
Model Checking Agent Dialogues

Christopher D. Walton

Centre for Intelligent Systems and their Applications (CISA),
School of Informatics, University of Edinburgh, UK

Tel: +44-(0)131-650-2718
cdw@inf.ed.ac.uk

Abstract. In this paper we address the challenges associated with the verification
of correctness of communication between agents in Multi-Agent Systems. Our
approach applies model-checking techniques to protocols which express interac-
tions between a group of agents in the form of a dialogue. We define a lightweight
protocol language which can express a wide range of dialogue types, and we use
the SPIN model checker to verify properties of this language. Our early results
show this approach has a high success rate in the detection of failures in agent
dialogues.

1 Introduction

A popular basis for agent communication in Multi-Agent Systems (MAS) is the the-
ory of speech acts, which is generally recognised to have come from the work of the
philosopher John Austin [1]. This theory recognises that certain natural language ut-
terances have the characteristics of physical actions in that they change the state of the
world (e.g., declaring war). Austin identified a number of performative verbs which
correspond to different types of speech acts, e.g., inform, promise, request. The theory
of speech acts has been adapted for expressing interactions between agents by many
MAS researchers, and this is most visible in the development of Agent Communication
Languages (ACLs). The two most popular ACLs are currently the Knowledge Query
and Manipulation Language (KQML) [2] and the Foundation for Intelligent Physical
Agents ACL (FIPA-ACL) [3]. In these languages, the model of interaction between
agents is based on the exchange of messages. KQML and FIPA-ACL define sets of per-
formatives (message types) that express the intended meaning of the messages. These
languages do not define the actual content of the messages and they assume a reliable
method of message exchange.

In order to connect the theory of speech acts with the rational processes of agents,
Cohen and Levesque defined a general theory of rational action [4]. This theory is itself
based upon the theory of intentional reasoning, developed by the philosopher Michael
Bratman [5], which introduced the notion that human behaviour can be predicted and
explained through the use of attitudes (mental states), e.g., believing, fearing, hoping.
In the general theory, speech acts are modelled as actions performed by agents to sat-
isfy their intentions. The FIPA-ACL specification recognises this theory by providing
a formal semantics for the performatives expressed in Belief-Desire-Intension (BDI)
logic [6]. A BDI semantics for KQML has also been developed [7]. The combination
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of speech acts and intentional reasoning provides an appealing theoretical basis for the
specification and verification of MAS [8]. Similarly, the KQML and FIPA standards
provide useful frameworks for the implementation of MAS based upon these theories,
e.g., JADE [9].

Nonetheless, there is a growing dissatisfaction with the mentalistic model of agency
as a basis for defining inter-operable agents between different agent platforms [10, 11].
Inter-operability requires that agents built by different organisations, and using differ-
ent software systems, are able to reliably communicate with one another in a common
language with an agreed semantics. The problem with the BDI model as a basis for
inter-operable agents is that although agents can be defined according to a commonly
agreed semantics, it is not generally possible to verify that an agent is acting according
to these semantics. This stems from the fact that it is not known how to assign mental
states systematically to arbitrary programs. For example, we have no way of knowing
whether an agent actually believes a particular fact. For the semantics to be verifiable it
would be necessary to have access to an agents’ internal mental states. This problem is
known as the semantic verification problem and is detailed in [12].

To understand why semantic verification is a highly-desirable property for an inter-
operable agent system it is necessary to view the communication between agents as
part of a coherent dialogue between the agents. According to the theory of rational
action, the dialogue emerges from a sequence of speech acts performed by an agent
to satisfy their intentions. Furthermore, agents should be able to recognise and reason
about the other agents intentions based upon these speech acts. For example, according
to the FIPA-ACL standard, if an agent receives an inform message then it is entitled
to believe that the sender believes the proposition in the message. There is an under-
lying sincerity assumption in this definition which demands that agents always act in
accordance with their intentions. This assumption is considered too restrictive in an
open environment as it will always be possible for an insincere agent to simulate any
required internal state, and we cannot verify the sincerity of an agent as we have no
access to is mental states.

In order to avoid the problems associated with the mentalistic model, and thereby
express a greater range of dialogue types, a number of alternative semantics for ex-
pressing rational agency have been proposed. The two approaches that have received
the most attention are a semantics based on social commitments, and a semantics based
on dialogue games [13].

The key concept of the social commitment model is the establishment of shared
commitments between agents. A social commitment between agents is a binding agree-
ment from one agent to another. The commitment distinguishes between the creditor
who commits to a course of action, and the debtor on whose behalf the action is done.
Establishing a commitment constrains the subsequent actions of the agent until the com-
mitment is discharged. Commitments are stored as part of the social state of the MAS
and are verifiable. A theory which combines speech acts with social commitments is
outlined in [14].

Dialogue games can trace their origins to the philosophical tradition of Aristo-
tle. Dialogue games have been used to study fallacious reasoning, for natural lan-
guage processing and generation, and to develop a game-theoretic semantics for various
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logics. These games can also be applied in MAS as the basis for interaction between
autonomous agents. A group of agents participate in a dialogue game in which their
utterances correspond to moves in this game. Different rules can be applied to the
game, which correspond to different dialogue types, e.g., persuasion, negotiation, en-
quiry [15]. For example, a persuasion dialogue begins with an assertion and ends when
the proponent withdraws the claim or the opponent concedes the claim. A framework
which permits different kinds of dialogue games, and also meta-dialogues is outlined
in [16].

There is an additional problem of verification of the BDI model, which we term the
concurrency verification problem. A system constructed using the BDI model defines
a complex concurrent system of communicating agents. Concurrency introduces non-
determinism into the system which gives rise to a large number of potential problems,
such as synchronisation, fairness, and deadlocks. It is difficult, even for an experienced
designer, to obtain a good intuition for the behaviour of a concurrent protocol, primarily
due to the large number of possible interleavings which can occur. Traditional debug-
ging and simulation techniques cannot readily explore all of the possible behaviours of
such systems, and therefore significant problems can remain undiscovered. The detec-
tion of problems in these systems is typically accomplished through the use of formal
verification techniques such as theorem proving and model checking.

In order to address the concurrency verification problem, a number of attempts have
been made to apply model checking to models of BDI agents [17, 18, 19, 20]. The model
checking technique is appealing as it is an automated process, though it is limited to
finite-state systems. A model checker normally performs an exhaustive search of the
state space of a system to determine if a particular property holds and, given sufficient
resources, the procedure will always terminate with a yes/no answer.

One of the main issues in the verification of software systems using model check-
ing techniques is the state-space explosion problem. The exhaustive nature of model
checking means that the state space can rapidly grow beyond the available resources
as the size of the model increases. Thus, in order to successfully check a system it is
necessary that the model is as small as possible. However, it is a fundamental concept
of the BDI model that communicative acts are generated by agents in order to satisfy
their intentions. Therefore, in order to model check BDI agents we must represent both
rational and communicative processes in the model. This problem has affected previous
attempts to model-check multi-agent systems e.g., [18], which use the BDI model as the
basis for the verification process, limiting the applicability to very small agent models.

In this paper we do not adopt a specific semantics of rational agency, or define a
fixed model of interaction between agents. Our belief is that in a truly heterogeneous
agent system we cannot constrain the agents to any particular model. For example, web-
service [21] agents are rapidly becoming an attractive alternative to BDI-based agents.
Instead, we define a model of dialogue which separates the rational process and inter-
actions from the actual dialogue itself. This is accomplished through the adoption of a
dialogue protocol which exists at a layer between these processes. This approach has
been adopted in the Conversation Policy [22] and Electronic Institutions [23, 24] for-
malisms, among others. The definition presented in this paper differs in that dialogue
protocol specifications can be directly executed. We define a lightweight language of
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Multi-Agent dialogue Protocols (MAP) as an alternative to the state-chart [25] repre-
sentation of protocols. Our formalism allows the definition of infinite-state dialogues
and the mechanical processing of the resulting dialogue protocols. MAP protocols con-
tain only a representation of the communicative processes of the agents and the resulting
models are therefore significantly simpler.

Dialogue protocols specify complex concurrent and asynchronous patterns of com-
munication between agents. This approach does not suffer from the semantic verifica-
tion problem as the state of the dialogue is defined in the protocol itself, and it is straight-
forward to verify that an agent is acting in accordance with the protocol. Nonetheless,
our experiences with defining dialogue protocols in MAP have shown that it is a dif-
ficult task to define correct protocols, even for simple dialogues. The problem is not
related to the internal states of the agent, but rather as a result of unexpected interac-
tions between agents. For example, the receipt of a stale bid may adversely affect an
auction. In general, the prediction of undesirable behaviour in our dialogue protocols
is non trivial. Thus, the focus of this paper if on the verification of dialogue protocols
specified in MAP.

We use the SPIN model checker [26] to verify our MAP protocols, as we have
no desire to construct our own model checking system. The SPIN model checker has
been in development for many years and includes a large number of techniques for
improving the efficiency of the model checking, e.g., partial-order reduction, state-
compression, and on-the-fly verification. SPIN accepts design specifications in its own
language PROMELA (PROcess MEta-LAnguage), and verifies correctness claims spec-
ified as Linear Temporal Logic (LTL) formula. The verification of our dialogue proto-
cols is achieved by a translation from the MAP language to an abstract representation in
PROMELA. We use this representation in SPIN to check a number of properties of the
protocols, such as termination, liveness, and correctness. Our approach to translation
is similar to [19], though we are primarily interested in checking general properties of
inter-agent communication rather than specific BDI properties.

Our presentation in this paper is structured as follows: in Section 2 we define the
syntax of the Multi-Agent Protocol (MAP) language. In Section 3 we specify the es-
sential features of a translation from MAP to PROMELA which enables us to perform
model checking of our protocols, and discuss our initial model checking results. We
conclude in Section 4 with a discussion of future work.

2 The MAP Language

The MAP language is a lightweight dialogue protocol language which provides a re-
placement for the state-chart representation of protocols found in Electronic Institu-
tions. The underlying semantics of our language is derived from process calculus. In
particular MAP can be considered a sugared variant of the π-calculus [27]. We have
redefined the core of the Electronic Institutions framework to provide an executable
specification, while retaining the concepts of scenes, and roles.

The division of agent dialogues into scenes is a key concept in our protocol lan-
guage. A scene can be thought of as a bounded space in which a group agents interact
on a single task. The use of scenes divides a large protocol into manageable chunks. For
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example, a negotiation scene may be part of a larger marketplace institution. Scenes also
add a measure of security to a protocol, in that agents which are not relevant to the task
are excluded from the scene. This can prevent interference with the protocol and limits
the number of exceptions and special cases that must be considered in the design of
the protocol. Additional security measures can also be introduced into a scene, such as
placing entry and exit conditions on the agents, though we do not deal with these here.
However, we assume that a scene places barrier conditions on the agents, such that a
scene cannot begin until all the agents are present, and the agents cannot leave the scene
until the dialogue is complete.

P ::= n(r{M})+ (Scene)

M ::= method(φ(k)) = op (Method)

op ::= α (Action)
| op1 then op2 (Sequence)
| op1 or op2 (Choice)
| waitfor op1 timeout op2 (Iteration)
| call(φ(k)) (Recursion)

α ::= ε (No Action)
| v = p(φ(k)) (Decision)
| M => agent(φ1, φ2) (Send)
| M <= agent(φ1, φ2) (Receive)

M ::= ρ(φ(k)) (Performative)

φ ::= _ | a | r | c | v (Terms)

Fig. 1. MAP Abstract Syntax

The concept of an agent role is also central to our definition of a dialogue protocol.
Agents entering a scene assume a fixed role which persists until the end of the scene. For
example, a negotiation scene may involve agents with the roles of buyer and seller. The
protocol which the agent follows in a dialogue will typically depend on the role of the
agent. For example, an agent acting as a seller will typically attempt to maximise profit
and will act accordingly in the negotiation. A role also identifies capabilities which the
agent must provide. For example, the buyer must have the capability to make buying
decisions and to purchase items. Capabilities are related to the rational processes of the
agent and are encapsulated by decision procedures in our definition.

The abstract syntax of MAP is presented in Figure 1. We have also defined a corre-
sponding concrete XML-based syntax for MAP which is used in our implementation. A
scene protocol P is uniquely named n and defined as a (non-empty) sequence of roles
r, each of which define a set of methods M. Agents have a fixed role for the duration
of the protocol, and are individually identified by unique names a. A method M can
be considered a procedure where φ(k) are the arguments. The initial protocol for an
agent is specified by setting φ(k) to be empty (i.e., k = 0). Protocols are constructed
from operations op which control the flow of the protocol, and actions α which have
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side-effects, and can fail. The interface between the protocol and the rational process
of the agent is achieved through the invocation of decision procedures p. Interaction
between agents is performed by the exchange of messages M which contain performa-
tives ρ. Procedures and performatives are parameterised by terms φ, which are either
variables v, agent names a, role names r, constants c, or wild-cards _. Variables are
bound to terms by unification which occurs in the invocation of procedures, the receipt
of messages, or through recursive calls.

OFFER(S, B)
INITIAL

BUYER 

DELIBERATEDELIBERATE

ACCEPT

SELLER

REJECT

REJECT(S, B)REJECT(B, S)

ACCEPT(B, S) ACCEPT(S, B)

PROPOSE(B, S)

PROPOSE(S, B)

Fig. 2. Negotiation Protocol

We will now define a simple negotiation protocol, which will illustrate the MAP
language and act as an example for model-checking. Before we present the definition
of this protocol in MAP, we consider a state-based description of the protocol, as shown
in Figure 2. The state-based description is similar to a specification of the protocol in
the Electronic Institutions framework, e.g., [24].

Our negotiation protocol is an attempt to simulate a standard bargaining process be-
tween two parties (a buyer and a seller). We do not impose artificial constraints, such as
turns or rounds, on the participants in the protocol. The negotiation begins with an offer
from the seller to the buyer, which we denote with the message OFFER(S, B). Upon
receipt of the initial offer, the buyer enters a deliberative state, in which a decision is
required. The buyer can accept or reject the offer in which case the protocol terminates.
The buyer can also make a proposal to the seller PROPOSE(B, S), e.g., an offer at
a lower price. If a proposal is made to the seller, then the seller enters a deliberative
state. The seller can in turn accept or reject the proposal, or make a counterproposal.
If a counterproposal is made, the buyer deliberates further. Thus, the negotiation is ef-
fectively captured by a sequence of proposals and counter-proposals between the buyer
and the seller.
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A definition of the negotiation protocol in MAP syntax is presented in Figure 3. For
convenience, we distinguish between the different types of terms by prefixing variables
names with $, and role names with %. We define two roles: %buyer and %seller.
Each of these roles has three associated methods which define the protocol states for
the roles.

When exchanging messages through send and receive actions, a unification of terms
in the definition agent(φ1, φ2) is performed, where φ1 is matched against the agent
name, and φ2 against the agent role. For example, when the buyer receives the initial
offer, in line 5 of the protocol, the terms will match any agent whose role is a %seller,
and $seller will be bound to the name of the seller.

The semantics of message passing corresponds to reliable, buffered, non-blocking
communication. Sending a message will succeed immediately if an agent matches the
definition, and the message M will be stored in a buffer on the recipient. Receiving a
message involves an additional unification step. The message M supplied in the def-
inition is treated as a template to be matched against any message in the buffer. For
example, in line 19 of the protocol, a message must match accept($sellvalue),
and the variable $sellvalue will be bound to the content of the message if the match
is successful. Sending a message will fail if no agent matches the supplied terms, and
receiving a message will fail if no message matches the message template.

The send and receive actions complete immediately and do not delay the agent. For
this reason, all of the receive actions are wrapped by waitfor loops to avoid race
conditions. For example, in line 18 the agent will loop until a message is received. If
this loop was not present the agent may fail to find a response and the protocol would
terminate prematurely. The advantage of non-blocking communication is that we can
check for the receipt of a number of different messages. For example, in lines 19, 20, and
21 the protocol, the agent waits for either an accept, reject, or propose message
respectively. The waitfor loop includes a timeout condition which is triggered
after a certain interval has elapsed. The timeout is defined to restart the loop (in lines
23 and 37), though we could define an alternative behaviour, such as withdrawing from
the negotiation. Timeouts give us a measure of fault tolerance in the presence of delays
or failures.

At various points in the protocol, an agent is required to perform various tasks,
e.g., making a decision, or retrieving some information. This is achieved through the
use of decision procedures. As stated earlier, a decision procedure provide an interface
between the dialogue protocol and the rational processes of the agent. In our language,
a decision procedure p takes a number of terms as arguments and returns a single result
in a variable v. The actual implementation of the decision procedure is external to the
dialogue protocol. For example, the acceptOffer decision procedure in line 31 of
the dialogue refers to an external decision procedure, which can be arbitrarily complex,
e.g., based on reputation, or according to some negotiation strategy.

The operations in the protocol are sequenced by the then operator which evaluates
op1 followed by op2, unless op1 involved an action which failed. The failure of ac-
tions is handled by the or operator. This operator is defined such that if op1 fails, then
op2 is evaluated, otherwise op2 is ignored. External data is represented by constants
c in our language. We do not attempt to assign types to this data, rather we leave the
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1 negotiate[
2 %buyer{
3 method() =
4 waitfor
5 (offer($value) <= agent($seller, %seller) then
6 call(deliberate, $value, $seller))
7 timeout (e)
8
9 method(deliberate, $value, $seller) =
10 ($newvalue = acceptOffer($value, $seller) then
11 accept($value) => agent($seller, %seller))
12 or ($newvalue = counterPropose($value, $seller) then
13 propose($newvalue) => agent($seller, %seller) then
14 call(wait, $newvalue))
15 or reject($value) => agent($seller, %seller)
16
17 method(wait, $value) =
18 waitfor
19 (accept($sellvalue) <= agent($seller, %seller)
20 or reject($oldvalue) <= agent($seller, %seller)
21 or (propose($newvalue) <= agent($seller, %seller)
22 then call(deliberate, $newvalue, $seller)))
23 timeout (call(wait, $value))}
24
25 %seller{
26 method() =
27 $value = getValue() then
28 offer($value) => agent(_, %buyer) then
29 call(wait, $value)
30
31 method(wait, $value) =
32 waitfor
33 (accept($sellvalue) <= agent($buyer, %buyer)
34 or reject($oldvalue) <= agent($buyer, %buyer)
35 or (propose($newvalue) <= agent($buyer, %buyer) then
36 call(deliberate, $newvalue, $buyer)))
37 timeout (call(wait, $value))
38
39 method(deliberate, $value, $buyer) =
40 ($newvalue = acceptOffer($value, $buyer) then
41 accept($value) => agent($buyer, %buyer))
42 or ($newvalue = counterPropose($value, $buyer) then
43 propose($newvalue) => agent($buyer, %buyer) then
44 call(wait, $newvalue))
45 or reject($value) => agent($buyer, %buyer)} ]

Fig. 3. MAP Negotiation Protocol
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interpretation of this data to the decision procedures. For example, in line 27 the starting
value is returned by the getValue procedure, and interpreted by the acceptOffer
procedure in line 10. Constants can therefore refer to complex data-types, e.g., currency,
flat-file data, XML documents.

It should be clear that MAP is a powerful language for expressing multi-agent di-
alogues. It is important to note that MAP is only intended to express protocols, and is
not intended to be a general-purpose language for computation. Therefore, the relative
paucity of features, e.g., no user-defined data-types, is entirely appropriate. Further-
more, MAP is designed to be a lightweight protocol language and only a minimal set of
operations has been provided. It is intended that MAP protocols will be automatically
generated, e.g., from a planning system, or from visual tools such as ISLANDER [28].

n(r{M})+ � [[M1]] ∧ · · · ∧ [[Mk]] (Scene)

method(φ(k)) = op � [[op]] ∆ ∪ {φ(k) �→ op} (Protocol)

α � ⊥ | � (Action)

op1 then op2 � [[op1]] ∧ �[[op2]] (Sequence)

op1 or op2 � [[op1]] ∨ [[op2]] (Choice)

waitfor op1 timeout op2 � �([[op1]] ∨ [[op2]]) (Iteration)

call(φ(k)) � [[∆(φ(k))]] (Recursion)

Fig. 4. MAP Denotational Semantics

A formal operational semantics for the MAP language has previously been pre-
sented in [29], together with an encoding of an auction protocol. It is also helpful to
define the semantics of MAP denotationally to show what is being computed mathe-
matically. Thus, we now sketch the semantics of MAP in a modal temporal logic. We
require only one modal construct: the term �ϕ denotes that the expression ϕ is true at
some future time. Figure 4 illustrates the translations into this form for the operations
of MAP. The square brackets indicate that the translation should be applied recursively.
The environment ∆ stores mappings from method arguments to operations. For each
action α, we must make a judgement as to whether the action is true � or false ⊥. We
note that the semantics are for a stricter variant of the language, where the choice oper-
ations are evaluated non-deterministic, rather than in left-to-right order. This behaviour
is useful for exposing errors in the protocols which may otherwise remain hidden.

We have used our language to specify a wide range of other protocols, including a
range of popular negotiation and auction protocols. We have also restated the semantics
of the FIPA-ACL performatives in MAP. Figure 5 gives a flavour of this transformation,
with a (simplified) encoding of the FIPA inform performative. We also outline an
encoding of the dialogue-games model in [30].
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FIPA Semantics: < i, inform(j, Φ) >
FP : BiΦ ∧ ¬Bi(BifjΦ ∨ UifjΦ)
RE : BjΦ

MAP Encoding: method(inform, $p, $i, $j) =
believe($i, $p) then
not(believe($i, bif($j, $p)) then
not(believe($i, uif($j, $p)) then
inform(p) => agent($j, _) then
assert(believe, $j, $p)

Fig. 5. Encoding of FIPA inform Performative

3 Model Checking MAP

The first step in the application of SPIN model checking to MAP protocols is the con-
struction of an appropriate system model. The underlying framework for modelling in
SPIN is the Kripke structure, though this is well hidden underneath its own process
meta-language PROMELA. SPIN translates the PROMELA language into Kripke struc-
tures, through a (loose) mapping of processes to states and channels to transitions. To
generate the appropriate model for our MAP protocols, we perform a a translation from
the MAP language to an abstract representation in PROMELA. Of particular importance
in this translation is the level of abstraction of the model on which the verification is
performed. If the level of abstraction is too low-level, the state space will be too large
and verification will be impossible. For example, it would be possible to construct a
meta-interpreter for MAP protocols in PROMELA, but this would be unlikely to yield
a sufficiently compact representation. Conversely, if the level of abstraction is too high
then important issues will be obscured by the representation. Our chosen method of
representation is a syntax-directed translation of the MAP protocols into PROMELA.

At an intuitive level there are a number of apparent similarities between MAP and
PROMELA. For example, both are based on the notion of asynchronous sequential pro-
cesses (or agents), and both assume that communication is performed via message
passing. These high-level similarities significantly simplify the translation as we can
translate MAP agents directly into PROMELA processes and agent communication into
message passing over buffered channels. Nonetheless, the translation of the low-level
details of MAP is not so straightforward as there are significant semantic differences in
the execution behaviour of the languages.

There are three key points of semantic mismatch between MAP and PROMELA
which we must address. The first of these concerns the order of execution of the state-
ments. In MAP, we assume a depth-first execution order, while PROMELA is based on
guarded commands [31]. The MAP language makes use of unification for the invoca-
tion of decision procedures, for recursion, and in message passing, while PROMELA has
a call-by-value semantics. Furthermore, MAP assumes that messages can be retrieved
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in an arbitrary order (by unification), while PROMELA enforces a strict queue of mes-
sages. Finally, we must consider how to represent MAP decision procedures in our
specification. We will now sketch how these semantic differences are handled in our
translation system.

We cannot readily represent the MAP execution tree in PROMELA as the language
does not permit the definition of complex data structures. Our adopted solution involves
flattening the execution tree through the translations shown in Figure 6. The templates
shown are applied recursively, where T (op) denotes a further translation of the oper-
ation op. We use a reserved variable fail to indicate whether a failure has occurred.
This variable is tested on the execution of then and or operations. If a failure occurs,
we skip all of the intermediate operations until an or node is encountered at which
point the execution resumes. In this way we simulate the essential behaviour of the
depth-first algorithm.

MAP: op1 then op2 op1 or op2

PROMELA: fail = false ; fail = false ;
T (op1) ; T (op1) ;
if if

:: (fail == false) -> :: (fail == true) ->
T (op2) fail = false ; T (op2)

:: else -> skip :: else -> skip
fi fi

Fig. 6. Control Flow Translation

Pattern matching is an essential part of the MAP language as it is used in method
invocation, and in the exchange of messages. Pattern matching is achieved through the
unification of terms, which may bind variables to values. As PROMELA does not support
pattern matching, we must perform a match compilation step in order to unfold the uni-
fication into a sequence of conditional tests. We do not describe the match compilation
further here as there are many existing algorithms for performing this task.

We previously stated that messages are stored in buffered channels in PROMELA,
and we define a separate message buffer for each agent. However, a message buffer acts
as a FIFO queue, and the messages must be retrieved in a strict order from the front of
the queue. By contrast, messages in MAP are retrieved by unification and any message
in the queue may be returned as a result. To simulate the required behaviour, we must
remove all of the messages in the queue in turn and compare them with the required
message by unification. The first message that is successfully matched is stored and the
remaining messages are returned to the queue. We note that it is not enough simply to
examine all the messages in the queue in-place, as we must also remove a matching
message.

A remaining issue in the translation process is the treatment of decision proce-
dures, which are references to external rational processes. For example, in our ne-
gotiation the buyer may make a counterproposal, expressed in line 12: $newvalue
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= counterPropose($value, %seller). The separation of rational processes
from the communicative processes is a key feature in MAP. Nonetheless, the decision
procedures are ultimately responsible for controlling the protocol and must be repre-
sented in some manner by our translation to PROMELA. To address this issue we make
the observation that the purpose of a decision procedure is to make a yes/no decision.
Similarly, the purpose of the model checking process is to detect errors in the proto-
col and not in the decision procedures. Thus, based on these observations we can in
principle replace a decision procedure with any code that returns a yes/no decision.
Furthermore, if this code returns a non-deterministic decision, the exhaustive nature of
the model checking process will mean that all possible behaviours of the protocol will
be explored. In other words, the model checker will explore all consequences for the
protocol where the decision was yes, and where the decision was no.

Our translation of decision procedures into PROMELA is achieved by exploiting
the non-determinism of guarded commands in the language. The semantics of guarded
commands is such that if more than one guard is executable in a given situation, a
non-deterministic choice is made between the guards. Therefore, the code fragment
presented in Figure 7 can act as a suitable substitute for the counterPropose deci-
sion procedure. The decision is marked as atomic as this improves the efficiency of
the model checking operation.

1 /* Decision: counterPropose */
2 atomic {
3 if
4 :: true -> fail = true
5 :: true -> newvalue = PROC_COUNTERPROPOSE
6 fi }

Fig. 7. Translation of counterPropose Decision Procedure

We have now sketched the essence of the translation from MAP to PROMELA. There
are a number of residual implementation issues, such as the implementation of parallel
composition, but these can be readily represented in PROMELA. The result of the trans-
lation is an specification of a protocol in PROMELA which replicates the semantics of
the protocol as defined in MAP.

Our initial model checking experiments with the SPIN model checker have focused
on the termination of MAP protocols. This is an important consideration in the design
of protocols, as we do not (normally) want to define scenes that cannot conclude. Non-
termination can occur as a result of many different issues such as deadlocks, live-locks,
infinite recursion, and message synchronisation errors. We also want to ensure that pro-
tocols do not simply terminate due to failure within the protocol. The termination con-
dition is the most straightforward to validate. Given that progress is a requirement in
almost every concurrent system, the SPIN model checker automatically verifies this
property by default. Every PROMELA process has one or more associated end states,
which denote the valid termination points. The final state of a process is implicitly an
end state. The termination condition states that every process eventually reaches a valid
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end state. This can be expressed as the following LTL formula, where end1 is the
end state for the first process, and end2 is the end state for the second process, etc:
�( �(end1 ∧ end2 ∧ end3 ∧ · · · )). We append the PROMELA code in Figure 8 to
the end of each translated process. The test in line 2 will block if a failure has occurred,
and the process will be prevented from reaching the end-state in line 3, i.e., the process
will not terminate.

1 /* Check For Failure */
2 fail == false ;
3 end: skip

Fig. 8. Test for Protocol Failure

One of the main pragmatic issues associated with model checking is producing a
state space that is sufficiently small to be checking with the available resources (1GB
memory in our case). Hence, it is frequently necessary to make a number of simplifying
assumptions in order to work within these limits. The negotiation protocol which we
have defined does not place any restriction on the length of the deliberation process and
is therefore in effect an infinite protocol. Model checking is restricted to finite models,
and therefore we must set a limit on the length of the negotiation. We therefore set a
limit of 50 cycles before the negotiation if forced to terminate.

An issue that was uncovered in the verification of the negotiation protocol is the
treatment of certain decision procedures. Our protocol was designed under the assump-
tion that the getValue() procedure would always return a value to be used as the
starting value of the negotiation. However, our translation makes no such assumption
as it substitutes a non-deterministic choice for each decision procedure. Therefore, the
result is that if the getValue() procedure fails, then the seller agent will terminate
with a failure, and the buyer will timeout. The issue with decision procedures was re-
solved by introducing a new type of procedure into the MAP language, corresponding
to a simple procedure that does not fail. We have found that it is often useful in the
design of MAP protocols to have simple procedures which perform basic tasks, such as
recording or returning values, and performing calculations. Amending the negotiation
protocol with a simple getValue() procedure resulted in a model which successfully
passed the model checking process.

4 Results and Conclusions

In this paper we have presented a novel language for representing Multi-Agent Dia-
logue Protocols (MAP), and we have outlined a syntax-directed translation from MAP
into PROMELA for use in conjunction with the SPIN model checker. Our translator has
been applied to a number of protocols, including the negotiation example in this pa-
per. We were pleased to find that the model checking process uncovered issues in these
protocols which had remained hidden during simulation. We believe that this is a sig-
nificant achievement in the design of reliable agent dialogue protocols. In contrast with
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existing approaches to model checking MAS, our protocols remain acceptable in terms
of memory and time consumption. Furthermore, we verify the actual protocol that will
be executed, rather than an abstract version of the system.

Our MAP protocol language was designed to be independent of any particular model
of rational agency. This makes the verification applicable to heterogeneous agent sys-
tems. Nonetheless, we recognise that the BDI model is still of significant importance to
the agent community. To address this issue, we are currently defining a system which
translates FIPA-ACL specifications into MAP protocols. We believe this will allow us
to overcome the problems of the BDI model highlighted in the introduction, and will
yield models that do not suffer from state-space explosion.

The translation system which we have outlined in this paper is designed to per-
form automatic checking of MAP protocols. This makes the system suitable for use
by non-experts who do not need to understand the model checking process. However,
this approach places restrictions on the kinds of properties of the protocols that we can
check. In our negotiation example, we can check that the protocol terminates, but we
cannot check for a particular outcome. This is a result of our abstraction of decision
procedures to non-deterministic entities.

Our current research is aimed at extending the range of properties of dialogue pro-
tocols that can be checked with model checking. In order to check a greater range
of properties we must augment the PROMELA translation with additional information
about the protocol. This information, and the resulting properties that we can check, are
specific to the protocol under verification. We have been able to verify protocol-specific
properties with a hand-encoding of the decision procedures as PROMELA macros, but
this relies on a detailed knowledge of the translation system. The provision of a general
solution to the specification of protocol-specific properties remains as further work.
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