
Using Automated Reasoning Systems on
Molecular Computing

Carmen Graciani Dı́az and Mario J. Pérez-Jiménez

Research Group on Natural Computing,
Dpto. Ciencias de la Computación e Inteligencia Artificial,

Universidad de Sevilla (Spain)
{cgdiaz, marper}@us.es

Abstract. This paper is focused on the interplay between automated
reasoning systems (as theoretical and formal devices to study the cor-
rectness of a program) and DNA computing (as practical devices to
handle DNA strands to solve classical hard problems with laboratory
techniques). To illustrate this work we have proven in the PVS proof
checker, the correctness of a program, in a sticker based model for DNA
computation, solving the pairwise disjoint families problem. Also we in-
troduce the formalization of the Floyd–Hoare logic for imperative pro-
grams.

1 Introduction

One of the most active areas of research in Computer Science is the study and use
of formal methods (applications of primarily discrete mathematics to software
engineering problems). Its widely development and the complexity of interesting
problems have given rise to automated reasoning. In this area, one of the main
problems is the correctness [2]: developing specifications and proofs that ensures
a program meets its specification. There is a previous work of formalization:
expressing all definitions, theorems and proofs in a formal language without
semantic ambiguity. This approximation has especial relevance in new computing
paradigms such as the DNA based molecular computing. In many molecular
models the data are tubes over an alphabet whose content encodes a collection of
DNA strands. The operations considered are abstraction of different laboratory
techniques to manipulate DNA strands.

This paper is organized as follows. It begins with a short presentation of
the Prototype Verification System (PVS) and the sticker model. Then, how this
model can be formalized in PVS, is briefly described. Section 4 introduces imper-
ative programs and gives an overview of how we deal with them in PVS. Finally,
as an example, a molecular solution of the pairwise disjoint families problem
and a description of its formal verification obtained with PVS, is presented.
The set of developed theories in PVS for this paper are available on the web at
http://www.cs.us.es/∼cgdiaz/investigacion.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 128–137, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

http://www.cs.us.es/~cgdiaz/investigacion


Using Automated Reasoning Systems on Molecular Computing 129

2 The Prototype Verification System

The Prototype Verification System (PVS) is a proof checker based on higher–
order logic where types have semantics according to Zermelo–Fraenkel set theory
with the axiom of choice [8]. In such a logic we can quantify over functions which
take functions as arguments and return them as values.

Specifications are organized into theories. They can be parameterized with
semantic constructs (constant or types). Also they can import other theories.
A prelude for certain standard theories is preloaded into the system. As an
example we include in figure 1 the PVS theory suc finitas def which provides
an alternative definition (to the type finseq given in the prelude) for sequences
of a given length n for elements of a given type V.

suc_finitas_def[V: TYPE, n: nat]: THEORY

BEGIN

% Finite sequence: S = {sk}k < n+1

SUC_FINITAS: TYPE = [below[n] -> V]

SF: TYPE = SUC_FINITAS

END suc_finitas_def

Fig. 1. A PVS Theory

Before a theory may be used, it must be typechecked. The PVS typechecker
analyzes the theory for semantic consistency and adds semantic information
to the internal representation built by the parser. Since this is an undecidable
process, the checks which cannot be resolved automatically are presented to the
user as assertions called type–correctness conditions.

The PVS prover is goal–oriented. Goals are sequents consisting of antecedents
and consequents, e.g. A1, . . . , An � B1, . . . , Bm. The conjunction of the an-
tecedents should imply the disjunction of consequents, i.e. A1 ∧ · · · ∧ An →
B1 ∨ · · · ∨ Bm. The proof starts with a goal of the form � B, where B is the
theorem to be proved. The user may type proof commands which either prove
the current goal, or result in one or more new goals to prove. In this manner
a proof tree is constructed. The original goal is proved when all leaves of the
proof tree are recognized as true propositions. Basic proof commands can also
be combined into strategies.

3 The Sticker Model: A Description Through PVS

The sticker model used in this paper was introduced by S. Roweis et al. [9] (this
model is completely different from the sticker systems introduced by L. Kari
et al in [6]). It is an abstract model of DNA based molecular computing with
random access memory in the following sense: some operations could modify the
structure of the DNA molecules and so the information codified by them changes
during the execution.



130 C.G. Dı́az and M.J. Pérez-Jiménez

In this model, a memory strand (a single stranded DNA molecule) N bases
in length subdivided into k non–overlapping regions each M bases long is con-
sidered to represent a string of k bits. Each region is identified with exactly one
bit position. Also, k different sticker strands (single stranded DNA molecule)
each of them M bases long and complementary with one and only one of the k
memory regions are considered. If a sticker is annealed to its matching region
then the corresponding bit is on. Otherwise, it is off. A memory strand together
with its associated stickers, if any, is called a memory complex and represent one
bit string. In this sense we consider memory complexes as finite sequence of bits
in PVS:

BITS: TYPE = {on, off}
MEMORY_COMPLEX: TYPE = finseq[BITS]

Associated with this definition we consider the application σ from N into
{on, off} defined as follows (where σi is the i-th element of the bit sequent σ):

σ(i) =

{
σi if i < k

off otherwise

appl(sigma: MEMORY_COMPLEX, i: nat): BITS =

IF i < sigma‘length THEN sigma‘seq(i) ELSE off ENDIF

Within sticker model a tube is a collection of memory complexes representing
a multiset of bit strings. All memory strands (underlying each complex) in a
tube are identical and each one has stickers annealed only at the required bit
positions.

In PVS we consider a general concept: a multiset of memory complexes:

GEN_TUBE: TYPE = MULTISETS[MEMORY_COMPLEX]

Then we restrict this definition to consider tubes containing only memory
complexes of a given length, namely k.

MTUBE: TYPE =

{T: GEN_TUBE | FORALL (sigma: MEMORY_COMPLEX):

ms_in(sigma, T) IMPLIES sigma‘length = k}

The following are the molecular operations on tubes used in the sticker model
and the corresponding implementation in PVS.

– To combine two tubes producing a new one containing all the memory com-
plexes from both tubes.

combine(T1, T2: GEN_TUBE): GEN_TUBE =

LAMBDA (sigma: MEMORY_COMPLEX): T1(sigma) + T2(sigma)



Using Automated Reasoning Systems on Molecular Computing 131

– To separate the content of a tube into two new tubes, one containing all the
memory complexes with a particular sticker annealed (a particular bit on)
and the other all those with that region free (that bit off ).

separate(T: GEN_TUBE, oi: nat): [GEN_TUBE, GEN_TUBE] =

(LAMBDA (sigma: MEMORY_COMPLEX):

IF appl(sigma, oi) = on THEN T(sigma) ELSE 0 ENDIF,

LAMBDA (sigma: MEMORY_COMPLEX):

IF appl(sigma, oi) = off THEN T(sigma) ELSE 0 ENDIF)

– To turn on (set) a particular region annealing the appropriate sticker on
every complex in a tube (turning the corresponding bit to on).

– To turn off (clear) a particular region removing the appropriate sticker, if
any, on every complex in a tube (turning the corresponding bit to off ).
Previously to the implementation of these operations we define the concept
of modifying in a memory complex, σ, a particular bit, i, to b ∈ {on, off}.

σb
i =

{
{σ0, . . . , σi−1, b, σi+1, . . . , σk−1} if i < k

σ otherwise

turn(sigma: MEMORY_COMPLEX, i: nat, b: BITS): MEMORY_COMPLEX =

IF i < sigma‘length

THEN sigma WITH [(seq) := sigma‘seq WITH [(i) := b]]

ELSE sigma ENDIF

From this we consider a general operation that changes, in all memory com-
plexes present in a tube, T, a particular bit, i, to b ∈ {on, off}.

Change(T, i, b) = {{ σb
i | σ ∈ T }}

change(T: GEN_TUBE, i: nat, b: BITS): GEN_TUBE =

LAMBDA (sigma: MEMORY_COMPLEX):

IF i < sigma‘length AND sigma‘seq(i) = b

THEN T(turn(sigma, i, off)) + T(turn(sigma, i, on))

ELSIF i >= sigma‘length THEN T(sigma) ELSE 0 ENDIF

The implementation of the turn operations (set and clear) are as follows:
Set(T, i) = {{ σon

i | σ ∈ T }} Clear(T, i) = {{ σoff
i | σ ∈ T }}

set(T: GEN_TUBE, i: nat): GEN_TUBE = change(T, i, on)

clear(T: GEN_TUBE, i: nat): GEN_TUBE = change(T, i, off)

Also a read operation is considered. This operation determines if a tube is
empty and otherwise selects a complex from the tube and produce the associated
string of bits. To implement it we consider the special memory complex of length
0 as the answer when there is no elements in the tube.



132 C.G. Dı́az and M.J. Pérez-Jiménez

read(T: GEN_TUBE): MEMORY_COMPLEX =

IF EXISTS (gamma: MEMORY_COMPLEX): ms_in(gamma, T)

THEN choose({sigma: MEMORY_COMPLEX | ms_in(sigma, T)})
ELSE empty_seq ENDIF

Usually we express the use of those operations as assignments. For example,
T ←− Combine(T1, T2)

The interpretation of a program in the sticker model as a sequence of such
operations has taken us to consider them as imperative programs.

4 Imperative Programs

Following [3] we consider an imperative program as a sequence, I1 @@ I2 @@
...@@ Ik, of states transformers1. When such a program is executed on an
initial state the first transformer is applied to it, the second is applied to the
state obtained by the previous one and so on. A general work that shows how to
deal in PVS with nontermination and nondeterministic state transformers can
be found in [11].

A state is considered as a finite sequence of data in a given domain (we
introduced the possibility of take a tuple of sequences over different domains to
deal with elements of different nature). To access to the information stored in
a state we have variables. Each variable is associated with a natural number in
a one–to–one manner. The n–variable over a given state takes the value of the
n–th element.

In general, a term is any function, t, that given a state, s ∈ S, produces an
element over a given domain, D. Operations between elements of given domains
are lifted to operations between terms using the function l we describe with
an example. Suppose we have a binary operation op: D1× D2 → R. With l we
obtain a binary operation l(op), that given two terms t1: S → D1 and t2: S
→ D2 produces the term l(op)(t1, t2): S → R where

l(op)(t1, t2)(s) = op(t1(s), t2(s))

This function l is generalized to consider constants. Given c ∈ D, we obtain
the term l(c): S → D such that l(c)(s) = c.

In [5], Hoare introduced the {ϕ} P {ψ} notation to describe the behaviour
of a program P. Those expressions are called specifications of partial correctness
and have the following meaning: If ϕ and ψ are some conditions over states the
specification is true if whenever the program P is executed over a state verifying
ϕ and it halts, then it produces a state verifying ψ. As the considered notion of
program only consider total functions those expressions are, in fact, specifications
of total correctness.

1 In order to save space, we do not include in this section the corresponding PVS
implementations, see [3] and [4] for more details.



Using Automated Reasoning Systems on Molecular Computing 133

To construct a formal proof of a specification of partial correctness we use
the Floyd–Hoare logic, a set of axioms and inference rules. Next we introduce
the ones used to construct the correctness proof in the following section.

– The consequence rule:

ϕ → ϕ′, {ϕ’} S {ψ’}, ψ′ → ψ

{ϕ} S {ψ}

– The assignment instruction, X ←− t (we denote ←− by << in PVS) is a
program that over a state s produces the state s[t(s)/X], resulting from s
after the substitution of the associated value for the variable X by t(s).
The assignment axiom is

{ϕ[t/X]} X ←− t {ϕ}

where ϕ[t/X](s) = ϕ(s[t(s)/X]).
– The compose rule:

{ϕ} S1 {ψ}, {ψ} S2 {φ}
{ϕ} S1 @@ S2 {φ}

– Given a program P, the following form

for X from 0 to t-1 do
P

end for

(we write it loop(X, t, P) for short) has the following meaning
X ←− 0 @@ P @@ ...@@ X ←− t-1 @@ P

The loop rule is

{ϕ ∧ X < t} P {ϕ[X+1/X]}
{ϕ[0/X]} loop(X, t, P) {ϕ[t/X]}

no assignment to X or variables occurring in t is used in P

4.1 First Order Logic

To express conditions over states we consider a first order logic whose set of
terms, TERM, is the inductive closure of the union of the set of variables mentioned
above and the set of lifted constants under the constructors l(op) for every
function op. The set of atomic formulas is the inductive closure of the pair of
sets TERM and {l(p)| p boolean constant}, under the constructors l(op) for
every predicate op.

Previous to the definition of the set of formulas we need the concept of
the state, s[d/X], resulting from a given one, s, after the substitution of the
associated value for a variable X by d. That is, s[d/X] is a state such that for



134 C.G. Dı́az and M.J. Pérez-Jiménez

any other variable different from X it has the same associated value than s and
for X it has d as the associated value.

The set of formulas is the inductive closure of the set of atomic formulas
under the constructors l(∧), l(∨), l(¬), foreach and exists, where
foreach(X, ϕ): S → bool such that foreach(X, ϕ)(s) ≡ ∀ d (ϕ(s[d/X]))

exists(X, ϕ): S → bool such that exists(X, ϕ)(s) ≡ ∃ d (ϕ(s[d/X]))

5 The Pairwise Disjoint Families Problem

Let us consider the following problem:

Let A = {0, ..., p-1}. Let F = {B0, ..., Bq−1} a finite family of subsets
of A. To determine all the ordered pairs (F’,

⋃F’), where F’ is a subfamily
of F and its elements are pairwise disjoint.

To solve this problem in the sticker model we consider as initial tube T0, a
(p+q, q)–library (a tube containing, at least, a copy of any memory complex
with p+q regions and the p last regions deactivated). The first q bits represent a
subfamily of F . Given a memory complex with p+q regions, σ, we consider that
it codifies an ordered pair (Fσ, Aσ), where Fσ is the subfamily {Bj| σ(j) =
on} of F and Aσ is the subset {j| σ(j + q) = on} of A.

Fσ

p

Aσq

Fig. 2. Memory complex with (p+q) regions

The following is a program in the sticker model that solves the pairwise
disjoint families problem (where bi

j is the j-th element of Bi, the i-th subset of
F , and ri is its size; that is, Bi = {bi

0,...,b
i
ri−1} ∈ F).

Note: Each instruction is labeled in order to make references.

Procedure Disjoint
INPUT: A family F of A subsets

I1 for I ←− 0 to q-1 do
L1 (T*, T-) ←− Separate(T, I) @@
L2 for J ←− 0 to rI-1 do
l1 (T+, T’-) ←− Separate(T*, bIJ+q) @@
l2 T* ←− Set(T’-, bIJ+q)

end for @@
L3 T ←− Combine(T*, T-)

end for



Using Automated Reasoning Systems on Molecular Computing 135

The following PVS expression implements the program:

disjoint(F: (FAMILY(p, q))): program =

LET eB = l(elemF(p,q,F)) IN

loop(VI, q,

assig2((VTast, VTn), l(separate)(VT, VI)) @@

loop(VJ, l(tam(p,q,F))(VI),

assig2((VTm, VTnn), l(separate)(VTast, eB(VI, VJ) + l(q))) @@

(VTast << l(set)(VTnn, eB(VI, VJ) + l(q)))) @@

(VT << l(combine)(VTast, VTn)))

assig2(PT: [V1, V1], Pt: [term1, term1]): program =

(PT‘1 << Pt‘1) @@ (PT‘2 << Pt‘2)

In order to stablish the correctness of this program we consider the formula:

ΘF(T) ≡ ∀τ (τ ∈ T → ∀ i1< i2< q (τ(i1) = τ(i2) = on → Bi1∩ Bi2 = ∅))
expressing that the memory complexes of a given tube codifies a subfamily of F
whose elements are pairwise disjoint.

correc_disjoint(F: (FAMILY(p, q)))(T: MTUBE[p + q]): bool =

FORALL (tau: MEMORY_COMPLEX): (ms_in(tau, T) IMPLIES

(FORALL (i1, i2: below[q]):

(appl(tau, i1) = on AND appl(tau, i2) = on AND i1 < i2 IMPLIES

disj(F‘seq(i1), F‘seq(i2)))))

The following specification stablish the correctness of the program (where
library?[p+q](q) is a predicate over tubes characterizing a (p+q, q)–library):

{library?[p+q](q)(T)} disjoint(F) {ΘF(T)}

To prove this specification we will use two formulas θ and δ, that will be
invariants of the main loop (I1) and inner loop (L2), respectively. For these
formulas we prove the following results:

1. library?[p+q](q)(T) → θ[0/I]
2. θ[q/I] → ΘF(T)
3. θ ∧ I < q → δ[0/J][+(T,I)/T*][-(T,I)/T-]
4. δ[rI/J] → θ[I+1/I][T* ∪ T-/T]
5. δ ∧ J < rI →

δ[J+1/J][Set(T’-, bIJ+q)/T*][-(T*, bIJ+q)/T’-][+(T*, bIJ+q)/T+]

From those results and using the appropriate axioms and inference rules from
Floyd–Hoare logic we prove the following specifications:

– {δ*} l1 @@ l2 {δ[J+1/J]} where δ* is the formula
δ[J+1/J][Set(T’-, bIJ+q)/T*][-(T*, bIJ+q)/T’-][+(T*, bIJ+q)/T+]

(using the assignment axiom and the compose rule).



136 C.G. Dı́az and M.J. Pérez-Jiménez

– {δ ∧ J < rI} l1 @@ l2 {δ[J+1/J]} (using 5 and the consequence rule).
– {δ[0/J]} L2 {δ[rI/J]} (using the loop for rule).
– {δ[0/J]} L2 {θ[I+1/I][T* ∪ T-/T]} (using 4 and the consequence rule).
– {δ[0/j][+(T,I)/T*][-(T,I)/T-]} L1 @@ L2 @@ L3 {θ[I+1/I]} (with the as-

signment axiom and the compose rule).
– {θ ∧ I < q} L1 @@ L2 @@ L3 {θ[I+1/I]} (with 3 and the consequence rule).
– {θ[0/I]} I1 {θ[q/I]}} (using the loop for rule).
– {library?[p+q](q)(T)} disjoint(F) {ΘF(T)} (using 1, 2 and the con-

sequence rule).

The used formulas, θ and δ, are the following:

θ ≡ θD(T,I) ∧ θR(T,I) ∧ (I=0 → library?[p+q](q)(T)])

δ ≡ δD(T*,I,J) ∧ θD(T-,I) ∧ carac(T-,I) ∧ δR(T*,I,J) ∧ θR(T-,I)

where

– θD(T,I) is the formula:

I ≤ q → ∀ τ (τ ∈ T → ∀ i1 < i2 < I (τ(i1) = τ(i2) = on → Bi1∩ Bi2 = ∅))
expressing that for each memory complex τ of a tube T, the elements of the
subfamily FI

τ = {Bi| i < I ∧ τ(i) = on} are pairwise disjoint.
– θR(T, I) is the formula:

I≤q→ ∀ τ (τ ∈ T →
∀ k < I (τ(k) = on → Bk+q ⊆ τ) ∧
∀ s < p (τ(s+q) = on → ∃ k < I (τ(k) = on ∧ s ∈ Bk)))

that is, for each memory complex, τ , of a tube T, we have
⋃FI

τ = Aτ .
– δD(T,I,J) is the formula:

I < q∧ J≤ rI →
∀ τ (τ ∈ T → (τ(I) = on → ∀ i1 < I (τ(i1) = on → Bi1∩ BJI = ∅))∧

∀ i1 < i2 < I (τ(i1) = τ(i2) = on → Bi1∩ Bi2 = ∅))
expressing that for each memory complex, τ , in a tube T, if BI ∈ FI+1

τ ,
then the set BJI (compose by the first J elements of BI) is disjoint with the
elements of the subfamily FI

τ ; and that the elements of the subfamily FI
τ are

pairwise disjoint.
– δR(T,I,J) is the formula

I < q∧ j≤ rI →
∀ τ (τ ∈ T → (τ(I) = on ∧∀ k < I (τ(k) = on → Bk+q ⊆ τ)∧ BJI+q ⊆ τ ∧

∀ s < p (τ(s+q) = on → ∃ k < I ((τ(k) = on ∧ s ∈ Bk)∨ s ∈ BJI))))

expressing that for each memory complex, τ , in a tube T, we have
(
⋃FI

τ) ∪ BJI = Aτ

– carac(T, I) ≡ ∀ τ (τ ∈ T → τ(I) = off).
This formula characterizes the contents of the second tube obtained after
the use of the Separate operation.



Using Automated Reasoning Systems on Molecular Computing 137

6 Conclusions

A great part of our work within molecular computing is related to the formal-
ization of the different models that have appeared. During this effort we have
drawn the conclusion that using formal notations does not ensure us that spec-
ifications will be correct. They still need to be validated by permanent reviews
but, on the other hand, they support formal deduction; thus, reviews can be
supplemented by mechanically checked analysis. One advantage of PVS is that
it has sets and functions as types and that it is based on a higher–order logic so
we gain expressiveness.

To develop the work presented we have provided not only an implementation
of the sticker model in PVS. All the elements necessary to represent problems
over finite sets of natural numbers has been described in the system. Also we
have proved some usual properties over them and plan to complete this work
for general purpose. Most of the proofs constructed with the system have been
obtained using the basic commands and a previously elaborated hand written
proof. This effort shows the utility of the system as a verification tool.

References

1. L. M. Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266:1021–1024, November 1994.

2. R. S. Boyer and J S. Moore. The correctness problem in computer science. Aca-
demic Press, 1981.

3. P. Y Gloess. Imperative program verification in PVS. http://www.labri.fr/

Perso/∼gloess/imperative/ (1999).
4. C. Graciani Dı́az. Especificación y verificación de programas moleculares en PVS.

Doctoral Thesis, University of Seville (2003).
5. C. A. R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10), 576–583, 1969.
6. Lila Kari, Gheorghe Paun, Grzegorz Rozenberg, Arto Salomaa, and S. Yu. DNA

computing, sticker systems and universality. Acta Informatica, 35:401–420, 1998.
7. S. Owre, N. Shankar and J. Rushby The PVS specification and verification system.

pvs.csl.sri.com
8. S. Owre and N. Shankar The formal semantics of PVS. Technical Report SRI-CSL-

97-2, Computer Science Laboratory, SRI International, Menlo Park, CA, August
1997.

9. Roweis, S.; Winfree, E.; Burgoyne, R.; Chelyapov, N. V.; Goodman, M. F.; Rothe-
mund, P. W. K.; Adleman, L. M. A sticker based model for DNA computation.
Landweber, L.; Baum, E., eds DNA Based Computers II, DIMACS: Series in
Discrete Mathematics and Theoretical Computer Science, 44, 1–27. American
Mathematical Society (1999).

10. Sancho, F. Verificación de programas en modelos de computación no conven-
cionales. Doctoral Thesis, University of Seville (2002).

11. H. Pfeifer, A. Dold, F. W. v. Henke, and H. Rueß. Mechanized Semantics of
Simple Imperative Programming Constructs. Ulmer Informatik-Berichte 96-11,
Universität Ulm, Fakultät für Informatik, 1996.

http://www.labri.fr/
Perso/~gloess/imperative/
pvs.csl.sri.com

	Introduction
	The Prototype Verification System
	The Sticker Model: A Description Through PVS
	Imperative Programs
	First Order Logic

	The Pairwise Disjoint Families Problem
	Conclusions
	References



