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Abstract. Systems of autonomous agents providing automated services
over the Web are fast becoming a reality. Often these agent systems
are constructed using procedural architectures that provide a framework
for connecting agent components that perform specific tasks. The agent
designer codes the tasks necessary to perform a service and uses the
framework to connect the tasks into an integrated agent structure. This
bottom up approach does not provide an easy mechanism for confirming
global properties of constructed agent systems. In this paper we propose
a declarative methodology based on logic programming for modeling such
procedurally constructed agents and specifying their global properties as
temporal logic formulas. This methodology allows us to bring to bear
a body of work for using logic programming based model checking to
verify certain global properties of procedurally constructed Multi-Agent
Systems.

1 Introduction

The Internet is fast becoming a venue for automated services. The advent of
the Semantic Web and Web Services fosters an environment where complex
services can be provided that are composed of a number of tasks. The tasks
that compose the service are often accomplished by a group of autonomous
agent programs. These agents communicate asynchronously over a LAN or the
Internet to provide the desired service. Ideally, specifying agents as programs
in a declarative logic programming language facilitates the implementation of
agent systems for desired service. It also provides a formal model for proving
that the implemented agent system performs the service with expected results.

While a number of high-level formalisms for specifying multi-agent systems
have been proposed (see, e.g. [23, 3, 20]), many agent systems are currently being
implemented in a procedural language such as Java. Development and deploy-
ment of agent systems using traditional languages such as Java has been simpli-
fied by the presence of frameworks that provide a rich array of services. These
range from communication and database interfaces to persistence and fault-
tolerance (e.g., the Cognitive Agent Architecture, Cougaar [2]). It should be
noted that the standardization efforts in the web services community
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(e.g. BPEL4WS [1]) have been oriented towards languages for specifying agent
interfaces (e.g. the services offered and the types of data exchanged). These fa-
cilitate service discovery and composition, while leaving the implementation of
the agents themselves unspecified. Although these developments alleviate some
of the drudgery involved in constructing agents and provide facilities to compose
agent systems, they do not provide mechanisms to give formal assurances about
the behavior of agent systems.

The interesting problem here is to develop methods and techniques to ensure
that agent systems built in this manner exhibit certain desired properties. We
outline here a declarative approach to addressing this problem. This approach
models the procedural agent framework as a logic program. The program cap-
tures the generic structure of the framework as a state transition system and can
be easily customized to reflect specific agents built in the framework. Properties
of the MAS can be expressed as temporal logic formulas that can be checked
using model checking techniques.

Using a procedural agent architecture such as Cougaar, described in Section 2,
agent systems are most easily developed in a bottom-up fashion. Individual agent
programs are first built to perform specific tasks and then the allowable commu-
nications between agents are defined. The key to formally verifying the behavior
of agent systems implemented in this manner is to first develop a formal model of
the agent architecture itself. The main contribution of this paper is the develop-
ment of a formal model of the main parts of the Cougaar architecture, including
its persistence and fault-tolerance features. We then develop a framework, based
on this model, to formally describe an agent system by specifying the behavior
of the individual agent programs. The internal behavior of an agent is modeled
as an extended finite-state automaton (EFSA), i.e., an automaton where states
may be associated with variables and transitions may be guarded by constraints
on values of the variables). In particular, the EFSA models a state transition
system where there are a finite number of control states but potentially an infi-
nite number of data states that can be partitioned into a finite number of data
types. This is outlined in Section 3.

The intra-agent processes of an agent are presented as Horn clauses repre-
senting state transitions between control states in the EFSA. The EFSA for an
agent describes the intra-agent actions. The behavior of the agent system can
then be obtained as a concurrent composition of individual agent EFSAs and
the architecture model that accounts for the possible synchronizations due to
inter-agent communications.

The service being provided by an agent system is most easily described as a
temporal process in which certain changes occur to a set of objects in a certain
order. This is a workflow-centric view of the service where its global proper-
ties are enumerated. The workflow describes the desired or, at least, antici-
pated outcomes of the service without making any explicit statements about the
implementation details of the system of agents providing the service. While a
graph-based workflow formalism can be used to easily specify certain required
(or prohibited) behaviors of an agent system at a high-level, we find it better to
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use a more expressive temporal logic formalism to describe complex properties
such as availability, resilience to failure, etc.

We choose to represent workflow properties as temporal logic formulas for
two reasons. First, temporal logic formulas make statements about infinite exe-
cutions of EFSAs and, in particular, Linear Temporal Logic (LTL) [16] can rep-
resent fairness properties. Second, this formulation allows us to directly use the
logic-based model checking techniques that have been developed in the past few
years, (in which properties expressed in temporal logics can be directly verified
for state transition models). Model checking allows us to determine whether an
agent implementation possesses certain high-level behavioral properties. There-
fore in this paper, we use generalized linear temporal logic (GLTL), described
in Section 4, which allows for statements about properties of states and labels
on state transitions. GLTL is extended with data variables as the formalism for
specifying behavioral properties. In Section 5 we present workflow properties
represented in GLTL. We have developed model checkers for verifying GLTL
properties for transition systems expressed as logic programs [18]. We can use
this model checker to verify GLTL properties that depend on the control struc-
ture or data types in the model as long as the the GLTL formula being checked
does not make starements that depend on the values of specific data objects.
There have been many languages based on the Beliefs-Desires-Intensions (BDI)
model for describing agent systems and their properties. This paper does not
directly address the addition of modalities needed to model BDI properties in
GLTL; we discuss issues related to this in Section 6.

In summary, there are three main contributions of this paper. First of all,
we develop a formal operational model of the Cougaar framework in terms of a
transition relation. The encoding of the transition relation as a logic program
makes the model amenable to verification. The key technical contribution here
is the modeling of persistence and recovery features of the Cougaar architecture.
Secondly, we propose a simple formalism, based on definite-clause grammar no-
tation, for specifying the behaviour of Cougaar agents. Finally, we show the
usefulness of parameterized temporal formulas in GLTL to specify properties of
Cougaar agents.

2 Cougaar, an Implementation Architecture for
Distributed Autonomous Agents

Cougaar is a Java based procedural implementation architecture for building
systems of autonomous agents. It was originally funded by DARPA and is now
maintained by an open-source community. It uses a design framework that han-
dles both intra-agent data manipulation and inter-agent communications in a
manner that provides transparency to the agent system designer. The architec-
ture uses a distributed blackboard for inter-agent as well as intra-agent commu-
nication. This design framework provides persistence and recovery for individual
agents and also system resilience against the loss of agents.
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Data is stored and persisted at the agent level. Each agents keeps only the
data necessary to perform its own functions. Data needed by more than one agent
is shared by copying data objects from one agent to another. This distributed
data model has the advantage that data is only stored where needed and dose
not have to be made continuously available to all agents in the system. The
disadvantage is that agents needing to share data are responsible for maintaining
synchronization of that data. It is the responsibility of the agent designer to
insure this synchronization.

At the agent level, all data is stored in a communal blackboard. The black-
board contains objects that are instantiations of Java classes representing items
of interest to the agent. Objects are added to the blackboard either through
communication with another agent or by an agent subprocess called a plugin.
Plugins can also change or delete objects on the blackboard. Plugins are designed
to be stateless processes that handle the computation required of the agent.
Plugins subscribe to objects on the blackboard and execute a defined proce-
dure in response to changes in those objects. The executed procedure can query
the blackboard about objects; add, change, or delete objects and publish these
changes to the blackboard; change the plugin’s subscription; or interact with the
environment outside the agent system. Data on the blackboard is changed by
the plugins, but the data changes are persisted by the agent control structure.

Fig. 1. Cougaar Architecture

The agent control structure is illustrated in Figure 1. When an agent starts
up, it first instantiates an inter-agent communication service and an agent man-
ager which contains a blackboard, subscription list, and plugin pending execution
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list. It then instantiates its component plugins. When a plugin is instantiated, it
runs a subscribe method which notifies the agent manager about the objects in
which it is interested. Once all plugins have been instantiated and have run their
subscribe methods, the agent checks to see if any objects have been added to
the blackboard which match a plugin’s subscription. If so, that plugin is queued
to run an execute method which can publish changes that add, modify, or delete
blackboard objects. Whenever a change is published to the blackboard, plugin
subscriptions are checked and the plugins affected by the change are added to
the pending execution list and scheduled to run by the plugin controller.

Blackboard objects can also be communicated to other agents. The inter-
agent messenger service sends copies of these objects as messages to other agents
and also publishes added objects to the blackboard when they are received as
messages from other agents. The state of the blackboard, subscription list, and
plugin pending execution list is persisted by saving to a file before every sent
message and after every received message.

If an agent crashes and is then restored, the restoration proceeds in a similar
fashion to agent initialization. The main difference is that agent state is restored
from the persisted state file written during the last inter-agent communication
before the crash. This method of restoring an agent coupled with the fact that
copies of data objects are passed between agent blackboards means that when
an agent is restored, it will have internal consistency but its blackboard might
be out of synchronization with other agents in the system. In the Cougaar imple-
mentation it is up to the agent designer to provide inter agent synchronization if
needed. Also Cougaar assumes that any state information that individual plugins
need is embodied in data objects that the plugins publish to the blackboard.

We will use an order processing system as a running example of a Cougaar-
based multi-agent system. In this example, a simple Cougaar agent would contain
order objects on its blackboard. New orders would be received from other agents
and cause order objects to be added to the blackboard. The order objects would
contain a status flag that is set to received when the order is added. This order
agent might have a capacity setting so that when the number of orders on the
blackboard reaches a certain level no more orders will be accepted. Processing
of orders in the agent would be handled by plugins. In the simplest case, a
plugin would subscribe to order objects on the blackboard and be notified when
orders are added. When notified, the plugin would execute and check an external
database for credit and inventory information and change the status of the order
to shipped, rejected, or back-ordered. The agent would then communicate these
revised statuses to other agents in the system by sending a copy of the order
object to the appropriate agent. An order with a shipped status might go to
a billing agent, a rejected order to a customer notification agent, and a back-
ordered order to a production scheduling agent. Once copies of the order objects
are sent to these other agents the objects would then be removed from the
processing agent’s blackboard. As order objects are removed the capacity to
receive and process new orders is correspondingly increased.
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In summary, the plugins in each agent can be considered as actions taken
by an agent with each plugin representing a specific action. The agent system
is developed by specifying, albeit in a procedural form, the behavior of each
plugin. Note that the development of an agent focuses on the detailed behaviors
of the plugins. Combining the models of behaviors of each plugin with a detailed
formal model of the behavior of the Cougaar architecture itself, we can derive
the agent-wide and system-wide behaviors. Note, however, that the Cougaar
architecture itself does not directly support the specification of global agent-
wide and system-wide behaviors. Hence it is possible that the actual agent or
system behavior deviates from its expected behavior. In the next section we
introduce a declarative model of the Cougaar Agent Architecture.

3 A Declarative Model of the Cougaar Architecture

We now develop a high-level model of the Cougaar architecture. The model
for an agent consists of a set of concurrent automata, one automaton for each
component: the blackboard and agent manager, the communication interface,
and the components representing plug-ins. The automata have a finite number
of control locations with local variables, and transitions in the automaton may
be guarded by conditions on the valuation of these variables. Each automaton,
formalized as an extended finite-state automaton (EFSA) can be simply described
by a logic program that represents its transition relation [22].

We represent the transition relation of an automaton in our model using the
ternary relation trans. A tuple in this relation of the form trans(S, A, T)
represents a transition from state S to state T labeled with action A. The states
may be in general be terms representing both the control information (e.g. the
program counter value at an agent state) and data values at a state. The ac-
tion labels represent events: communication with other automata, or simply
computation steps internal to the automaton. The labels for internal computa-
tions may specify additional parameters that qualify the computation. Labels for
communication operations are written as terms either of the form f(t1, . . . tn)
where f is a function symbol, or of the form f(t1, . . . , tn). The two are usually
taken to represent an input action (where f stands for the channel or port over
which the communication takes place), and an output action, respectively. In
our case we do not distinguish between input and output actions; rather than
considering communication as a transmission of data from one automaton to
another, we generalize the approach of CCS [17] and view communication as
an agreement of data values in two automata. Two concurrent automata syn-
chronize by simultaneously taking transitions with complemenary labels: e.g.
f(t1) and f(t2). At synchronization, the terms t1 and t2 are unified. In gen-
eral, synchronization takes place only when the labels of the two transitions
unify.

The transition relation model captures the details of the operational behavior
of a Cougaar agent. However, such an explicit representation may become tedious
to develop (and consequently, error-prone) when used to model large systems.
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Hence we represent the transition relation by a set of Horn clauses defining the
relation, rather than as an explicit set of tuples.

We divide agent models into two parts: a generic part consisting of services
provided by the Cougaar architecture, such as the blackboard service, commu-
nication service, etc; and a part specific to a particular agent instance, which is
described by the behaviors of the plug-ins in the agent. The Cougaar architec-
ture provides a rich variety of common services to simplify agent development
and deployment. In terms of the behavioral models, this means that an agent
model can be obtained by composing models of generic services (developed once
and subsequently reused for all agents) with models describing the behaviors of
the specific plugins. We first describe the models for Cougaar’s generic services.

3.1 A Model of Cougaar’s Generic Sevices

The blackboard service is central to a Cougaar agent. The blackboard serves
as a storehouse for passive information— the objects manipluated by the dif-
ferent plugins within the agent. At the same time actively participates in agent
behaviours such as serving object change notifications to plug-ins, handling per-
sistance, scheduling certain communication operations, etc.

The storage used by the blackboard service comprises of the following com-
ponents:

1. the set of objects in the agent’s blackboard (data)
2. the set of plugins pending execution in response to changes to data objects

(pending)
3. the set of object subscriptions in which each plugin is interested

(subscription)

We represent these three areas collectively by store(D,P,S) where D, P and
S represent the above three storage areas respectively. In addition, to enable
recovery from faults, an agent checkpoints its execution by saving the blackboard
state at each intra-agent communication point. We model this persistence by
representing a blackboard’s state by state(Current, Saved) where Current is
the representation of the current storage (a term of the form store(...)) and
Saved is the representation of the storage at the last checkpoint.

The data part of a blackboard’s storage is simply a set of objects. We use a no-
tation borrowed from F-logic [15] to denote objects and use F-logic’s mechanisms
for representing an object store using attribute-value, subclass and instance re-
lations. For instance, an object Obj belonging to class Cls and whose status
field holds the value new, represented in F-logic by Obj:Cls[status->new],
will be stored in the blackboard’s storage as tuples instance(Obj, Cls) and
attr(Obj, status, new). Evaluation of attribute values follow F-logic’s inher-
itance mechanisms.

The pending list is a set of pairs of the form (plugin, object) where a change to
the object matches the plugin subscription. The set of subscriptions associates
a plugin with subscription patterns which are of the form (class, change), where
class is the class of objects and change is the change flag for this subscription.
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The blackboard is the arbiter of data and communication between the plugins
and other Cougaar services in an agent. Plugins communicate synchronously
with the blackboard using the following four primitives:

1. query: check the presence or absence of an object in the data area, and to
retrieve information from objects in the data area

2. modify: add/delete objects to/from the data area
3. subscribe: add/remove self from subscription lists
4. publish: notify the rest of the agent system about changes made to the

blackboard objects by this plugin

Apart from the data access operations from the agent’s plugins, the black-
board also services communication requests from other agents. Although the
Cougaar implementation separates the data service provided by the blackboard
from the communication services, it vastly simplifies the model to combine the
two. A Cougaar agent may receive a put request to place an object in its black-
board from another agent; and may send objects, when requested to do so by its
plugins, to other agents. Each of these requests (from plugins or other agents)
represent events; the behavior of the generic services of Cougaar in response to
these events (or when generating these events) is captured by the Horn clause
rules in Figure 2 defining the trans relation.

Plugins are executed under the control of a plugin scheduler. Initially, the
plugin scheduler invokes the subscribe method of each plugin which enables
them to register with the blackboard service for object modification notifica-
tions. After the initialization phase is complete, the scheduler enters a loop,
nondeterministically selecting a plugin to execute from the pending set in the
blackboard, and invoking the corresponding plugin. The plugins, may in gen-
eral, be run on a separate thread from the scheduler. We model the simpler and
more common case where the plugins are sequentialized in the same thread as
the scheduler. The transition relation of the scheduler’s automaton can then be
written as illustrated in Figure 3.

In the above, we assume that the subscribe(Pin,C) and and execute((Pin,
Obj),C) correpond to the entry points of the subscribe and execute methods of
a plugin Pin. The second argument C is the continuation: the state to which the
methods return.

States of a system composed of two concurrent automata are represented
by terms of the form par(P1, P2) where P1 and P2 represent the local states
of the component automata. Operationally, an interleaving of the executions of
two concurrent automata is an execution of the composition. In addition, the
two automata may synchronize by unifying their action labels. The behavior
of the concurrent composition of two automata is captured by the transition
rules in Figure 4. It should be noted that synchronization by unification general-
izes CCS’s agreement-based synchronization for non-value-passing systems and
synchronization by substitution for value-passing systems.

Note that with the above notation, it is straightforward to extend the model
to deal with agents with multi-threaded plugins: instead of the sequential com-
position encoded by execute((Pin,Obj),C), the scheduler loop will spawn Pin
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% QUERY
trans(S, present(Q), S) :-

S = state(store(Data, , ), ), Q ∈ Data.
trans(S, absent(Q), S) :-

S = state(store(Data, , ), ), Q �∈ Data.

% MODIFY
trans(S, add(Q), T) :-

S = state(store(Data,P,Subs), Saved),
Data’ = Data ∪ {Q},
T = state(store(Data’,P,Subs), Saved).

trans(S, delete(Q), T) :-
S = state(store(Data,P,Subs), Saved),
Data’ = Data − {Q},
T = state(store(Data’,P,Subs), Saved).

% SUBSCRIBE
trans(S, subscribe(Pin, Class, Change), T) :-

S = state(store(D,P,Subs), Saved),
Subs’ = Subs ∪ {sub(Pin, Class, Change)},
T = state(store(D,P,Subs), Saved).

trans(S, unsubscribe(Pin, Class, Change), T) :-
S = state(store(D,P,Subs), Saved),
Subs’ = Subs − {sub(Pin, Class, Change)},
T = state(store(D,P,Subs), Saved).

% PUBLISH
trans(S, publish(Obj, Change), T) :-

S = state(store(D,Pending,Subs), Saved),
Notify = {Pin | subs(Pin, Class, Change) ∈ Subs, Obj:Class},
Pending’ = Pending ∪ Notify,
T = state(store(D,Pending’,Subs), Saved).

% PENDING EXECUTION

trans(S, select(Pin, Obj), T) :-
S = state(store(D,Pending,Subs), Saved),
Pending’ = Pending − {Pin},
T = state(store(D,Pending’,Subs), Saved).

% PUT
trans(S, put(Obj), T) :-

S = state(store(Data,Pending,Subs), ),
Data’ = Data ∪ {Obj}
Notify = {Pin | subs(Pin, Class, add) ∈ Subs, Obj:Class},
Pending’ = Pending ∪ Notify,
SavedStore = store(Data’, Pending’,Subs),
T = state(SavedStore, SavedStore).

% SEND
trans(S, put(Obj), T) :-

S = state(Current, ),
Current = store(Data,P,Subs),
Data’ = Data − {send(Obj)}
NewStore = store(Data’,P,Subs)
T = state(NewStore, Current).

Fig. 2. Transition Relation for Generic Cougaar Services
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% INITIALIZE
trans(scheduler, initialize, init(Pins, scheduler loop)) :-

initial plugins(Pins).
trans(init([], S), A, T) :- trans(S, A, T).
trans(init([Pin|Pins], S), A, T) :-

trans(subscribe(Pin, init(Pins, S)), A, T).

% EXECUTE
trans(scheduler loop, select(Pin, Obj), execute((Pin, Obj), scheduler loop)).

Fig. 3. Transition Relation for the Plugin Scheduler

% INTERLEAVE
trans(par(P1, P2), A, par(Q1, P2)) :-

trans(P1, A, Q1).
trans(par(P1, P2), A, par(P1, Q2)) :-

trans(P2, A, Q2).

% SYNCHRONIZE
trans(par(P1, P2), tau, par(Q1, Q2)) :-

trans(P1, A, Q1),
trans(P2, B, Q2),
complement(A, B).

complement(L(X), L(X)).
complement(L(X), L(X)).

Fig. 4. Transition Relation for Parallel Composition

in an available concurrent thread and return immediately to picking up another
plugin to notify.

When an agent crashes, the current state of the blackboard and other generic
services is lost, and so are the local states of the plugins and the scheduler. When
the agent recovers, it refreshes its state from the one saved at the last checkpoint,
and resumes the scheduler loop. Thus, the crash and the eventual recovery of an
agent can be captured by the transition rules given in Figure 5.

% CRASH

trans(agent(par(state( ,Saved), )), crash, agent crashed(Saved)).

% RECOVER
trans(agent crashed(Saved), recover,

agent(par(state(Saved,Saved), scheduler loop))).

Fig. 5. Transition Relation for Crash and Recovery

The crash and recover labels can be used in the model checker to specify
properties representing fair behaviors, considering only paths where crash occurs
only finitely often, or those where recover occurs infinitely often.
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3.2 Modeling Specific Cougaar Agents

Having developed a detailed model for the generic Cougaar services, we can
instantiate an agent by simply specifying (a) the set of plugins in the agent, and
(b) the behaviors of their subscribe and execute methods. We illustrate such
an instantiation by considering a simple order processing agent with a plugin
process order which takes an object of class order whose status field is new,
and changes the order status field to one of shipped, back ordered or rejected.
For the purposes of this illustration, we will replace the logic for determining
the status field with a nondeterministic choice. Orders processed by the agent
then need to be transmitted to the other agents. The transition system for the
execute method of this plugin can be written as:

trans(execute((process order,order(Order)), C),
delete(Order[status->new]), order 1(Order, C)).

trans(order 1(Order, C)), add(Order[status->NS]), order 2(Order, C)) :-
choose status(NS).

trans(order 2(Order, C)), send(Order), order 3(Order, C)).
trans(order 3(Order, C)), publish(Order, modify), C).

choose status(shipped).
choose status(back ordered).
choose status(rejected).

Since plugins typically have a simple structure (e.g. no thread creation, and
usually no loops), we can simplify the specification of plugin behaviors by using
a DCG-like notation that makes the states implicit. For instance, the above order
plugin may be written as:

order(Order) -->
[ delete(Order[status->new]) ],
{choose status(NS)},
[ add(Order[status->NS]) ],
[ send(Order) ],
[ publish(Order, modify) ].

Each terminal symbol in the above DCG specifies only the action label of a tran-
sition, leaving the source and destination states implicit. It is easy to convert the
above specification to the explicit transition rules given earlier. We can thus de-
rive models of agent systems by modeling each plugin separately and combining
these models with the models of generic services.

4 Linear Temporal Logic

We now review Linear Temporal Logic (LTL) and its extensions that are used
for specifying temporal properties of finite-state systems. In particular we de-
scribe Generalized LTL (GLTL) which can make statements about properties of
system states as well as action labels on transitions between states. GLTL has
the following syntax (P is the finite set of propositions and A is the finite set of
action labels):
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Ψ → AΦ | EΦ

Φ → p | ¬p | α | ¬α | Φ ∧ Φ | Φ ∨ Φ | Φ U Φ | Φ R Φ | XΦ p ∈ P , α ⊆ A

Formulas derived from Φ are called path formulas and formulas derived from Ψ
are state formulas Traditionally, GLTL is defined to include only AΦ; we consider
the trivial addition of EΦ since the model checking procedure we discuss is based
on such formulae.

The semantics of GLTL is given in terms of infinite paths (called runs) of a
Labeled Transition System (LTS). Runs are infinite sequences of states of the
LTS. The formal definition of GLTL semantics is standard (see, e.g. [7, 6]) and is
omitted. Briefly, the semantics expresses how a run can satisfy a path formula.
A formula Φ is true if Φ is true in the first state of a run. If Φ is p then p is
a proposition that must hold in this state for Φ to be true. If Φ is α then the
transition from the first state to the second state in the run must be labelled
with an element in α for Φ to be true. For ¬p and ¬α, p must be false and the
transition label must not be an element of α respectively to make Φ true. XΦ is
true if Φ is true in the next state of a run, Φ1 ∧Φ2 is true if both Φ1 and Φ2 are
true for a given run. Φ1 U Φ2 is true of a run if Φ1 holds in every state until a
state where Φ2 holds. Φ1 R Φ2 is true of a run if Φ2 holds in every state or until
a state where Φ1 holds. AΦ is true for state s if Φ is true for all runs originating
in s and EΦ is true if Φ is true for some run originating in s.

∧ and ∨ are duals. Similar to ∧ and ∨, U and R are duals (i.e., ¬(φ1 U φ2)
= ¬φ1 R ¬φ2), E and A are duals (i.e., ¬Aψ = E¬ψ), and X is its own dual (i.e.,
¬Xφ = X¬φ). It is easy to see that the standard semantics respects this duality.

To write more legible GLTL formulae, we define the following shorthand
constructs for common GLTL formulas:

Gφ ≡ false R φ

Fφ ≡ true U φ

φ ⇒ ψ ≡ ¬φ ∨ ψ

G is the global temporal quantifier. It is used to describe a property that is
always true along a given path. F is the eventual temporal operator and describes
a property that eventually becomes true along a path. The third shorthand is
the standard logical implication.

Finally, GLTL can be enhanced by allowing terms containing logical variables
to replace propositions. In the next section we describe the encoding of workflow
properties about the expected global behaviors of agent systems in GLTL.

5 Workflows as Property Specifications

Agents and systems of communicating agents are built to provide specific ser-
vices. Often these services are explicitly described by a workflow. Even when
such an explicit definition is lacking, there is an implicit workflow which de-
scribes the anticipated outcome from invoking a service. The standard view of
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a workflow with respect to agents is that the workflow is a specification for the
agent. In contrast, we consider the workflow as a specification of a property that
the agent must exhibit.

Workflows have been directly represented in Transaction Logic [11]. One ap-
proach to showing that an agent system possesses a behavior expressed as a
workflow would be to use Theorem Proving Techniques to show that the Trans-
action Logic representation of the workflow and the agent were equivalent. We
believe a better approach is to express the workflow property in GLTL and use
Logic Programming based model checking to show that the GLTL formula holds
for the EFSA model of the agent system. Also Linear Temporal Logics (LTL)
and their extensions are well suited to represent fairness properties [16]. Fairness
is important in real world systems because there are always certain system con-
ditions that cause failure and fairness properties explicity state the boundries of
such failure.

GLTL is uniquely suited for representing workflow properties and more ex-
pressive than Transaction Logic for temporal properties. Workflows, in essence
are temporal graphs that express sequences of events. Consider a simple work-
flow in which an order is first received and then shipped. The workflow implies
an order to these two events, but no absolute time period between them. This
is precisely the type of property that is easy to describe in GLTL.

To aid in writing properties that are easier to understand, a mechanism
similar to macro replacement in a programming language can be used. In this
mechanism a ”named” formula acts as a replacement for an underlying GCTL*
formula. While GCTL* does not directly support this idea of ”named” formulas,
this can easily be implemented with a macro interpreter in the GCTL* model
checker logic program. Using this mechanism, if we let dependency(φ, ψ) stand
for the GLTL state formula

G(φ ⇒ X(Fψ))

We can write the following GLTL formula to describe the ordering property
expressed in the above workflow as:

A(dependency({received}, {shipped}))
This states that along all paths if a received action occurs it is eventually followed
by a shipped action.

Since the Cougaar agent model described above can crash, this property
would not hold for it. The agent could crash between the received and shipped
actions and never recover. This leads to describing fairness properties for which
GLTL is also well suited. Fairness essentially states that some good result will
always occur providing some condition occurs infinitely often. Paths for which
such a condtion holds are considered fair execution paths. We would like to
have the above received-shipped dependency property hold as long as the agent
recovers from crashes infinitely often (the fairness condition). This can be written
as:

A(GF (recover) ⇒ dependency({received}, {shipped})
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Notice that neither the workflow or the above formulas say anything about
what purchase order is received or shipped. Implicit in the workflow is the idea
that the workflow describes the events for a specific purchase order. This can be
handled by parameterizing the received and shipped actions, leading to:

A(GF (recover) ⇒ dependency({received(order1)}, {shipped(order1)})
Finally, the agent system is designed to run multiple instances of the specify-

ing workflow so that we could be interested in properties that express ordering
between workflow instances. For instance, we may want orders to be shipped in
the order they were received. Enhancing GLTL with logical variables allows us
to express these type of properties. We define ordered events(φ, ψ) to stand for
the GLTL formula:

Fφ ∧ Fψ ∧ ¬ψ U φ

which express that φ occurs before ψ. Note that ordered events(φ, ψ) is not as
strong a property as dependency(φ, ψ) defined above. The first indicates that
one occurance of the second event occurs after one occurance of the first event.
The second indicates that an occurance of the second event happens after every
occurance of the first event. We can now express the property that orders are
shipped in the order they are received as:

A(ordered events({received(order(X))}, {received(order(Y ))}) ⇒
ordered events({shipped(order(X))}, {shipped(order(Y ))}))

This shows that GLTL is a logic that is well suited for specifying global
properties of agent systems either as specifications of workflow properties or
directly as fairness properties. GLTL also allows us to take advantage of logic
programming for verification of these properties.

6 Ongoing Work and Concluding Remarks

Having been able to declaratively model a real world agent architecture as an
EFSA and also express specifications for that system as temporal logic proper-
ties, we are now in a position to apply model checking techniques to verifying
properties of agent systems.

We have been developing and using model checkers for finite and several
classes of infinite systems based on logic programming [19, 12, 5]. We have also
developed a model checker that can verify GLTL properties of labeled transi-
tion systems [18]. This model checker, implemented as a logic program, first
constructs a Büchi automaton from a given GLTL formula, constructs the prod-
uct of the given system model and the automaton, and performs good-cycle
detection, i.e. cycles that meet the acceptance conditions of the automaton, to
complete the model checking. Subsequently, we have also developed a constraint-
based model checker where system models as well as properties are expressed
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using EFSAs [22]. This model checker can be directly used to verify properties
of a Cougaar-based agent system. This model checker can verify certain class of
infinite-state systems called data independent systems: those whose control be-
havior is independent of the domain of the data values. This is especially useful
for the verification of agent systems since many aspects of their behaviors are
data independent. For instance, the behavior of the ordering agent is indepen-
dent of the domain of identifiers associated with different order objects. Thus
we can use a constraint-based model checker to verify properties like the order
of receiving and shipping of a specific order object with or without a fairness
constraint on the agent crashing. It also allows us to check properties about the
ordering of events. There is a complexity price to pay for this added capabil-
ity. Standard model checking of finite-state systems runs in time linear in the
size of the model. The constraint-based model checker in in the worst case ex-
ponential. Our future work will explore the limits and efficiency of using Logic
Programming-based Model Checking to verify global behaviors of procedurally
constructed MAS.

The main limitation of our approach is the representation of the blackboard.
The blackboard is a part of an agent’s state and we have to bound the number of
objects that may be present simultaneously in the blackboard in order to ensure
termination of verification runs.

The main contribution of this paper is the development of a logic-based high-
level model of agent systems built using a procedural framework such as Cougaar.
Since there are many such frameworks being proposed and implemented to ad-
dress providing Web Services, this concept could have significant application. A
secondary contribution of this modeling technique is that it allows us to verify
properties of MAS that are data independent infinite-state systems with finite
control structures.

We want to point out how our work compares to other efforts in the field.
There have been a number of presentations of applying model checking to ver-
ifying properties of MAS including [9, 26], These presentations model MAS in
languages that have a direct translation to a finite-state labelled transition sys-
tem and express properties to be verified in Belief-Desire-Intention (BDI) logics
which can be transformed into propositional LTL properties. Our goal was to
be able to verify properties of MAS developed in a procedural framework like
Cougaar where global behavior is emergent and non-obvious. Also, by modelling
such systems as EFSAs we do not need to limit our model to finite-state systems,
but can consider properties of infinite-state data independent systems. This al-
lows us to verify properties concerned with the general ordering of events. Our
model also allows us to investigate fault tolerance of MAS expressed as GLTL
fairness properties. There is an interesting parallel between Cougaar agents and
BDI agents. Data on the Cougaar blackboard is similar to BDI beliefs, plugin
subscriptions have a similar flavor to BDI desires, and plugins pending execution
are similar BDI intentions. We feel that this similarity should be investigated,
especially since properties expressed in BDI logics can easily be incorporated
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into an expansion of GLTL and be directly verified using our model checker. We
see this as an important area for future work.

Among the works presented at DALT 2004, the ones most closely related to
our work are those that deal with temporal logic model checking or logic-based
modeling [25, 21, 4, 24, 10, 14]. Walton [25] defines MAP, a language for defining
multi-agent protocols (in a CCS-like fashion), its translation to Promela, and
proposes the use of the model checker SPIN to verify properties of protocols
written in MAP. Robertson [21] introduces LCC, a language for describing so-
cial norms of distributed processes. Specifications in LCC can then be subject to
simulation or model checking (via MAP). Baldoni et al [4] describe the addition,
to DCaseLP, a framework for converting AUML sequence diagrams to DyLOG
and then verifying the interactions between the diagrams by querying. Vascon-
celos [24] describes a methodology for investigating properties of descriptions
called electronic institutions which define virtual environments in which agents
interact. The state-chart-like notation used to specify electronic institutions are
encoded as facts in a logic program. The constraints on their behavior, called
their norms, which are specified by sets of actions are also represented as facts.
Queries are then described over this intentional database to infer properties
such as the set of feasible actions, feasible norms etc. In contrast, we develop
a model, in terms of a transition relation, for the Cougaar architecture, and
describe how models of individual Cougaar agents can be developed. We then
use model checking techniques we have previously developed to verify temporal
properties of these models.

Chopra at al [10] develop a methodology to build processes from declarative
commitment-based protocol specifications and to enact them in a declarative
manner. The operational semantics of protocols and commitments are specified
using the pi-calculus. Fan et al [14] Gives an operational (transition system)
semantics of a team-oriented agent programming language called MALLET for
specifying teamwork knowledge and behaviors. These works do not address issues
related to verification.

There has also been a considerable amount of work addressing workflows as
specifications. Workflows have been represented in Transaction Logic [8] and
their properties as theorems that satisfy these models [11]. In addition, [13]
presents workflows modeled as UML Activity Diagrams and using LTL model
checking to verify properties of these models. These approaches look at workflows
as the model about which properties are stated. In our work we view the workflow
as specifying global properties for a model of an independently constructed agent
system. There are also a number of efforts to declaratively specify connectivity
of autonomous agents using XML such as BPEL4WS cited earlier. These are
primarily focused on finding and connecting agents that can compose a service,
but they do not provide any method of verifying the behavior of the composition.
What we propose allows the agent designer to use a procedural framework like
Cougaar to build an agent system and gain some assurance about the conditions
under which that system will exhibit expected behaviors.
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