer Science 8(2) (2002) 317-331

On the Computational Complexity of P Automata 89

9. Păun, A., Păun, Gh.: The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computing 20(3) (2002) 295-306

10. Păun, Gh.: Computing with Membranes: An Introduction. Springer, Berlin, (2002)
11. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer-

Verlag, Berlin, vol. 1-3, (1997)

	Introduction
	Definitions
	The Power of P Automata
	References

