
Computing Beyond the Turing Limit
Using the H Systems

Cezar Câmpeanu1,� and Andrei Păun2,�

1 Department of Computer Science and Information Technology,
University of Prince Edward Island,

Charlottetown, P.E.I., Canada C1A 4P3
ccampeanu@upei.ca

2 Department of Computer Science,
College of Engineering and Science,

Louisiana Tech University, Ruston, P.O. Box 10348,
Louisiana, LA-71272 USA

apaun@latech.edu

Abstract. We introduce a new variant of the heavily studied model of
H systems. The new variant will use an external factor to determine the
set of the active splicing rules. We improve the best known universality
result for time-varying H systems with respect to the diameter of such
a system and we prove that if the function recording the behavior of
the external factor is uncomputable so is the newly defined model, thus
exceeding the Turing barrier. We also construct an universal system that
is also more powerful than the Turing Machines.

1 Introduction

For more than half a century the Turing machine model of computation was used
to define what it means to “compute” or ‘to be “computable”, notions which are
the foundations of the modern theory of computing. In the last few years several
researchers have started to look “beyond Turing”, i.e., trying to find models of
computation that would be able to compute more than a Turing machine (see
[1], [3], [4], [15]). This is a very important endeavor, since it means that once
such model finds its implementation we would have a computer more powerful
than any silicon computer as we know them today. One might argue that this
is not possible, and we would like to point out that the speed of our current
computers is many times higher than the speed of the biological systems (our
brain, as an example), and still we can perform much better/accurate pattern
matching than computers.

This observation was the starting point of our work and we will present a
model that is capable to compute non-Turing computable languages. The pro-

� The first author is supported by NSERC grant UPEI-600089 and the second author
is supported by a LATECH-CenIT grant.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 24–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Computing Beyond the Turing Limit Using the H Systems 25

posed model is based on the H systems theory, but it will also take in consider-
ation the environment of the system (an idea borrowed from the P systems in
which the environment plays a vital role in the computation). None of the mod-
els known so far in the area of H systems try to deal with the computing power
over Turing computability, therefore, we think it is of real interest to design a
system able to compute languages beyond Turing’s limit in this framework.

The reason for doing so is that in real life we can see that many phenom-
ena cannot be explained, mostly because real life systems are not isolated, but
they interact with the outside world. Temperature, light, radiation, or simply
substance contamination can influence the chemical reactions necessary to re-
combine DNA strands. An uncontrolled chemical reaction may happen in a nor-
mal body when cancerous cells may develop. This kind of reactions are mostly
dependent on external factors. For example, to keep a temperature constant is
a very difficult task for real life systems, since they need very good insulation.
Variation of temperature can speed up or slow down chemical reactions and
sometimes temperature can behave like an activator/inhibitor for some reac-
tions. Therefore, it is natural to consider systems where an external factor like
temperature can influence DNA splicing.

For an H-system this means we have to add a function τ depending on
time, and this function will decide what sets of splicing rules can or cannot
be applied at some moment. Hence, the appropriate model for simulating this
behavior is a time varying H system where the rules are not applied periodi-
cally, but depending on the external conditions, i.e., depending on the value of
function τ . Without restricting the generality, we can consider τ as a function
from IN to {1, . . . , n}, where n is the number of sets of rules that can be acti-
vated/deactivated. So, at the moment t, we can consider that only the τ(t) set
of rules can be used.

Hence, we have a new model of τ -time varying H systems. Some natural
questions will arise:

1. Can this model be universal? In other words, can we reach the computational
power of Turing Machines or other equivalent devices?

2. Is the power of this systems limited to Turing machines? Is the function τ
able to add more power to these machines?

In this paper we prove that we can construct an universal system influenced
by the temperature and moreover, the computational power will exceed the one
of Turing machines in the case that τ is an uncomputable function.

We also improve the best known result for the “usual” time-varying H systems
in terms of their diameter/radius of their splicing rules in an effort to bring these
systems more closely to an actual implementation. The diameter of the splicing
rules is important since the restriction enzymes (that are modeled by a splicing
rule) recognize usually small sites on the DNA strand; having arbitrary alphabets
in our systems means actually that groups of nucleotides would have to codify
one single letter. So, it is clear that there is a significant difference between
splicing rules of diameter (3,2,2,2) and (4,5,4,4). Assuming that the alphabet of
the system is 10 letters long, then each letter has to be codified with at least 2

26 C. Câmpeanu and A. Păun

nucleotides, making the site recognized by the restriction enzyme modeling the
first half of the splicing rule of size 10 for diameter (3,2,2,2) or 18 for diameter
(4,5,4,4).

2 Definitions

Let V be an alphabet and #, $ two symbols not in V . A splicing rule over V is
a string of the form r = u1#u2$u3#u4, where u1, u2, u3, u4 ∈ V ∗ (V ∗ is the free
monoid generated by V ; the empty string is denoted by λ; for formal language
details we refer to [14]).

For x, y, w, z ∈ V ∗ and r as above, we write

(x, y) �r (w, z) if and only if x = x1u1u2x2, y = y1u3u4y2,

w = x1u1u4y2, z = y1u3u2x2,

for some x1, x2, y1, y2 ∈ V ∗.

A pair σ = (V,R), where V is an alphabet and R is a set of splicing rules, is
called an H scheme.

For an H scheme σ = (V,R) and a language L ⊆ V ∗, we define:

σ(L) = {w ∈ V ∗ | (x, y) �r (w, z) or (x, y) �r (z, w), for some x, y ∈ L, r ∈ R}.
A periodically time-varying H system (of degree n, n ≥ 1) is a construct

Γ = (V, T,A,R1, R2, . . . , Rn),

where V is an alphabet, T ⊆ V (terminal alphabet), A is a finite subset of V ∗

(axioms), and Ri are finite sets of splicing rules over V, 1 ≤ i ≤ n.
Each set Ri, 1 ≤ i ≤ n, is called a component of Γ .
At each moment k = n · j + i, j ≥ 0, 1 ≤ i ≤ n, the component Ri is used for

splicing the currently available strings. Formally, we define

L0 = A, Lk = σi(Lk−1), for i ≡ k(mod n), k ≥ 1, where σi = (V,Ri), 1 ≤ i ≤ n.

The language generated by Γ is defined by L(Γ) = (
⋃

k≥0 Lk) ∩ T ∗.
One of the aims of this paper is to consider a precise estimation of the size of

the splicing rules in a time-varying H system, in the sense of [12]. Namely, for a
system Γ = (V, T,A,R1, R2, . . . , Rn) we define dia(Γ) = (n1, n2, n3, n4), where
ni = max{|ui| | u1#u2$u3#u4 ∈ Rj , 1 ≤ j ≤ n}, 1 ≤ i ≤ 4. We say that dia(Γ)
is the diameter of Γ .

The family of languages generated by time-varying H systems with at most
n components having the diameter less than or equal to (n1, n2, n3, n4), ni ≥ 0,
1 ≤ i ≤ 4, is denoted by TV Hn(n1, n2, n3, n4) (the vector ordering is the natural
componentwise one). The family of languages generated by time-varying H sys-
tems with at most n components, n ≥ 1, and of an arbitrary diameter is denoted
by TV Hn. By RE we denote the family of recursively enumerable languages (for
definitions and properties of the RE sets, see [5]).

Computing Beyond the Turing Limit Using the H Systems 27

As we have already mentioned, we consider an external factor recorded by
a function τ that will influence the work of the system. Without loosing the
generality, we may assume that this external factor is the temperature. We will
consider in the current paper a new variant of the H systems, namely time-
varying H systems with temperature; we assume that in the system there are
n sets of splicing rules, each set being activated/deactivated by the temper-
ature of the environment. To model the temperature activation/deactivation,
we will associate with each such system a number from [0,1] written in base
n. The number’s representation will be 0.n1n2n3..., where 0 ≤ n1, n2, n3, ... ≤
n − 1 and will signify that at moment i the active rules are the ones from
Rni+1.

In the following we will study the generating power of this model.
We will consider several cases:

a) the temperature is constant (only one group of rules is continuously acti-
vated, e.g., 0.44444444. . .);

b) after finitely many steps the temperature becomes constant (there will be
several steps when the temperature varies, but after some moment the temper-
ature remains the same, e.g., 0.12543621542222222222222. . .);

c) the temperature is periodic (e.g., there is a smallest “period” through which
the temperature varies, and then becomes as before, e.g., 0.12341234123412. . .);

d) after a while the temperature is periodic,
e.g., 0.43726488472987659876598765. . . ;

e) the temperature has no period, but it is computable,
e.g.,Π−3=0.14159265358979323846264338327950288419716939937510582097. . . .

We will prove now that in the cases a) through e) one cannot go beyond Turing
limit. It was proved that TV H1 = RE in [8], thus there is a TM that will simulate
the work of each possible H system. One can construct for each of the cases a)
through e) a Turing machine that generates each of those temperatures (each of
these cases has the temperature codified as a computable number, so there is for
each of them a Turing machine to generate it). One can easily construct now a
Turing machine that has as input the codification of the H system and also the
codification of the Turing machine generating the temperature and simulate the
work of the two machines.
Let us introduce now the interesting case which will be studied in the Section 4:

f) the temperature has no period and it is an uncomputable number;
example: Chaitin’s Ω constant (see, for example, [2]).

Since temperature is an unknown variable, τ varying in time it can be rep-
resented as a function on IN with values in IN ∩ [0, n − 1]. Therefore, τ behaves
like an oracle allowing rules Rτ(t) to be applied at moment t.

The family of languages generated by temperature time-varying H systems
with at most n components, where n is greater than one, is denoted by τ −
TTV Hn. By τ − RE we denote the family of τ -recursively enumerable lan-
guages [5].

28 C. Câmpeanu and A. Păun

3 Universality Results

In [13] (Theorem 10.8) it is proved that RE = TV Hn, for all n ≥ 7. From
the proof, one can see that, in fact, we have RE = TV H7(2, 3, 2, 3). This
was improved in both the number of components and the diameter in [11]:
TV Hn(2, 1, 1, 1) = TV Hn(1, 2, 1, 1) = TV Hn(1, 1, 2, 1) = TV Hn(1, 1, 1, 2) =
RE, n ≥ 4.. This result is the best one considering only the diameter of the
system. Great effort went into diminishing the number of components in such a
system and recently it was shown that such H systems with only two components
are universal [9], and the current best results (in terms of the number of com-
ponents) is that one component is enough for universality, [10], [8], [7]. The last
two proofs mentioned above have constructions with a diameter of (4,3,4,4) and
(4,5,4,4), respectively. We improve here these results by decreasing the diameter
of an universal time-varying H system to (3,2,2,2), or (2,3,2,2), or (2,2,3,2), or
(2,2,2,3). For our proof we use the universality of type-0 grammars (the previous
two proofs were simulating Turing Machines and Tag systems); we think that
the grammars are a closer model to the H systems than the Turing Machines
and the Tag systems, this being one of the reasons why the diameter could be
reduced significantly with respect to the previous constructions. As a secondary
note, we would like to point out that most of the universality proofs in this area
are simulating grammars, rather than directly the Turing Machines so, other
proof techniques could be combined to the current proof if needed.

First, we give an auxiliary result, which will simplify the subsequent investi-
gations.

Lemma 1. TV Hn(n1, n2, n3, n4) = TV Hn(n3, n4, n1, n2), for all n ≥ 1 and all
ni ≥ 0, 1 ≤ i ≤ 4.

Proof. Consider a time-varying H system Γ = (V, T,A,R1, . . . , Rn) and con-
struct the system Γ ′ = (V, T,A,R′

1, . . . , R
′
n) with

R′
i = {u3#u4$u1#u2 | u1#u2$u3#u4 ∈ Ri}, 1 ≤ i ≤ n.

Because (x, y) �r (w, z) by r = u1#u2$u3#u4 if and only if (y, x) �r′ (z, w) by
r′ = u3#u4$u1#u2, we obtain L(Γ) = L(Γ ′). Clearly, if dia(Γ) = (n1, n2, n3, n4),
then dia(Γ ′) = (n3, n4, n1, n2). �	

We pass now the main result of this section:

Theorem 1. RE = TV H1(3, 2, 2, 2) = TV H1(2, 2, 3, 2).
And also RE = TV H1(2, 3, 2, 2) = TV H1(2, 2, 2, 3).

Proof. Consider a type-0 grammar G = (N,T, S, P) in Kuroda normal form,
that is, with the rules in P of the forms B → x,B → DE,BC → DE, for
B,C,D,E ∈ N , x ∈ T ∪ {λ}.

Let P1 be the set of context-free rules in P and P2 be the set of non-context-
free rules in P . We denote the rules in P1 by j : uj → vj , for 1 ≤ j ≤ m, and the

Computing Beyond the Turing Limit Using the H Systems 29

rules in P2 by j : uj → vj , for m + 1 ≤ j ≤ l. Note that |uj | = 1 for 1 ≤ j ≤ m,
and |uj | = 2 for m + 1 ≤ j ≤ l.

We construct the time-varying H system Γ = (V, T,A,R1), with

V = N ∪ T ∪ {X,Y, F, Z} ∪ {Xi, Yi | 1 ≤ i ≤ l},
A = {XSY,ZF} ∪ {XixYi | 1 ≤ i ≤ m, i : B → x ∈ P1, x ∈ T}

∪ {XixYi | 1 ≤ i ≤ m, i : B → DE ∈ P1,D,E ∈ N}
∪ {XiDEYi | m + 1 ≤ i ≤ l, i : BC → DE ∈ P2,D,E ∈ N},

R1 = {α1#Bα2$Xi#xYi, α1x#Yi$XiB#α2 | i : B→x ∈P1, α1 ∈ N ∪ T∪{X},
α2 ∈ N ∪ T ∪ {Y }, B ∈ N, x ∈ T ∪ {λ}}

∪ {α1#Bα2$Xi#DE, α1DE#Yi$XiB#α2 | i : B → DE ∈ P1,

α1 ∈ N ∪ T ∪ {X}, α2 ∈ N ∪ T ∪ {Y }, B,D,E ∈ N}
∪ {α1#BC$Xi#DE, α1DE#Yi$BC#α2 | i : BC → DE ∈ P2,

α1 ∈ N ∪ T ∪ {X}, α2 ∈ N ∪ T ∪ {Y }, B,C,D,E ∈ N}
∪ {Z#F$α#Y, #ZY $X#β, XZY #$α#F | α, β ∈ T} ∪ {Z#F$Z#F}
∪ {Xi#α1$Xi#α1 | 1 ≤ i≤ m, i : B→α1α2, α1∈N ∪ T, α2 ∈N∪{λ}, B∈N}
∪ {Xi#Yi$Xi#Yi | 1 ≤ i ≤ m, i : B → λ, B ∈ N}
∪ {Xi#DE$Xi#DE | m + 1 ≤ i ≤ l, i : BC → DE∈P2, B,C,D,E ∈ N},

One can easily see that Γ has the diameter (3, 2, 2, 2). We will prove in the
following that the constructed time varying H system Γ has the same language
as the grammar G; i.e., L(Γ) = L(G).

We first prove that the time-varying H system is capable of generating all
the words that are generated by the grammar G; i.e., L(G) ⊆ L(Γ). The work
of the system is done in two phases: the first phase is simulating the productions
from the grammar and the second phase is actually producing the word in the
language of L(Γ) by removing the special markers from the current word.

We start with a “main” axiom, XSY , in fact we have only the start symbol
from the grammar G between two special markers X, and Y which mark the
start and the end of the word. We will replace S with other nonterminal and/or
terminal symbols according to the productions in the grammar G. At some point
we choose (nondeterministically) that the current word that appears between X
and Y is terminal, which means that by removing from that word the special
markers X, Y we generate a word in the language of the H system. This is done
by the rules Z#F$α#Y, #ZY $X#β, XZY #$α#F which compose actually
the phase two of our simulation, but let us focus on the first phase, the simulation
of the grammar productions.

The rules from P1 are simulated in the following way: let us assume that
the current sentential form is XwY , where w is a word over N ∪ T and it
contains the symbol B ∈ N for which we have the rule in the grammar G:
k : B → x, x ∈ T ∪ {λ}. We have the axiom XkxYk present initially in the sys-
tem, and because of the rule Xk#x$Xk#x present in the set of rules it is clear

30 C. Câmpeanu and A. Păun

that the aforementioned axiom “survives” through all the steps of the computa-
tion, so it is available for splicing with the main word using the following rule:
rk : α1#Bα2$Xk#xYk. This will produce in one step (Xw1|Bw2Y,Xk|xYk) �rk

(Xw1xYk,XkBw2Y), where w = w1Bw2. At the next step in the computation
we can apply to these two strings the rule r′k : α1x#Yk$XkB#α2, which will pro-
duce (Xw1x|Yk,XkB|w2Y) �r′

k
(Xw1xw2Y,XkBYk). At this moment we have

correctly simulated the rule k : B → x from G producing the word Xw1xw2Y
and the “by-product” XkBYk. The simulation of a rule k : B → DE follows the
same path, the only difference is that in the splicing rules the right marker from
the axiom (Yk) is not appearing, in this way the diameter of the system could
be kept to a low value.

We are now looking at the way the rules from P2 (k : BC → DE) are
simulated. Also this process is done in two steps as before, the first splicing
is using the rule rk : α1#BC$Xk#DE to splice together the main string and
the axiom XkDEYk: (Xw1|BCw2Y,Xk|DEYk) �rk

(Xw1DEYk,XkBCw2Y).
The second splicing is done according to the rule r′k : α1DE#Yk$BC#α2 and
produces the strings Xw1DEw2Y and XkBCYk. It is easy to see now that all
the rules from the grammar G are simulated by the H system in this manner.

The last step of the simulation is to remove the special markers X and
Y from the “main DNA strand” in the system. This is done by the rules:
Z#F$α#Y, #ZY $X#β, XZY #$α#F which first replace Y by an F . After
this, we produce the word ZY , which is able to remove X from the main word
and, then, XZY (that is just produced by the last splicing) is able to remove
also F from the word. In this way we generate a word in the language of the
L(Γ) if all the symbols in the main word are terminal at this moment.

We have shown so far the relation L(G) ⊆ L(Γ), let us now prove the converse
inclusion. We will show that the H system produces no other words than those
generated by G. First we look at the rules used to keep the axioms in the system
and let them “survive” through all the steps of the computation:

{Z#F$Z#F}
∪ {Xi#α1$Xi#α1 | 1 ≤ i ≤ m, i :B→α1α2, α1 ∈ N ∪ T, α2 ∈ N∪{λ}, B∈N}
∪ {Xi#Yi$Xi#Yi | 1 ≤ i ≤ m, i : B → λ, B ∈ N}
∪ {Xi#DE$Xi#DE | m + 1 ≤ i ≤ l, i : BC → DE ∈ P2, B,C,D,E ∈ N}.

It is easy to notice that from their specific form all these rules can only be applied
to the axioms of the system. This is due to the fact that Xi is always the first
letter of a word in the system, and in axioms it precedes the symbol(s) that will
replace the nonterminal(s) (according to the rules in G). In all other instances
words that Xi appears, it will be followed by the symbol(s) replaced by the rule
i from the grammar. This is due the fact that the simulation of such a rewriting
rule first cuts after Xk and before the symbol(s) to be rewritten. Following this
discussion it is clear now that these rules mentioned above will not produce
anything “bad”. Another group of rules can be shown that is only leading to
terminal configurations only if the rules are applied in the preestablished order:
Z#F$α#Y, #ZY $X#β, XZY #$α#F . If we replace the Y with a F in the

Computing Beyond the Turing Limit Using the H Systems 31

main word, then at the next step we have to use the rule #ZY $X#β, otherwise
the word ZY will not survive to the next configuration of the system, since
no other splicing rule can be applied to it, and then X and F will never be
removed (they need the words ZY and XZY respectively), which means that,
in this case, we will not reach a terminal configuration. One can notice that the
removal of X and Y can happen “early” in the simulation, and if we reach a
terminal string, then that terminal string will also be reached in the grammar,
on the other hand, this could lead to the blocking of the simulation, not leading
to any “output”, so in this case nothing new can be produced.

We will discuss now the case when the simulation of a rewriting rule from G
(that should take two steps for all types of rules from G) is interrupted after the
first step and the simulation of yet another rule continues after that. In this case
we would have after the first step two words of the form: Xw1Yk and Xkw2Y ,
k being the rule simulated. At this moment, two more rules could start to be
simulated; k′ in the first word and k′′ in the second word, leading to four words
now: Xw′

1Yk′ , Yk′w′′
1Yk, Xkw′

2Yk′′ and Xk′′w′′
2Y . Now,we can continue “breaking-

apart” the main word or just finish the simulation of the rules k′, k′′. If we chose
to finish the simulation, then at the next step we would have two words that
could finish the simulation of the original rule k and nothing new is produced.
One might notice that if only one “half” is simulating a rule and the other
part cannot simulate any rules, then that particular string cannot use any other
splicing rule, thus disappearing from the system. This will lead to the fact that
the simulation of the production cannot complete, thus no terminal configuration
will be reached due to the special markers Xk, Yk present in the string and which
cannot be removed from now on. This concludes our justification since we showed
that no splicing rule can lead to a terminal configuration that would produce a
word not in L(G).

The equality RE = TV H1(2, 2, 3, 2) follows directly from the Lemma 1.
The second equality mentioned in the theorem: RE = TV H1(2, 3, 2, 2) re-

quires its own construction. We will give only the basic idea of the construction
and leave the details to the reader:

We have to cut after the symbol(s) to be simulated: for a rule i : BC → DE
we would have the splicing rules BC#α1$DE#Yi and α1#BCYi$Xi#DE. The
other rules are simulated in a similar way; the other modification to the previous
construction is the removing of X, Y which should be performed in a reversed
order: first replace X with T and then remove Y , finishing by removing T . The
equality RE = TV H1(2, 2, 2, 3) also follows from Lemma 1. �	

4 Computation Beyond the Turing Limit with H
Systems

We now proceed to study the power of the new model introduced in this paper:
the temperature controlled time-varying H systems. We will start by first noticing
that these systems are universal: consider that all the components in a system
contain the same set of rules, then the temperature makes no difference in the

32 C. Câmpeanu and A. Păun

computation of the system, so they are equivalent in power to the time-varying H
systems. Moreover, since we showed in the previous section that the time-varying
H systems are universal, it follows that the temperature controlled time-varying
H systems are able to generate all RE languages. In the following we show that if
the temperature is an uncountable number (τ), then the time-varying H systems
controlled by the temperature τ are able to generate non-RE languages.

Theorem 2. For τ an uncountable number, ∃Γ ∈ τ − TTV H2 such that L(Γ)
∈ RE.

Proof. The theorem states that a time-varying H systems with temperature τ is
more powerful than Turing Machines if the temperature is an uncountable num-
ber. We can consider a time-varying H systems with temperature that has only
two components and the temperature is measured with respect to a threshold
(if the temperature is below the threshold, the set 1 is activated, if not, the set
two is activated). If this number written in base 2 is not calculable, then we will
show that there is a τ -H system to compute a language not in RE.

We construct the time-varying τ -H system with temperature Γ = (V, T,A,R1,
R2), with

V = {X,Y,Z,B} ∪ T, where T = {0, 1}
A = {BX,Z0X,Z1X,Y Y },

R1 = {B#X$Z#0X, α1α2#X$Z#0X | α1 ∈ {0, 1, B}, α2 ∈ T} ∪ Q,

R2 = {B#X$Z#1X, α1α2#X$Z#1X | α1 ∈ {0, 1, B}, α2 ∈ T} ∪ Q,

where
Q ={Z0#X$Z0#X, Z1#X$Z1#X,Y #Y $Y #Y}∪{B#α1$#Y Y |α1∈T}.

The work of this system is basically to copy the temperature into the generated
word; if the temperature activates the set 1, then at that step a “0” is appended
to the current string generated by the system if the set 2 was activated, then a
“1” is appended. We can also choose nondeterministically to stop the work of
the machine by deleting the nonterminal symbol B and, thus, produce a word
in L(Γ). It is clear now that the language generated is a sequence of words that
approximate the temperature by 1, 2, 3... letters, but since the temperature was
assumed uncomputable, then also this language is uncomputable, which means
that this simple time varying H system generated a language that is not in RE
with the help of the temperature. �	

In the following we will give a sketch of the construction of a universal time-
varying H system that also goes beyond Turing:

Theorem 3. τ − TTV H = τ − RE

Proof. We will show that we can simulate the work of the oracle Turing ma-
chines1 with such a temperature controlled time-varying H system. The oracle

1 for more information on oracle Turing Machines and their states q?, qY , qN , and/or
τ − RE we refer the reader to any of the many good Theory of Computation hand-
books; a good starting point is also [5].

Computing Beyond the Turing Limit Using the H Systems 33

in the Turing machine is assumed the same as the temperature τ . One can sim-
ulate the work of the Turing machine with the time-varying H system, see for
example the construction from [8]. The only part of the Turing machine that
needs to be considered is the actual oracle and the states that “deal” with the
oracle: q?, qY , qN . To do this, one needs to “copy” the temperature into a
word in the system (Theorem 2 did exactly this), then read (and erase) the first
symbol in the word that “remembers” the temperature and move in the cor-
responding state qY or qN in the simulated Turing Machine. The temperature
could be recorded using the symbols qY and qN and to start the word record-
ing the temperature with an arbitrary number of q?. A sequence of two splicing
rules would splice the current configuration word in the Turing machine with the
temperature string and replace the q? with the first symbol in the temperature
string, making thus the choice of the oracle. A more delicate matter would re-
quire to have the temperature copied in two half strings; the first half being used
to simulate the oracle and the second half to just copy the temperature into the
string. When the first half is exhausted, one could create a new second half and
transform the old second half into a new first half. Due to space restrictions, we
will leave the remaining details of the construction to the reader. �	

5 Final Remarks

In this paper we prove that real life systems, such as H systems can be more pow-
erful than classical computers in terms of computational complexity, our model
being able to simulate Turing machines with oracles. Moreover, the descriptional
complexity of our model is the best among all types of time varying H systems.

As future research we would like to continue our investigation for universal
H systems with even smaller diameter, and try to apply the idea of the diam-
eter to the time-controlled H systems. It could also be interesting to look at
these temperature time-varying H systems as acceptors: we are given an infinite
“word” codified as temperature and such a machinery is accepting/rejecting the
(temperature)word according to some final state conditions (a state i could be
considered final if the number of different DNA strands present in the system is
increased (or did not decrease) from the last time that particular set of rules i
was applied, etc.). And then, after having such a definition for the final states,
one could use different types of accepting methods for infinite words, such as
Büchi, Muller, etc.

References

1. C.S. Calude, Gh. Păun, Bio-Steps Beyond Turing, CDMTCS Tech. Rep No 226,
2003, 1–28.

2. G. J. Chaitin, Information, Randomness and Incompleteness, Papers on Algorith-
mic Information Theory, World Scientific, Singapore, 1987 (2nd ed., 1990).

3. B.J. Copeland, Hypercomputation, Minds and Machines, 12, 4 (2002), 461–502.
4. J.-P. Delahaye, La barrière de Turing, Pour la Science, 312 October (2003), 90–95.

34 C. Câmpeanu and A. Păun

5. J.E. Hopcroft and J.D. Ullman,Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, Reading, 1979.

6. T. Head, Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors, Bull. Math. Biology, 49 (1987), 737 – 759.

7. M. Margenstern, Y. Rogozhin, Time-Varying Distributed H Systems of Degree 1
Generate All Recursively Enumerable Languages, Proc. of Workshop on Membrane
Computing (WMC-CdeA 2001), Curtea-de-Argeş, România, 2001, 199–207

8. M. Margenstern, Y. Rogozhin, A Universal Time-Varying Distributed H System
of Degree 1, Proc. of 7th Intern. Meeting on DNA Based Computers (DNA7) (N.
Jonoska, N.C. Seeman, eds.), Tampa, Florida, USA, 2001 and Lecture Notes in
Computer Science 2340, (N. Jonoska, N.C. Seeman, eds.), Berlin, (2002), 371–380

9. M. Margenstern, Y. Rogozhin, An universal time-varying distributed H system of
degree 2, Preliminary Proc. of Fourth Intern. Meeting on DNA Based Computers,
Pennsylvania Univ., June 1998, 83 – 84.

10. M. Margenstern, Y. Rogozhin, S. Verlan, Time-Varying Distributed H Systems
with Parallel Computations: The Problem Is Solved, Lecture Notes in Computer
Science 2943, (G. Goss, J. Hartmanis, and J. van Leeuwen eds.), Berlin, (2004),
48–53

11. A. Păun, On Time-varying H Systems, Bulletin of the EATCS, 67 (1999), 157–164
12. A. Păun, On controlled extended H systems of small radius, Fundamenta Infor-

maticae, 31, 2 (1997), 185 – 193.
13. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing

Paradigms, Springer-Verlag, Heidelberg, 1998.
14. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Springer-Verlag,

Heidelberg, 1997.
15. C. Teuscher, M. Sipper. Hypercomputation: Hyper or computation?, Communica-

tions ACM, 45, 8 (2002), 23–24.

	Introduction
	Definitions
	Universality Results
	Computation Beyond the Turing Limit with H Systems
	Final Remarks
	References

