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Abstract. In this paper, we look at extended splicing systems (i.e., H
systems) in order to find how small such a system can be in order to
generate a recursively enumerable language.

It turns out that starting from a Turing machine M with alphabet A
and finite set of states Q which generates a given recursively enumerable
language L, we need around 2×|I|+2 rules in order to define an extended
H system H which generates L, where I is the set of instructions of Turing
machine M . Next, coding the states of Q and the non-terminal symbols
of L, we obtain an extended H system H1 which generates L using |A|+2
symbols. At last, by encoding the alphabet, we obtain a splicing system
U which generates a universal recursively enumerable set using only two
letters.
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1 Introduction

Splicing systems are one of the broadest concepts of DNA computing, and so
many papers deal with various aspects of what is possible to do with splicing
systems that we cannot quote all of them, see [11].

Let us say simply that in most papers, the construction of the language which
is computed by the splicing system is the same as considered in [11]. For this ap-
proach, let L be a language and denote by σ̃(L) the result of the application of the
rules of a splicing system S to L. The language which is produced by S is given
by ∪

i∈IN
Li, where L0 = A, the set of axioms, and language Li+1 is defined by: (∗)

Li+1 = σ̃i+1(L) = σ̃i(L)∪σ̃σ̃i(L). This is the case, for instance, in [3, 4, 2], where
the question is also approached through multiplicities. In such splicing systems,
each generation contains all the information of the previous generations.

In [5], we defined another approach: we do not assume that the elements of
a generation survive to the next generation. Our approach can be formalised by
the following scheme:
(∗∗) σi+1(L) = σσi(L).
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We consider finite sets of axioms and finite sets of rules. For the processing
operation (∗), it was proved by Culik and Harju, [1] (see also Pixton, [12])
that the generated splicing system is regular. For the nonpreserving opera-
tion (∗∗), we show that all recursively enumerable languages can be
generated.

This result means that the nonpreserving operation introduce some control
on the process which explains the possibility of universal computations. This
results is to be compared with other results on extensions of splicing systems
where various means of control are introduced, in particular, by elimination of
molecules which cannot enter a rule, see for instance [8, 9, 15] with time-varying
distributed systems and especially for [9] which is the closest to our definition
but not exactly the same.

In the first section, we remind the definitions about splicing systems and we
give the definition of our approach.

In the second section, we remind our universality results of [5] and we give a
method in order to obtain a rather small splicing systems which can generate
any recursively enumerable language.

2 Splicing Systems and Turing Machine Simulations

A splicing system S is a triple (Σ,A,R), where Σ is a finite alphabet, A is a
finite set of words called axioms and R is a finite set of rules which we presently
define.

A rule of S is given by four words in Σ∗, say (u1, u2u3, u4) which we shall
display as follows:

u1 u2

u3 u4

In the literature, the same rule is also often displayed as u1#u2$u3#u4.
The application of a rule to a pair of words (w1, w2) can be defined as follows:

- if w1 contains an occurrence of u1u2, say w1 = x1u1u2y1, and w2

contains an occurrence of u3u4, say w2 = x2u3u4y2, then rule u1#u2$u3#u4

applies to (w1, w2) and the result of the application is (x1u1u4y2, x2u3u2y1).
This application can be denoted by:

x1u1 u2y1

x2u3 u4y2

�r

{

x1u1u4y2
x2u3u2y1

- if w1 does not contain u1u2 or if w2 does not contain u3u4, then we
say that rule u1#u2$u3#u4 does not apply to (w1, w2).

When rule r applies to (w1, w2) with (y, z) as a result, we denote this by
(w1, w2) �r (y, z).

The language generated by S which we denote by L(S) is defined as fol-
lows:
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L(S) = ∪
n∈IN

σn(A)

where σ0(A) = A and
σ(M) = {w ; ∃w1, w2, z ∈ M,∃r ∈ R(w1, w2) �r (w, z) or (w1, w2) �r (z, w) },
with M running over σn(A), compare with (∗∗).

We also consider extended splicing systems.
They are obtained by changing the alphabet and the definition of the gener-

ated language in the following way. Now, we consider that Σ = T ∪N , where T
is called terminal alphabet and N is called the set of non-terminal sym-
bols and the system itself, say E , is denoted by (T,N,A,R). Also, the language
generated by E is defined by L(E) = L(S) ∩ T ∗, where S = (T ∪ N,A,R).

As indicated with full details in [5], extended splicing systems can simulate
deterministic Turing machines with a single head and a single bi-infinite tape.

The idea of the simulation is that going from a current configuration to the
next one in the computation of Turing machine is a local transformation of
the current configuration. As splicing is also local to the sites where the rule
operates, we may expect to represent one step of the computation of a Turing
machine by the application of a splicing rule.

This is the case and our report [5] gives an explicit set of rules for that
purpose.

We have just to mention a point which is connected with the simulation within
finite strings of a Turing configuration which is a finite part of the infinite tape.

This means that the treatment of the ends of a word is different for Turing
machines and splicing systems. We solved this problem by introducing a special
marker which indicates the ends of the Turing configuration. When the signal
which simulates the Turing machine head meats the marker, it removes it by one
square further, putting in its place a blank. This is not difficult to implement in
splicing rules, see [5].

In [5], we proved the following result:

Theorem 1. For any RE language M, there is an extended splicing system E
such that L(E) = M.

Using the schemes for splicing rules introduced in [5], we could prove that:

Corollary 1. Let M be an RE language on {a, b} which is simulated by a Turing
machine M with k instructions. There is a splicing system having 2k + 32 rules
which generates M.

Also, using a coding of the alphabet of the recursively enumerable set by only
two letters, we obtained in [5]:

Corollary 2. For each RE language M ⊆ Γ ∗, there is a non-extended splicing
system S and a coding c : Γ ∗ �→ {0, 1}∗ such that

M = c−1
(

L(S)
)



152 T. Harju and M. Margenstern

3 Universality Results

From theorem 1 we know that for each RE language, we can construct an ex-
tended splicing system which generates it.

In [5], we proved that there is a uniform way to do this by using universal
Turing machines:

Theorem 2. There is an extended splicing system E = (T,N,A,R) and an
encoding c over T ∗ such that for any RE M, there is a word wM such that the
new system E ′ = (T,N,A ∪ {wM}, R) generates c−1(M).

The idea of the proof is to simulate a universal Turing machine U and wM
is a suitable encoding of a Turing machine M which generates M.

We shall follow the same idea in a somehow more sophisticated pattern in
order to find an extended system which generates recursively enumerable lan-
guages with a small number of rules.

In the late fifties and early sixties of the previous century, there was a race to
find the smallest universal Turing machines. A long pause was put on this race
by the results of Yurii Rogozhin who, in 1982, devised seven very small universal
Turing machines, see [13, 14]. From these machines, we take the one which has
seven states and four symbols. It is usually denoted by UMT (7, 4).

These machines simulate tag systems which are proved to be universal, see
[10]. Tag-systems are defined as follows. We have an alphabet A, a positive num-
ber p and a mapping ai �→ Pi from A into A∗, Pi’s being called the productions.

One step of computation is defined by the following process where w is the
current word:

let ai be the first letter of w;
erase first p letters of w, and let w′ be what remains;
append Pi to w′.

The computation starts again with w′Pi as the new current word. It halts by
meeting a halting letter in first position. We may assume that there is a single
halting letter and we denote it by !.

As an example, consider tag-system P on {a,b,c} with current word bbb:
P :
a −→ b
b −→ bc
c −→ !

applied to bbb:
bb|b

|bb|c
| |c !

The general scheme for p = 2 can be simulated as follows:
ai↓

↑
Pi

As Minsky showed in 1962 that tag-systems can simulate Turing machines,
and as tag-systems can be easily simulated by Turing machines, this opened
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the way to very small universal Turing machines. Below, the first seven lines of
Table 1, except the second instruction, are taken from Rogozhin’s UTM(7, 4).

Table 1. Program of machine U ′

0 1 b c

1 L 0L cR 2 bL

2 1R 0L 1 cR 1R 5

3 1L 4 R cR bR

4 1L 7 L cL bL

5 cL 4 R cR bR

6 R 5 0R R 0R 1

7 R 3 R 8 L 6

8 0R R 0R 9

9 cR ! R R

Without entering in the technique of the simulation, in a first stage, the
machine locates the production to be appended to the current word. To do so,
the encoding of the letters in the current word contain as many symbols as
there are markers in the encoding of the productions between the letter and its
production. To give a better idea to the reader, the tape of UTM(7, 4) looks like
this:

10Pn . . . Pi . . . P1P0L1cL2c . . . cLk

where Li = 1Ni with Ni being the number of b’s to be marked between Li and
its corresponding production, and where Pi is a concatenation, in reverse order,
of codes of the letters in the form b00Ni , and Pi itself starts with an additional b.

When production Pi, corresponding to L1 is located, the tape looks like this:

10Pn . . . Pi . . . P1P0L1cL2c . . . cLk
�

where, inside the frame, b’s are replaced by c’s and 0’s by 1’s.
We are interested in the aspect of the tape when the halting letter is the first

one. In that case, the tape looks like this:

10Pn . . . Pi . . . P1P0L1cL2c . . . cLk
�

with the same transformation of the tape as previously in the part of the tape
within the frame. The triangle indicate the position of the head which scans a c
under state 2. Next, the head goes on to the right under state 5 until it meets
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the leftmost 0 which it replaces by a c. Then, the head goes back to the left
under state 4, leaving 1’s unchanged and transforming b’s into c’s and then c’s
into b’s, until the head meets the rightmost 0. It replaces 0 by 1 and goes to the
left under state 7. There it meets a 1, which means that the computation of the
tag system is completed. Table 1 appends instructions to Rogozhin’s UTM(7, 4),
giving us a new machine U ′, in order to restore the encoding of the tag system
and to prepare the collection of a word which belongs to the resulting language.
This is why crossing back the configuration, the head arrives to its right-hand
end where it halts on the leftmost 0.

In terms of extended splicing systems, this means that we arrive to a word
whose right-hand end is of the form qf#. Rules (B1), (B2), (s1) and (s2) allows
us to remove # from the right-hand end of the word and to go leftwards until
the rightmost 0 is met: what is on the right hand of this letter is the word to
append to the language. This is performed by rules similar to rule (C1) with
∗ replaced by 0. We may notice here that as the result of the tag-system has
always at least three symbols, we do not need rule (C2).

At this point, the rôle of rule (I1) is replaced by a much more complicate
process. First, we have to destroy all 0’s which we meet, still going to the left,
until the rightmost occurrence of b is reached. We append a new symbol, d, to
the right hand of b and we start the program of a new Turing machine V . Let
us call T the encoding of the tag-system on the tape: its right-hand end is d and
its left-hand end is 1 as far as in between, there are only 0’s and b’s. The rôle of
V is to put the encoding of the next initial current word on the right hand of T .

Recall that the initial current word corresponds to the encoding of configu-
ration (3). Recall that the tag system to which we apply U ′ does not directly
simulate Turing machine K in the proof of theorem 1. It simulates it through
a register machine R1 with two registers which simulates a register machine R0

with three registers simulating K. The simulation of R0 by R1 entails an expo-
nential slowdown: if the registers of R0 contain non-negative integers x, y and
z, the registers of R1 contain 2x3y5z and 0 at an appropriate step. As the initial
configuration of R0 is x, 0, 0, the initial configuration of R1 is 2x, 0. Now, if we
encode configuration (3) which is essentially n in unary, we get that x = 2n. In
order to avoid a double exponential, we encode n in binary. Accordingly, ma-
chine K must be replaced by a machine K ′ with a two letter alphabet which
does the same as K and in which n is encoded in binary: 0, 1 and ∗ of the tape
of the new machine K are respectively encoded as 10, 11 and 01 and we reserve
00 to encode the blank of K. As 10 cannot be confused with the blank of the
tape of machine K, we use ∗ as a separator. Call ∗ the blank cell which is the
left neighbour of the leftmost 1 on the tape of K ′. We also can assume that K ′

does not go to the left of ast. It is enough to guarantee this for the successor in
the proof of Kleene’s theorem. As there is no difficulty, we leave the easy details
to the reader.

Accordingly, we may assume that x = n. The next value of x will be n+1.
Let u = 2x. This means that the new value of u is 2n+1 = 2.2n.
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Turning now to the tag-system simulation, u, v, the contents of the registers
of R1 are encoded as Aa(aa)uBb(bb)v. We may assume that the current word
which corresponds to configuration (3) is Aa(aa)uBbbb with u = 2n, where A,
a, B and b are fixed letters of the alphabet of the tag system. We may assume
that a, A, b and B are respectively encoded by 1c, 111c, 11c and 1111c.

Summarising all this information, when machine U ′ halts, the initial current
word of the tag-system goes from

111c1c(1c1c)u1111c 11c11c11c
111c1c(1c1c)2u1111c 11c11c11c.

For that purpose, we keep a copy of (1c)u(d1)10 which we put on the left hand
of the encoding T of the tag-system on the tape. We introduce an additional
letter, d, which we use in such a way that during the program of multiplication
by 2, we use motions between two 0’s. Letter d is also used to encode a fixed
part of the initial current word which corresponds to the encoding of A and of
Bbbb.

The installation of the next initial current word is performed by machine V
whose table is displayed by Table 2.

Machine V marks with d the rightmost 0 of T which also indicates its right-
hand end: state 1. Then, it goes to the left-hand end of the configuration, marking
by 1 the 0’s of T : state 2; the motion goes on with state 3 until the leftmost
0 is reached. State 4 is a test for loop (L1) which erases (1c)u while copying it
onto (1c)2u. On state 4, the head of V erases a 1 to meet a c or a d. If it meets
a d, it is the end of (L1). If it is a c, a new round of the copying action is to
be performed. State 5 puts the head to the other end of the configuration, on
the leftmost 0. There, it writes down (1c)2, using the instructions of states 21
up to 23 corresponding to 0. State 23 sends the head to the left. The motion is
controlled by state 6 which halts it on the rightmost 0 which marked a c. When
0 is reached, the head moves by one step to the right and a new test occurs.

When loop (L1) is completed, a new loop, (L2) occurs: it copies (d1)10 on the
left hand of T to (1c)10 at the right-hand end of the configuration. The test of
the loop is performed by state 9, the motion to the right is controlled by state 7,
the motion to the left by state 8. The writing on 0 is made by states 7 and 28.
The latter state calls state 8 which transfers the control to the test of state 9
when the head has performed its motion to the left. The test looks whether it
reads d, in which case a new cycle of copying. If it reads b, the head knows that
this second round of copying is completed. State 11 puts the head on the right-
hand end of the tape and from there, the instructions of states 21 up to 27 scan
1’s and c’s of this end of the tape and they change it such that Bbbb appears
at the end of the encoding. When this is done, state 27 marks with d the first
letter of the encoding of Bbbb which is a 1. Next, state 28 brings back the head
on mark d of the right-hand end of T : the head corrects the tape in such a way
that its beginning encodes A, which is performed by state 29 and with the help
of states 31 and 32, the head marks by d the last letter of the encoding of Aa
which is a c. Then, the head goes on to right in a cycle of copying 1c on the
left hand of T for the computation of the following initial current word. This is
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performed by states 41 up to 44 where state 41 realises the test which controls
the loop. The loop is completed when it meets d under state 41. It then restores
the 1 which was marked by d and the machine goes to the left to the other d
which marks the rightmost c of Aai: state 52. Then, it restores the 0’s which are
with b in T .

The occurrence of d in state 53 indicates that the head is on the left of T and
that it has wrongly changed a 1 into 0. This is corrected by state 54 which also
changes into 1 the leftmost letter of T . The, state 55 brings the head to d where
it restores 0 which should be there and it stops. We can now give the control to
machine U ′.

Table 2 could be made more compact but it would be much more difficult to
understand it.

Table 2. Program of machine V

0 1 b c d

1 dL 2

2 1L L L L 3

3 R 4 L L L

4 0R 0R 5 0R 7

5 1R 21 R R R R

6 R 4 L L L L

7 1R 28 R R R R

8 dR 9 L L L L

9 R R 11 0R 7

11 L 21 R R R R

21 cR 22 L 22 L

22 1R 23 cL 23 1L

23 cL 6 L 24 1L

24 L 25 L

25 cL 26 1L

0 1 b c d

26 L 27 1L

27 dL 28 1L

28 cL 8 L L R 29

29 R 1L 10

31 R R 32

32 R dR 41

41 R 0R 42 1L 51

42 cL 43 L L L L

43 1R 44

44 cR 41 R R R R

51 L L cL 52

52 L L cL 53

53 0L L R 54

54 1R R 0R !

Now, let us count he number of rules which are needed.
Turing machine U ′ has 33 instructions, the halting one included. Machine V has
93 instructions, halting also included. This makes 126 instructions, hence, 252
rules. To detach the word which is computed by the tag system, we need rules
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(B1), (B2), (s1), (s2) and an adaptation of rule (C1) to this setting. As (B2),
(s1), (s2) and (C1) are schemes of rules and as the alphabet has 5 letters, this
gives us 21 rules.

To removing 0’s after detaching the word which is produced, we need rules
similar to (B1) and B(2) which means again 6 rules. We need an additional rule
similar to (I1) to transfer the control to V .

Accordingly, we need 28 rules for tasks on the simulated Turing tape which are
typical for splicing systems and which cannot be performed by Turing machines.
In total, we need 280 rules.

This gives us the following result:

Corollary 3. There is an extended splicing system E = (T,N,A,R) such that
T = {0,1}, such that R contains 280 rules an such that there is an encoding c
over T ∗ such that for any RE M, there is a word wM such that the new system
E ′ = (T,N,A ∪ {wM}, R) generates c−1(M).

4 Conclusion

The last result of the paper points at how low the descriptional complexity of
a universal splicing system can be. Using the well known Turing simulation of
tag systems which allowed to obtain very small universal Turing machines, here,
we obtained a rather small splicing system which is able to generate any recur-
sively enumerable set. We did not completely investigate this aspect. It could
also be of interest to find out how complex are the rules which are involved in
corollary 3.

Also, notice that our result is highly sequential in its spirit, despite the highly
parallel potentiality of the model. We think that this is in connection with our
introductory remark about the sensibility of the computational of splicing sys-
tems with respect to the definition of the generation of the language. The well
known regularity result of extended splicing systems with finitely many axioms
and finitely many rules is also probably connected with the fact that the lack
of control prevents the realisation of highly sequential processes. This relation
between sequentialisation and universality was already noticed in [8, 9, 15]. How-
ever, these papers dealt with several splicing systems and the discussion was
more on the communications between the systems. With the result on universal-
ity which holds also for non-extended splicing systems, we think that the present
paper throws a new light on this connection.
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