
On Modelling Multi-agent Systems Declaratively

Andrea Bracciali1, Paolo Mancarella1, Kostas Stathis1,2, and Francesca Toni1,3

1 Dipartimento di Informatica, Università di Pisa
{braccia, paolo}@di.unipi.it

2 Department of Computing, City University London
kostas@soi.city.ac.uk

3 Department of Computing, Imperial College London
ft@doc.ic.ac.uk

Abstract. We propose a declarative framework for modelling multi-agent sys-
tems and specify a number of properties of these systems and agents within them.
The framework is parametric with respect to an input/output semantics for agents,
whereby inputs are the agents’ observations, and outputs are their actions. The ob-
servations include actions performed by other agents and events happening in the
world. We define the semantics of a multi-agent system via a stability condition
over the individual agents’ semantics. We instantiate the framework with respect
to simple abductive logic agents. We illustrate the framework and the proposed
properties by means of a simple example of agent negotiation.

1 Introduction

The ever-growing use of agents and multi-agent systems in practical applications poses
the problem of formally verifying their properties; the idea being that by verifying prop-
erties of the overall system we can make informed judgements about the suitability of
agents and multi-agent systems in solving problems posed within application domains.
For example, if a multi-agent system is to be used to negotiate on behalf of people, in
order to solve problems of re-allocation and sharing of resources (e.g., as in [1]), the
problem arises as to whether a specific set of agents/multi-agent system can actually
solve a concrete problem of resource-reallocation.

We specify a set of generic properties, which we believe to be interesting, of indi-
vidual agents, multi-agent systems and agents within multi-agent systems. Rather than
proposing a specific architecture or theory for agents, we view agents as “black-boxes”,
whose “semantics” is expressed solely in terms of (i) their observable behaviour, which
is public and thus visible to other agents in the same multi-agent system, and (ii) their
mental state, which is private and thus inaccessible to other agents in the same multi-
agent system. Our proposed properties can be instantiated for any concrete agent ar-
chitecture/theory that can be abstracted away in terms of the aforementioned “seman-
tics”, and apply to systems consisting of architecturally heterogeneous agents, including
legacy systems. Thus, our approach is not concerned with the specification or program-
ming of agents and agents’ applications, but rather it is tailored towards the specification
of properties of agents, which is to serve for their verification.

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 53–68, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



54 A. Bracciali et al.

The observable behaviour of an agent is expressed in terms of an output set of ac-
tions from a pool of actions that the agent can perform, given an input set of obser-
vations from a pool of observations that the agent can make. Actions and observation
can be communicative or not. Actions of one agent may be observations of another.
Observations may include also events in the world in which agents are situated. The
set of visible events and actions by other agents that an agent can observe in the world
constitute its environment. If all agents in a multi-agent system can observe all events
happening in the world and all actions performed by the other agents, then we call the
multi-agent system fully transparent. Otherwise, we call the system partially transpar-
ent. The mental state is seen as a set of beliefs by the agent. Actions, observations,
events and beliefs are seen as atoms in some logical languages.

Given the “semantics” of agents as described above, we define the semantics of
a multi-agent system via a definition of stability on the set of all actions performed
by all agents in the system, possibly arising from their communication and interaction
via observation: a set of actions (by the different agents) is stable if, assuming that an
“oracle” could feed each of the agents with all the actions in the set performed by the
other agents (and all events happening in the world), then each agent would do exactly
what is in the set, namely their observable behaviour would be exactly what the set
envisages.

We specify properties of individual success of agents, overall success of a multi-
agent system, robustness and world-dependence of a multi-agent system, as well as a
number of properties of agents within systems. We then instantiate our framework by
means of simple abductive logic agents, whose mental state and observable behaviour
can be computed by applying an adaptation of the Tp operator of logic programs (see
e.g., [2]) starting from the observations of the agents. If a multi-agent system consists
of these simple agents, we show how stable sets of actions by all the agents can be
computed incrementally. We also illustrate the framework and the properties we propose
in the context of multi-agent systems consisting of the simple abductive logic agents.

2 Preliminaries

A multi-agent system 〈A,W〉 consists of a set A of n agents (n ≥ 2) that we refer
to simply as 1, . . . , n, and a world W in which events may happen which the agents
may perceive. Until section 5, we will abstract away from the details of the agents’
architecture and model, and simply rely upon the existence of a semantics of agents,
as understood below. Thus, note that our model applies to systems of architecturally
heterogeneous agents. We will also abstract away from the details of the world, except
for assuming that it is characterised by a (possibly empty, possibly infinite) set of events,
which may be observed by the agents. We will refer to these events as E(W).

Each agent i is associated with a (possibly empty, possibly infinite) set of potential
actions that it can perform, indicated as A(i), and a (possibly empty, possibly infinite)
set of observations it can make, indicated as O(i). Without loss of generality, we will
assume that A(i) ∩ A(j) = ∅, for i �= j, namely no action can be performed by two
different agents. For example, the action whereby agent 1 asks agent 2 for some re-
source can only be performed by agent 1, while the action whereby agent 2 asks agent



On Modelling Multi-agent Systems Declaratively 55

3 for some resource can only be performed by agent 2, and so on. For simplicity, we
do not explicitly deal with the representation of time, but we assume that actions are
distinguished by their execution time (i.e. the same action executed at different instants
will be represented by different elements in A(i)) and executed in the “proper” order.
Also, given some set ∆, we will denote by ∆(j) the set of actions in ∆ pertaining to
the agent j, namely ∆(j) = ∆ ∩ A(j).

Actions performed by one agent may be observations of another, namely the lan-
guage in which actions and observations are represented is common amongst the agents.
E.g., actions may be outgoing communication and observations may be incoming com-
munication, and the language in which they are represented may be an agent commu-
nication language. Observations by agents may also be events happening in the world,
taken from E(W). Formally,

⋃

i∈A
O(i) ⊆ E(W) ∪

⋃

i∈A
A(i)

In Section 3.1 we will first consider the case in which each agent can observe all other
agents’ actions as well as the whole world. In Section 3.2 we will consider the case in
which each agent may have only a partial visibility both of other agents’ actions and
of the world. This may be due to its inability to fully observe the other agents and the
world, as well as to the unwillingness of some agents to disclose all their actions to
every other agent. The portion of the world and of the (actions performed by) other
agents visible to an agent can be seen as the environment in which this agent is situated.

The semantics of agent i is indicated as

Si(∆in,∆0) = 〈M,∆out〉,

where

– ∆in ⊆ O(i) is a (possibly infinite) set of observations by agent i,
– ∆0 ⊆ A(i) is a (possibly infinite) set of actions by agent i,
– M is a (possibly infinite) set of atomic sentences (from a given “private” language

that the agent is equipped with), understood as the mental state of the agent, and
– ∆out ⊆ A(i) is a (possibly infinite) set of actions performed by agent i, understood

as the observable behaviour of the agent.

∆0 will typically belong to some initial plan of the agent i, allowing i to achieve its
goals or desires, according to its mental state. We will refer to the goals of agent
i as Gi. Syntactically, goals are sets of atoms in the internal language of the agent. In
particular, the set of goals may be empty. M can be seen as the set of atomic beliefs held
by the agent, and private to the agent itself. It may be ⊥, indicating the inconsistency
of a mental state of the agent. ∆out is instead the public side of the agent. Given ∆in

and ∆0, Si(∆in,∆0) may not be unique (namely Si may not be a function in general).
Although this declarative formulation of our model can deal with infinite sets, e.g.,

accounting for reactive agent behaviour, its operational counterparts for verification will
typically revert to finite instances of agents’ behaviour (as in well-known verification
methodologies, like finite model checking). Section 5 proposes a possible way to con-
struct a concrete such semantics for agents based on abductive logic programming.



56 A. Bracciali et al.

3 Semantics of a Multi-agent System

We define a semantics for a multi-agent system, parametric with respect to the semantics
of the individual agents. This semantics relies upon the notion of stable set of actions
(by all agents in the system). Agents are assumed to start with (possibly empty) initial
plans ∆1

0, . . . ,∆
n
0 . Moreover, the world is supposed to provide a set ∆E ⊆ E(W) of

happened events. We provide two definitions for the notion of stable set, according to
whether the agents fully or partially perceive the world and the other agents.

3.1 Fully Transparent Multi-agent Systems

In this section we assume that each agent has full perception of each other agent as well
as of the world. We call such a multi-agent system fully transparent.

Definition 1. A fully transparent multi-agent system 〈A,W〉 is stable if there exists
∆ ⊆

⋃
i∈A A(i), such that

i.
⋃

i∈A
∆i

out = ∆

ii. Si(∆−i ∪ ∆E ,∆i
0) = 〈M i,∆i

out〉
iii. ∆ ⊇

⋃
i∈A

∆i
0

where ∆−i is the set of all actions performed by all agents except agent i, namely

∆−i =
⋃

j ∈ A
j �= i

∆(j)

The set ∆ is called a stable set for 〈A,W〉.

By the previous definition, the sets ∆1
out, . . . ,∆

n
out, if they exist, are a solution for the

set of mutually recursive equations

S1(∆−1 ∪ ∆E ,∆1
0) = 〈M1,∆1

out〉
...

Sn(∆−n ∪ ∆E ,∆n
0 ) = 〈Mn,∆n

out〉

where each ∆−i occurring on the left-hand side of the i − th equation is defined in
terms of the ∆j

out sets, occurring in all the other equations. Intuitively speaking, a set
of actions (by the different agents) is stable if, assuming that an “oracle” could feed
each of the agents with all the actions in the set performed by the other agents (and
all events happening in the world), then each agent would do exactly what is in the
set, namely their observable behaviour would be exactly what the set envisages. Note
that the assumption on the existence of an “oracle” is justified by the fact that we are
providing a semantics for multi-agent systems, rather than relying upon their execution
model.

Note that conditions i. and ii. in Definition 1 imply that ∆i
0 ⊆ ∆i

out, namely that
agents cannot change their initial plans. This condition could be relaxed.



On Modelling Multi-agent Systems Declaratively 57

3.2 Partially Transparent Multi-agent Systems

We model now multi-agent systems where each agent may have only a partial visibility
of the rest of the system and of the world. We call such multi-agent systems partially
transparent. We assume that the perception of the world by every agent i is given by
∆i

E ⊆ ∆E , as opposed to the whole ∆E in Definition 1(ii.). ∆i
E could be defined

via a suitable projection function. Clearly, for fully transparent multi-agent systems
∆i

E = ∆E .

Definition 2. A partially transparent multi-agent system 〈A,W〉 is stable if there exists
∆ ⊆

⋃
i∈A A(i) such that

i.
⋃

i∈A
∆i

out = ∆

ii. Si(∆−i ∪ ∆i
E ,∆i

0) = 〈M i,∆i
out〉

iii. ∆ ⊇
⋃

i∈A
∆i

0

where

∆−i ⊆
⋃

j ∈ A
j �= i

∆(j)

The set ∆ is called a stable set for 〈A,W〉.

Moreover, the set ∆−i does not consists, in the general case, of the whole set of
actions performed by other agents. Concretely, for each agent i and set ∆ ⊆

⋃
i∈A

A(i),

the set ∆−i can be given by a suitable visibility projection function which filters out the
elements of ∆ that are not visible to agent i. For example

∆−i =
⋃

j ∈ A
j �= i

vj
i (∆(j))

where vj
i is the visibility projection function of agent i on agent j, expressing what

agent i sees of what agent j does. Necessarily, vj
i (X) ⊆ X , and, for fully transparent

multi-agent systems, vj
i (X) = X . Actions performed by j and not ”seen” by i may be

private to j, or simply not under i’s jurisdiction. Note that the visible environment of i,
given ∆E and ∆, can be formally defined as

E(i) = ∆i
E ∪

⋃

j ∈ A
j �= i

vj
i (∆(j))



58 A. Bracciali et al.

4 Properties

In this section we define properties of individual agents, of multi-agent systems, and
of agents in multi-agent systems. These properties rely upon agents having the se-
mantics we describe in section 2 and multi-agent systems having the semantics we
describe in sections 3.1 and 3.2, depending on whether they are fully or partially
transparent.

4.1 Individual Agents

Definition 3. (Successful agent)
Assume that agent i is equipped with a set of desires Gi. We say that the agent is
successful with respect to input ∆in and initial plan ∆0 (for Gi) if Si(∆in,∆0) =
〈M,∆out〉 and Gi ⊆ M .

Namely, a successful agent is one that achieves its desires, in that its desires hold in
the mental state of the agent. Note that our notion of success is local and subjective to
the agent, namely, an agent may believe to be successful without being so in the world.
Note also that, if the agent has no desires, then success amounts to its mental state
being different from ⊥. This is required also in the case of the agent being equipped
with desires.

4.2 Multi-agent Systems

Definition 4. (Overall successful system)
〈A,W〉 is overall successful wrt some ∆E , ∆1

0, . . . ,∆
n
0 , if there exists a stable ∆ such

that each i is successful, wrt ∆−i and ∆i
0.

Namely, overall success amounts to individual success for all the agents. Note that this
is a rather weak notion of overall success, as it only requires for one successful stable
set to exist. Stronger versions could also be interesting. Note also that, if agents have no
desires, then overall success amounts to the existence of a stable set and to the property
that no agent has ⊥ as its mental state.

Definition 5. (Robust system)
An overall successful system 〈A,W〉 is robust if there exists no i ∈ A such that 〈A \
{i},W〉 is not.

Namely, a robust system is one that does not need any of its agents to be overall suc-
cessful, or, alternatively, one in which no agent needs any of the others in order to be
successful.

Definition 6. (World-dependent system)
〈A,W〉 is world-dependent if it is not overall successful wrt ∆E = ∅ (and any
∆1

0, . . . ,∆
n
0 ) but it is overall successful wrt some ∆E �= ∅ (and some ∆1

0, . . . ,∆
n
0 ).

Namely, a world-dependent multi-agent system is one that cannot do without the world,
and events happening in it, to be successful.



On Modelling Multi-agent Systems Declaratively 59

4.3 Agents in Multi-agent Systems

Definition 7. (Aware agent)
Let 〈A,W〉 be a (fully or partially) transparent multi-agent system, and i ∈ A. Given
input ∆in, initial plan ∆0, and set of events ∆E , let Si(∆in,∆0) = 〈M i,∆i

out〉. Then,
we say that agent i ∈ A is

– world aware, if ∆i
E ∩ ∆in ⊆ M i,

– j-aware, for some j ∈ A, j �= i, if A(j) ∩ ∆in ⊆ M i,
– environment aware, if it is world-aware and j-aware, for all j ∈ A, j �= i.

Namely, a world-aware agent is one that holds, within its mental state, a belief of all the
events that have happened in the world and that it has observed. An other-agent aware
agent is one that believes in all the observations it made upon the other. An environment-
aware agent is one that believes in everything it observes, including events in the world
and actions by other agents it can observe.

Definition 8. (System dependent agent)
Let 〈A,W〉 be a (fully or partially) transparent multi-agent system, and i ∈ A. Given
∆E and Gi, assume that for no initial plan ∆0, agent i is successful with respect to
∆E and ∆0. We say that agent i is system dependent if there exists a stable set ∆ for
〈A,W〉 such that agent i is successful with respect to ∆−i and some initial plan ∆0.

Namely, a system-dependent agent is one that cannot be successful alone, but it can be
successful if with other agents in a multi-agent system. Thus, this agent has a motivation
to look for other agents with which to join forces.

Definition 9. (Dispensable agent)
Let 〈A,W〉 be a (fully or partially) transparent multi-agent system, and i ∈ A. Agent i
is dispensable within 〈A,W〉 if 〈A \ {i},W〉 is overall successful.

Namely, a dispensable agent is one that is not needed to guarantee success of the other
agents in the system. So, designers of a multi-agent systems, or individual agents having
control over which agents belong to the system, could exclude any dispensable agent
from it (e.g., to reduce communication costs).

Definition 10. (Dangerous agent)
Let 〈A,W〉 be a (fully or partially) transparent multi-agent system. i �∈ A is dangerous
to 〈A,W〉 if 〈A,W〉 is overall successful but 〈A ∪ {i},W〉 is not.

Namely, a dangerous agent is one that can undermine the overall success of a multi-
agent system, if added to it. So, designers of a multi-agent systems, or individual agents
having control over which agents belong to the system, should make sure that no dan-
gerous agent belong to the system.

5 A Concrete Multi-agent Semantics

We illustrate our framework by means of a simple example where agents are abductive
logic agents. Abductive logic programming has been recently used to describe agents



60 A. Bracciali et al.

and their interactions (see e.g., [3, 4, 5]). The semantics S of a single (abductive) agent
is defined by means of a bottom-up construction, in the spirit of the Tp operator for
logic programs [2], and adapted here for abductive logic programs. Informally, given
a “partial semantics”, the operator returns a more defined semantics, if it exists, by
adding the immediate consequences of it. The (possibly infinite) repeated application
of the operator is proved to converge to a semantics which is taken as the semantics S
of the agent. This kind of semantics is then lifted to multi-agent systems by defining
a bottom-up semantics in terms of the operators of the single agents the multi-agent
system is made up of. This construction of S is not to be interpreted as the execution
model of the agent. For simplicity, we concentrate upon fully transparent multi-agent
systems.

5.1 Single Agent Language and Semantics

Due to lack of space, we assume that the reader has some familiarity with abductive
logic programming (ALP for short, see e.g., [6]). An agent i consists of an abductive
theory 〈P,O ∪ A, IC〉, where P is a logic program, O ∪ A is a set of abducible atoms
partitioned in observations and actions, and IC is a set of integrity constraints. 1 P
consists of a set of clauses of the form

p ← p1, . . . , pn n ≥ 0
where p is a non-abducible atom and p1, . . . , pn are (possibly abducible) atoms. As
usual in ALP, we assume that abducibles have no definition in P . The integrity con-
straints IC are of the form

p1, . . . , pn ⇒ false p1, . . . , pn ⇒ a

where false is a special symbol denoting integrity violation, each pj is a (possibly ab-
ducible) atom and a is an action, namely a ∈ A. Notice that ⊥ can occur only in the
conclusion of integrity constraints. We assume that variables occurring in clauses and
integrity constraints are implicitly universally quantified from the outside, with scope
the entire formula in which they occur. Moreover, we assume that no variable occurs
in the conclusion of an IC that does not occur in its body. As usual in logic program-
ming, given an abductive logic agent as defined above, we will denote by ground(P )
(resp. ground(IC)) the (possibly infinite) set of all possible ground instantiations of
the clauses in P (resp. of the integrity constraints in IC). Moreover, given a set of
ground abducibles ∆ ⊆ O∪A, we indicate with I an interpretation for P ∪∆. Roughly
speaking, the semantics of an abductive theory 〈P,O∪A, IC〉, if it exists, can be given
as a pair 〈I,∆〉, where ∆ ⊆ O ∪ A, I is a model of P ∪ ∆ ∪ IC and false �∈ I (see
e.g., [7]).

In the sequel, given an abductive logic agent, we define its input/output semantics
S(∆in,∆0) by a suitable T operator, which step-wise approximates both the mental
state and the observable behaviour of the agent, and which is a simple generalization of
the immediate consequences operator TP of logic programming, suitably extended in
order to take integrity constraints into account.

1 The sets O and A correspond to the sets O(i) and A(i) of Section 2, respectively.



On Modelling Multi-agent Systems Declaratively 61

Definition 11 (T operator). Given an abductive logic agent 〈P,O ∪ A, IC〉, let ∆ ⊆
O ∪ A and let I be an interpretation. The T operator is defined as:

T (I,∆) = 〈I ′,∆′〉

where:
I ′ = {p | p ← l1, . . . ln ∈ ground(P ) ∧ {l1, . . . ln} ⊆ I ∪ ∆},
∆′ = ∆∪{a ∈ A∪{false} | l1, . . . ln ⇒ a ∈ ground(IC) ∧ {l1, . . . ln} ⊆ I ∪∆}.

It is not difficult to see that the T operator is monotonic. For simplicity, in the sequel
we use ⊆ to denote pairwise set inclusion.

Lemma 1 (T is monotonic). Let be 〈I1,∆1〉 ⊆ 〈I2,∆2〉, then:

T (I1,∆1) ⊆ T (I2,∆2).

Proof. Let T (I1,∆1) = 〈I ′1,∆′
1〉 and T (I2,∆2) = 〈I ′2,∆′

2〉. We show that I ′1 ⊆
I ′2 (the proof of ∆′

1 ⊆ ∆′
2 is analogous). Let p ∈ I ′1. Then there exists a clause in

ground(P ) of the form p ← l1, . . . ln such that {l1, . . . ln} ⊆ I1 ∪ ∆1. Since, by
hypothesis, I1 ∪ ∆1 ⊆ I2 ∪ ∆2, {l1, . . . ln} ⊆ I2 ∪ ∆2 and hence p ∈ I ′2. ��

The monotonicity of T ensures that, given a set of observations ∆in ⊆ O and an initial
plan ∆0 ⊆ A, we can define the semantics of an abductive logic agent i in terms of the
least fix-point of the T operator, that we denote by T∞(∅,∆in ∪∆0), starting from the
initial pair 〈∅,∆in ∪ ∆0〉.

Definition 12. Given an abductive logic agent i, an initial set of observations ∆in and
an initial plan ∆0, let T∞(∅,∆in ∪ ∆0) = 〈M,∆〉. Then

Si(∆in,∆0) =
{
〈M,∆(i)〉 if false �∈ M
〈⊥,∆(i)〉 otherwise

Example: A Concrete Agent. Consider a simple agent 1 who can achieve some goal
g by asking to get a resource from a friend (we assume that resources can be shared
amongst agents and be re-used as many times as required). This simplifying assumption
allows us to present our model within a monotonic framework. Agent 1 believes that
agent 2 is a friend. Agent 1 can observe that another agent gives something to it and
can perform the actions of paying and thanking. It is forced to thank a friend or pay an
enemy for a received resource.

P : g ← friend(Y ), ask(1, Y, r), getfrom(Y, r) O: give(Y, 1, r)
getfrom(Y, r) ← give(Y, 1, r) A: thank(1, Y )
friend(2) pay(1, Y )

IC: give(Y, 1, r), friend(Y ) ⇒ thanks(1, Y ) ask(1, Y, r)
give(Y, 1, r), enemy(Y ) ⇒ pay(1, Y )

We also assume here an implicit treatment of time, so that an asking action is performed
before the asked resource is obtained.



62 A. Bracciali et al.

Let us imagine that the agent has the initial plan to ask for the resource from agent
2, i.e., ask(1, 2, r) ∈ ∆0, and that agent 2 is actually giving the owned resource to
1, as confirmed by the observation give(2, 1, r) ∈ ∆in. The semantics of the agent
is then defined as follows (note that in this case the fix-point has been reached in few
iterations):

T1(∅, {give(2, 1, r), ask(1, 2, r)}) =
〈{friend(2), getfrom(2, r)}, {give(2, 1, r), ask(1, 2, r)}〉

T2(∅, {give(2, 1, r), ask(1, 2, r)}) =
〈{friend(2), getfrom(2, r), g}, {give(2, 1, r), ask(1, 2, r)}〉

T3(∅, {give(2, 1, r), ask(1, 2, r)}) =
〈{friend(2), getfrom(2, r), g},{give(2, 1, r), ask(1, 2, r), thank(1, 2)}〉

T4(∅, {give(2, 1, r), ask(1, 2, r)}) = T3(∅, {give(2, 1, r), ask(1, 2, r)})

that is, the agent satisfies its goal g. In the notation of Section 3.1:

S1({give(2, 1, r)}, {ask(1, 2, r)}) =
〈{friend(2), getfrom(2, r), g}, {ask(1, 2, r), thank(1, 2)}〉.

Instead, considering the case in which agent 1 asks another agent not believed to be a
friend, say agent 3 that behaves as agent 2, it still acquires the resource, but fails its
goal g:

S1({give(2, 1, r)}, {ask(1, 3, r)}) =
〈{friend(2), getfrom(2, r)}, {ask(1, 3, r), thank(1, 2)}〉.

5.2 Multi-agent Semantics

A fully transparent multi-agent system, as defined in Section 3.1, can consist of agents
whose concrete semantics is the one defined in Section 5.1. We first show a simple
example of the resulting semantics for a multi-agent system consisting of agent 1 pre-
viously introduced, and two new agents. Then, we define an operational bottom-up
semantics for the multi-agent system, by lifting the single agent semantics. Semantics
hence consists of a set of mutually recursive T j , one for each agent participating into
the system. Finally, we prove that, under specific circumstances, the operational seman-
tics entails the one defined in Section 3.1.

Example: A Fully Transparent Multi-agent System. Let us consider a system con-
sisting of agent 1 of Section 1, together with agents 2 and 3, as below defined:

2:
P : have(r) ← offer(Y, 2, r)
A: give(2,X, r)
O: ask(X, 2, r)

offer(Y, 2, r)
IC: ask(X, 2, r), have(r) ⇒ give(2,X, r)

3:
P : friend(2)

have(r)
A: offer(3,X, r)
IC: have(r), friend(X) ⇒

offer(3,X, r)

Agent 2 has a resource if it observes that the resource has been offered by someone.
In this case the agent is forced to give the resource to anybody who requires it. Agent



On Modelling Multi-agent Systems Declaratively 63

3 has the resource and a friend, and it must give the owned resource to the friend.
Agent 1 is the only agent having a goal, g namely, while all the others have a reactive
behaviour with respect to (their representation of) the world and the behaviour of the
other agents. Given their knowledge bases, agents are able to cooperate and allow agent
1 to accomplish its goal, as soon as it adopts the initial plan to ask for the resource
(∆1

0 = {ask(1, 2, r)}).
Assuming that no other information is provided by the environment ∆E = ∅, and

that agents 2 and 3 have empty initial plans, ∆2
0 = ∆3

0 = ∅,

∆ = {ask(1, 2, r), give(2, 1, r), thank(1, 2), offer (3, 2, r)}

is a stable set for the multi-agent system 〈A = {1, 2, 3},W〉 with E(W) = ∅. Indeed,
we have

S1(∆−1, {ask(1, 2, r)}) = 〈{g, friend(2), getfrom(2, r)},
{ask(1,2, r), thank(1,2)}〉

S2(∆−2, ∅) = 〈{have(r)}, {give(2,1, r)}〉
S3(∆−3, ∅) = 〈{friend(2), have(r)}, {offer(3,2, r)}〉

and
⋃

i∈A ∆i
out = ∆ ⊇

⋃
i∈A ∆i

0, where ∆i
out are boldface. Notice how some of the

actions performed by an agent are interpreted as observations by the other agents (e.g.,
ask(1, 2, r) for agents 1 and 2, respectively).

The multi-agent system is thus overall successful, but it is not robust (e.g., 2 is
needed for the overall success of the system, and so is 3). Agent 1 is system-dependent,
whereas agents 2, 3 are not. Finally, 〈A = {1, 2, 3},W〉 is obviously not world-
dependent.

5.3 Fully Transparent Multi-agent System Operational Semantics

Similarly to the case of the single agent operational semantics presented in Section 5.1,
also multi-agent system can be provided with a bottom-up semantics in the case of
the simple agent language taken into account. The semantics of a system builds upon
the semantic operators T i of the single agents i belonging to the system. The overall
semantics is then obtained by the mutual interaction of agent semantics, where each
application of the semantic operators takes into account not only the single agent so-far
approximated, but also the observable semantics, namely the actions, produced up to
now by the repeated application of the semantic operators of the other agents. In this
way, agents “react” to the output actions by the other agents in the system as soon as
they are observed.

The operational counterpart of Sj(∆j
in,∆j

0) within the context of the chosen lan-
guage, is defined on top of the single agent operational semantics as a class of mutually
recursive operators, which step-wise approximate the semantics of the system. In the
following we will use the short-hand 〈I,∆〉 for the tuple 〈〈I1,∆1〉, . . . , 〈In,∆n〉〉,
where 1, . . . , n are the agents in A. On the other hand, when clear from the context,
〈Ii,∆i〉 will denote the i−th component of the tuple 〈I,∆〉. Finally, given two tuples
〈I,∆〉 and 〈J, Γ 〉, we will write 〈I,∆〉 ⊆ 〈J, Γ 〉 as a shorthand for the conjunction
〈I1,∆1〉 ⊆ 〈J1, Γ 1〉 ∧ . . . 〈In,∆n〉 ⊆ 〈Jn, Γn〉.



64 A. Bracciali et al.

For simplicity, in this section we consider multi-agent systems where the world
component W is not present. Hence, in the sequel we refer to a multi-agent system
consisting only of a set A, where each agent i is an abductive logic agent 〈Pi, Oi ∪
Ai, ICi〉 (as introduced in Section 5.1). For each agent i ∈ A we denote by T i its
operator as defined in Definition 11.

Definition 13 (T A). Let A = {1, . . . , n}, Ii and ∆i be an interpretation and a subset
of abducibles for each agent i, respectively. The TA operator is defined as follows

TA(I,∆) = 〈J, Γ 〉

where for each i,

〈J i, Γ i〉 = T i(Ii,∆i ∪ ∆−i)

where ∆−i =
⋃

j∈A, j �=i ∆j(j).

It is not difficult to show that the operator TA is monotonic.

Lemma 2 (T A is monotonic).
Let 〈I,∆〉 and 〈J, Γ 〉 be such that 〈I,∆〉 ⊆ 〈J, Γ 〉. Then

TA(I,∆) ⊆ TA(J, Γ ).

Proof. Let:

– 〈I1,∆1〉 = TA(I,∆)
– 〈J1, Γ1〉 = TA(J, Γ )

We need to show that, for each i, 〈Ii
1,∆

i
1〉 ⊆ 〈J i

1, Γ
i
1〉. By definition, for all i, 〈Ii

1,∆
i
1〉 =

T i(Ii,∆i ∪ ∆−i). By the hypothesis 〈I,∆〉 ⊆ 〈J, Γ 〉, it is clear that ∆−i ⊆ Γ−i and
hence 〈Ii

1,∆
i
1〉 = 〈Ii,∆i ∪ ∆−i〉 ⊆ 〈J i, Γ i ∪ Γ−i〉. By the monotonicity of T i it

follows that T i(Ii,∆i ∪ ∆−i) ⊆ T i(J i, Γ i ∪ Γ−i) = 〈J i
1, Γ

i
1〉. ��

The monotonicity of T A allows us to give a bottom-up characterisation of the se-
mantics of a multi-agent system as a whole, similarly to what we have done in Definition
12 for a single agent. In the next definition we denote by T A

∞ (∅,∆0) the least fix-point
of T A, obtained by repeatedly applying it starting from the initial tuple 〈∅,∆0〉, where,
for each i, ∆i

0 is a (possibly empty) initial plan for the agent i.

Definition 14. Given a multi-agent system A, and and initial plan ∆i
0 for each i ∈ A,

let 〈I,∆〉 = T A
∞ (∅,∆0). Then the concrete semantics SA(∆0) of the system is defined

as follows:

SA(∆0) = 〈I,∆〉

Notice that the semantics of the system as a whole is defined even if the semantics
of some or all of the agents in the system is undefined. This is somewhat an arbitrary
decision, that could be changed according to the needs of applications.



On Modelling Multi-agent Systems Declaratively 65

Example: A Fully Transparent Multi-agent System Concrete Semantics. We show
how the operator T A behaves in the case of the multi-agent system of Section 5.2. The
process is summed up by the following table, where rows represent the iteration steps
and columns represent the agents. In the example, the initial plans are empty as far as
agents 2 and 3 are concerned, whereas the initial plan of agent 1 consists of asking
to agent 2 for the resource. We highlight in boldface the pairs 〈Ii,∆i〉 which do not
change in the future iterations. Hence the operator’s fix-point is obtained by the tuple
composed by the boldface pairs.

1 2 3
〈{friend(2)}, {ask(1, 2, r)}〉 〈∅, ∅〉 〈{friend(2), have(r)},

{}〉

〈{friend(2)}, {ask(1, 2, r)}〉 〈∅, {ask(1, 2, r)}〉 〈{friend(2),have(r)},
{offer(3,2, r)}〉

〈{friend(2)}, {ask(1, 2, r)}〉 〈{have(r)}, {ask(1, 2, r),
offer(3, 2, r)}〉

〈{friend(2)}, {ask(1, 2, r)}〉 〈{have(r)}, {ask(1,2, r),
offer(3,2, r),give(2,1, r)}〉

〈{friend(2), getfrom(2, r)},
{ask(1, 2, r), give(2, 1, r),
thank(1, 2)}〉

〈{friend(2),getfrom(2, r),g},
{ask(1,2, r),give(2,1, r),
thank(1,2),g}〉

From the fix-point, we can extract the set

∆ = {ask(1, 2, r), give(2, 1, r), thank(1, 2), offer (3, 2, r)}

of the actions performed by each agent (and hence their single semantics). It is worth
noting that this set coincides with the stable set shown in Section 5.2.

Indeed, we conjecture that a stable set can be constructed from the fix-points of the
operator T A. If this is the case, the latter can be seen as a way of incrementally building
stable sets for the multi-agent system.

6 Related Work

Viroli and Omicini in [8] view a multi-agent system (MAS) as the composition of ob-
servable systems. The focus on observation is based, like in our framework, on the
assumption that the hidden part of an agent manifests itself through interactions with
the environment, and on how an agent makes its internal state perceivable in the out-
side. However, our work further distinguishes between different kinds of environment
accessibility by agents through the use of visibility projection functions used by these



66 A. Bracciali et al.

agents. In addition, we combine observable behaviour with the mental state of the agent,
so as to permit to have partial access to the mental state of an agent in order to prove
properties that are useful to a MAS, e.g. by allowing MAS designers to tests the desires
against the mental state of an agent, without necessarily revealing/computing the full
mental state.

Wooldridge and Lomuscio in [9] define a family of multi-modal logics for reason-
ing about the information properties of situated computational agents. They distinguish
between what is objectively true in the environment, which in our approach is defined
by what holds true in the world, the information that is visible, which our approach
does not provide, information that an agent perceives, as with our observations, and
finally information that the agent knows of the environment, which in our framework is
defined by the mental state of an agent. Apart from the fact that we do not use a modal
logic semantics, we also differ in the way we understand an environment. Wooldridge
and Lomuscio’s work is based on a definition often found in distributed systems [10],
in that an environment does not contain the other agents (a bit like our notion of world).
Instead in our approach the environment of an agent contains the state of the world and
the other agents, and is closer to [11].

Another related approach to our work, presented by Ashri et al. in [12], is the iden-
tification and management of relationships in MASs. A formal model of the different
kinds of relationships formed between interacting agents is presented and the way such
relationships impact the overall system functioning is being investigated. If relation-
ships between agents can be seen as properties, their work is similar to ours in that it
attempts to identify properties in relation to observable parts of the environment in an
application neutral manner. In this context, their way of managing relationships using
control mechanisms can be thought in our terms as the required mechanisms that can be
used to compute the semantics. However, Ashri et al. focus more on finding dependen-
cies and influences between agent actions in the environment and less upon our concern
of proving properties using the notion of stability.

Computational Logic approaches for formally describing and understanding MASs
systems have been proposed in the past, e.g. [13, 14, 15], and are being pursued cur-
rently, possibly enhanced with other techniques, like Temporal Model Checking in [16].
Closer to our work is the work on the ALIAS system [17, 13], which relies on abduc-
tive logic programming to define a MAS. One major difference between ALIAS and
our work is that agents in ALIAS have all the part of their mental states public, while
in our approach part of the mental state needs to be public to the designer only.

7 Conclusions

We have proposed a semantics for multi-agent systems and a catalogue of properties
for individual agents, multi-agent systems, and agents in multi-agent systems that we
believe to be useful to aid the designers of concrete applications. Our semantics is fully
declarative and abstract, and does not rely upon any concrete agent architecture or
model, except for assuming that the semantics of individual agents is given in terms
of their (public) observable behaviour and (private) mental state. We have illustrated
the proposed notions for concrete abductive logic agents, whose beliefs are held within



On Modelling Multi-agent Systems Declaratively 67

an abductive logic program, and whose mental state and observable behaviour is given
by adapting the Tp operator for logic programming. We have adopted a qualitative ap-
proach to the definition of success of agents, rather than assuming they are equipped
with quantitative utility functions. The resulting model is not based upon game-theoretic
concepts, but it would be interesting to compare/integrate our approach with that theory,
e.g., comparing our notion of stable set with that of Nash equilibrium.

Other notions of individual welfare, different from the notion of individual success,
would also be interesting. For example, we could consider maximising the number of
achieved goals. Also, rather than having a “yes-no” kind success, we could compare
multi-agent systems in terms of how close to success they are.

As future work, we plan to investigate the relationships between fix-points of the
T A operator, i.e., the concrete semantics of a multi-agent system, and stable sets of A,
as described in the final example of Section 5.3. A further important problem for future
studies is that of identifying means for the automatic verification of properties of multi-
agent systems, in terms of properties of the individual agents composing them. This
would aid the effective design of the such systems for the solution of concrete problems.
Additional, less simplistic instances of our framework would also be interesting, e.g.,
3APL agents [18]. In particular, we plan to adopt this framework for KGP agents, as
defined in [19], and study the problem of properties verification in that context.

Acknowledgments

We would like to thank the anonymous referees for their valuable comments. This
work has been supported by the SOCS project (IST-2001-32530), funded under the
EU Global Computing initiative. The last two authors would also like to acknowledge
support from the Italian programme “Rientro dei cervelli”.

References

1. Sadri, F., Toni, F., Torroni, P.: Dialogues for negotiation: agent varieties and dialogue se-
quences. In: Intelligent Agents VIII: 8th International Workshop, ATAL 2001, LNAI 2333,
Springer-Verlag (2002)

2. Apt, K.R.: Logic programming. In: Handbook of Theoretical Computer Science. Volume B.
Elsevier Science Publishers (1990) 493–574

3. Kowalski, R.A., Sadri, F.: From logic programming towards multi-agent systems. Annals of
Mathematics and Artificial Intelligence 25 (1999) 391–419

4. Sadri, F., Toni, F., Torroni, P.: An abductive logic programming architecture for negotiating
agents. In Greco, S., Leone, N., eds.: Proceedings of the 8th European Conference on Logics
in Artificial Intelligence (JELIA), LNCS 2424, Springer-Verlag (2002)

5. Toni, F., Stathis, K.: Access-as-you-need: a computational logic framework for flexible re-
source access in artificial societies. In: Proceedings of the Third International Workshop on
Engineering Societies in the Agents World (ESAW’02), LNAI 2577, Springer-Verlag (2002)

6. Kakas, A., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of Logic and
Computation 2 (1993) 719–770

7. Kakas, A., Mancarella, P.: Generalized stable models: a semantics for abduction. In: Proc.
9th European Conference on Artificial Intelligence, Pitman Pub. (1990)



68 A. Bracciali et al.

8. Viroli, M., Omicini, A.: Multi-agent systems as composition of observable systems. In
Omicini, A., Viroli, M., eds.: AI*IA/TABOO Workshop - Dagli oggetti agli agenti: tendenze
evolutive dei sistemi software” (WOA 2001). (2001)

9. Wooldridge, M., Lomuscio, A.: A logic of visibility, perception, and knowledge: complete-
ness and correspondence results. Journal of the IGPL 9 (2001)

10. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press
(1995)

11. Abramsky, S.: Semantics of Interaction. (Technical report) Available at
http://www.dcs.ed.ac.uk/home/samson/coursenotes.ps.gz.

12. Ashri, R., Luck, M., d’Inverno, M.: On identifying and managing relationships in multi-
agent systems. In: Proc. of 18th International Joint Conference on Artificial Intelligence
(IJCAI03), Acapulco, Mexico (2003)

13. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Co-operation and competition
in ALIAS: a logic framework for agents that negotiate. Computational Logic in Multi-Agent
Systems. Annals of Mathematics and Artificial Intelligence 37 (2003) 65–91

14. Alferes, J., Brogi, A., Leite, J.A., Pereira, L.M.: Computing environment-aware agent be-
haviours with logic program updates. In Pettorossi, A., ed.: Logic Based Program Synthesis
and Transformation, 11th International Workshop, (LOPSTR’01), LNCS 2372, Springer-
Verlag (2002)

15. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In Flesca, S.,
Greco, S., Leone, N., Ianni, G., eds.: Proceedings of the 8th European Conference on Logics
in Artificial Intelligence (JELIA’02), LNAI 2424, Springer-Verlag (2002)

16. Pokorny, L.R., Ramakrishnan, C.R.: Modeling and verification of distributed autonomous
agents using logic programming. In: Proceedings of the Workshop on Declarative Agent
Languages and Technologies (DALT’04), LNCS 3476, Springer-Verlag (2005). In this vol-
ume.

17. Ciampolini, A., Lamma, E., Mello, P., Torroni, P.: Rambling abductive agents in ALIAS.
In: Proc. ICLP Workshop on Multi-Agent Sytems in Logic Programming (MAS’99), Las
Cruces, New Mexico (1999)

18. Dastani, M., de Boer, F.S., Dignum, F., van der Hoek, W., Kroese, M., Meyer, J.C.: Pro-
gramming the deliberation cycle of cognitive robots. In: Proc. of 3rd International Cognitive
Robotics Workshop (CogRob) (2002)

19. Kakas, A., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of agency. In:
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI), Valencia,
Spain (2004)

http://www.dcs.ed.ac.uk/home/samson/coursenotes.ps.gz

	Introduction
	Preliminaries
	Semantics of a Multi-agent System
	Fully Transparent Multi-agent Systems
	Partially Transparent Multi-agent Systems

	Properties
	Individual Agents
	Multi-agent Systems
	Agents in Multi-agent Systems

	A Concrete Multi-agent Semantics
	Single Agent Language and Semantics
	Multi-agent Semantics
	Fully Transparent Multi-agent System Operational Semantics

	Related Work
	Conclusions



