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Abstract. Agent interaction protocols are usually specified in terms of permissi-
ble sequences of messages. This representation is, unfortunately, brittle and does
not allow for flexibility and robustness. The commitment machines framework
of Yolum and Singh aims to provide more flexibility and robustness by defining
interactions in terms of the commitments of agents. In this paper we identify a
number of areas where the commitment machines framework needs improvement
and propose an improved version. In particular we improve the way in which
commitments are discharged and the way in which pre-conditions are specified.

1 Introduction

Communications between software agents are typically regulated by interaction proto-
cols. These include general communication protocols, such as the auction protocol and
the contract net protocol, as well as more specific protocols such as the NetBill pay-
ment protocol [1, 2]. Traditional protocol representations such as Finite State Machines
(FSM), Petri-Nets [3] and AUML sequence diagrams [4, 5] often specify protocols in
terms of legal message sequences. Under such protocol specifications, agent interac-
tions are pre-defined and predictable. However, the inevitable rigidity resulting from
such protocols prevents agents from taking opportunities and handling exceptions in a
highly dynamic and uncertain multi-agent environment.

Yolum and Singh’s Commitment Machines [1] (CMs henceforth) define an interac-
tion protocol in terms of actions that change the state of the system, which consists of
not only the state of the world but also the commitments that agents have made to each
other. It is the commitment made to an interaction partner that motivates an agent to
perform its next action. In other words, an agent acts because it wants to comply with
the protocol and provide the promised outcomes for another party. Actions in CMs not
only change the values of state variables, but also may initiate new commitments and/or
discharge existing commitments. In traditional protocol representations, agents are con-
fined to perform some pre-defined sequence of actions, whereas in CMs, an agent is able
to reason about the next action to be taken in accordance with the dynamics of the en-
vironment and the commitments. This fundamentally changes the process of protocol
specification from a procedural approach (i.e., prescribing how an interaction is to be
executed) to a declarative one (i.e., describing what interaction is to take place) [1].

Using commitments as the rationale for agent interactions allows protocols to be
specified at a higher level, which then generates more flexible and robust interactions
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than pre-defined sequences. For example, in the NetBill protocol (discussed in Section
2), a customer may wish to order goods without first receiving a quotation, or a merchant
may be happy to send goods to a known reliable customer with less rigorous checking
than normal.

In this paper we identify a number of areas where the Commitment Machine frame-
work can be improved. Specifically, we show how the identification of undesirable
states (such as omitting to provide a receipt, or receiving the goods before payment has
been confirmed) can be incorporated into the design process in order to achieve accept-
able outcomes for a wider variety of circumstances than is done in [1, 2]. We also show
how certain anomalies in discharging commitments and in handling pre-conditions can
be remedied.

We demonstrate the operation of the improved framework on some examples. This
is necessarily limited to a small number of illustrative cases, but these suffice to demon-
strate the generality of the improvements.

The paper is organized as follows: in Section 2 we introduce the commitment ma-
chine framework and a detailed example, both based on [1]. In Section 3 we identify
a number of anomalies and issues with the commitment machines framework and in
Section 4 we propose some improvements. In Section 5 we discuss further applications
of the improved framework and in Section 6 we present our conclusions.

2 Background

We briefly introduce the commitment machines framework and the NetBill protocol.
Both are based on the description in [1] and we refer the reader to [1, 2] for further
details.

The key example used in [1] is the NetBill protocol [6]. In this protocol a customer
buys a product from a merchant. To buy a desired product, the protocol begins with a
customer (C) requesting a quote (message 1 in Figure 1) from the merchant (M), fol-
lowed by the merchant sending the quote (message 2). If the customer accepts the quote
(message 3), the merchant proceeds by sending the goods (message 4) and waits for the
customer to pay by sending an electronic payment order (EPO). Note that it is assumed
that the goods cannot be used until the merchant has sent the relevant decryption key,
such as software downloaded from the internet, or sent on a CD. Once the customer
has sent payment (via an EPO in message 5), the merchant will send the decryption key
along with a receipt (message 6). This concludes the NetBill transaction.

As suggested by the name “commitment machine”, a crucial concept is that of com-
mitment. A (social) commitment is an undertaking by one agent (the debtor, x) to an-
other agent (the creditor, y) to bring about a certain property p, written C(x, y, p). A
commitment of the form C(x, y, p) is a base-level commitment. For example, in the
NetBill protocol when the customer sends message 3 and then receives the goods, he or
she has a commitment to pay the merchant, i.e., C(C,M, pay).

When a party is willing to commit only if certain conditions hold (such as another
party making a corresponding commitment), a conditional commitment can be used.
A conditional commitment, denoted CC(x, y, p, q), indicates that agent x is committed
to achieving q for agent y if p becomes true. A conditional commitment is latent – it
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Customer Merchant

1: Request Quote

2: Present Quote

3: Accept Quote

4: Deliver Goods

5: Send EPO

6: Send Receipt

Fig. 1. Simplified Net Bill Protocol

doesn’t commit x to do anything until p becomes true, at which point the conditional
commitment is transformed to the base-level commitment C(x, y, q). For example, in
the NetBill protocol the customer may insist on his or her commitment to pay being
conditional on the goods being sent, which would be represented as CC(customer,
merchant, goods, pay). Where the identity of the debtor and the creditor are obvious
from the context we shall sometimes write C(p) in place of C(x, y, p) and CC(p � q)
in place of CC(x, y, p, q).

Interactions are specified in the CM framework by defining the roles of the par-
ticipants, the domain-specific fluents (i.e., boolean state variables), the (conditional)
commitments that may arise during the interaction, and the rules for initiating and ter-
minating commitments. Together, they define the preconditions and effects of (com-
municative) actions, and are used to regulate the choices of actions during protocol
execution. The execution of a protocol is driven by the commitments that are in place:
the desire to fulfil these commitments generates an action or actions to achieve them,
which in turn may create new commitments or discharge existing ones. The NetBill
protocol as a CM can be found in Figure 2.

A state in a CM is a triple 〈F,CC, C〉, where F is a set of fluents, CC is a set
of conditional commitments and C is a set of base-level commitments. A final state
is a state that does not have undischarged base-level commitments. A final state may
contain conditional commitments, since they are latent commitments that have not been
activated. Formally, a state in a CM is a final state if C = ∅. Note that a final state in a
CM is one where the interaction may end. However, it is also possible for interaction to
continue from a final state. A protocol run consists of a sequence of actions that results
in a final state.

A commitment machine places constraints on the sequence of agent actions that
constitute the interaction. For example, if an agent has a commitment, then it must at
some point fulfil its commitment1. However, commitment machines do not dictate or
require that agents perform particular actions.

Each commitment machine implicitly defines a corresponding Finite State Machine2

(FSM) where the states of the FSM correspond to the states of the CM and the transi-

1 Commitments can also be discharged in ways other than being fulfilled [1].
2 Actually, a variation of finite state machines, since there is no defined initial state.
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Roles: M (merchant), C (customer)
Fluents:

– request (the customer has requested a quote),
– goods (the goods have been delivered to the customer),
– pay (the customer has paid),
– receipt (the merchant has sent the receipt)

Commitments:

– accept = CC(C, M, goods, pay): a commitment by the customer (to the merchant)
to pay once the goods have been delivered.

– promiseGoods = CC(M, C, accept, goods): a commitment by the merchant to send
the goods if the customer accepts. Since accept is itself a commitment this is a nested
commitment: promiseGoods = CC(M, C, CC(C, M, goods, pay), goods).

– promiseReceipt = CC(M, C, pay, receipt): a commitment by the merchant to send
a receipt once the customer has paid.

– offer = promiseGoods ∧ promiseReceipt: an offer is a commitment by the mer-
chant (a) to send the goods if the customer accepts the offer, and (b) to send a receipt
after payment has been made.

Action Effects: the following (communicative) actions are defined:

– sendRequest: this action by the customer makes the fluent request true.
– sendQuote: this action by the merchant creates the two commitments

promiseGoods and promiseReceipt (i.e., offer ) and terminates (makes false)
the fluent request.

– sendAccept: this action by the customer creates the commitment accept.
– sendGoods: this action by the merchant makes the fluent goods true and also creates

the commitment promiseReceipt.
– sendEPO: this action by the customer makes the fluent pay true. This action is de-

fined in [1] as having the pre-condition that the goods have been sent.
– sendReceipt: this action by the merchant makes the fluent receipt true. This is de-

fined in [1] as having the pre-condition that payment has been made.

Fig. 2. The NetBill Protocol as a Commitment Machine [1]

tions are defined by the effects of the actions. Figure 4 shows a (partial) view of the
states and transitions corresponding to the CM defined in Figure 2. Final states (those
with no undischarged base-level commitments) are shaded and dotted lines depict ac-
tions that are intended to be prevented by pre-conditions (but see Section 3.4). This
figure is an extension of the figure given in [1, 2]. The table in Figure 3 gives the fluents
and commitments that hold in each state.

3 Properties of CMs

In this section we discuss various properties of CMs as presented in [1, 2] and identify
a number of areas where we propose improvements to the CM framework.
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No. State
1 -
2 request
3 M: promiseReceipt ∧ promiseGoods
4 M: promiseReceipt ∧ C(goods), C: accept
5 goods, M: promiseReceipt, C: C(pay)
6 goods, pay, M: C(receipt)
7 goods, pay, receipt
8 goods, M: promiseReceipt
9 C: accept
10 pay, M: C(receipt) ∧ promiseGoods
11 pay, receipt, M: promiseGoods
12 goods, receipt
13 goods, M: promiseReceipt, C: accept

Fig. 3. States and associated commitments and fluents

3.1 Explicit Labelling of Undesirable States

The presentation in [1, 2] presents protocols as defining states (in terms of the commit-
ments of the agents and the fluents that hold). A query is then given and the reasoning
module finds possible sequences of actions that lead to the requested state. For exam-
ple, in [2] given the commitment machine defined in Figure 2, the reasoning module
is asked to find sequences of actions that lead to a final state where goods have been
received, payment has been made, and a receipt has been issued.

However, when designing interaction rules it is important to not only ensure that a
desirable final state is possible, but also to ensure that undesirable states are not possible.

In this context when we talk about “desirable” and “undesirable” states we are talk-
ing from the perspective of the designer of the interaction, not from the perspective of
an agent who will take part in the interaction. Roughly speaking, the designer should
consider a state to be desirable if at least one agent desires it and no agents find it
undesirable. A state should be considered undesirable if any agent finds it undesirable.

If an undesirable final state is determined to be possible then this can be fixed by
either adding additional commitments so that the state is no longer final, or by adding
pre-conditions so that the state can not be reached. It is not possible to fix undesirable
final states by merely having the agents be aware of the undesirable state - if a state is
undesirable to one agent, another agent may still perform an action that results in that
state.

For example, in the NetBill protocol the desirable final states are those in which
the goods have been delivered and paid for and a receipt has been given. Undesirable
final states are those where only one or two of these three conditions hold; it is clearly
undesirable to have the goods without payment, to have paid for the goods without
getting a receipt, to have a receipt without payment, or to have paid without the goods
being delivered. The final state where the goods have not been delivered, no payment
has been made, and there is no receipt is acceptable, but not desirable (neutral). In
Figure 4 state 7 is desirable, states 8,11,12 and 13 are undesirable, and states 1,2,3
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4

5

M:sendGoods

6

C:sendEPO

7

M:sendReceipt

10

M:sendGoods

11

M:sendReceipt

1

2

C:sendRequest

3

M:sendQuote

8

M:sendGoods

9

C:sendAccept

M:sendQuote

C:sendAccept

C:sendEPO

C:sendEPO

12

M:sendReceipt

13

C:sendAccept

M:sendGoods

M:sendGoods C:sendEPO

Fig. 4. Implied FSM for the NetBill CM (partial), final states are shaded and dotted lines depict
actions that are intended to be prevented by pre-conditions

and 9 are neutral. Note that states 10, 11, 12 and 13 have been added to the machine
discussed in [1, 2]. Note also that states 4,5,6 and 10 have undischarged commitments,
and hence are not final states.

To illustrate why we need to identify and avoid undesirable states we consider an
alternative protocol which seems quite reasonable. This protocol differs from the one
presented in [1, 2] in that we remove the axiom:

Initiates(sendGoods, promiseReceipt, t)

This axiom is not needed in the “normal” expected sequence of actions (depicted in
Figure 1) and it is quite possible that a naı̈ve protocol designer would leave it out of an
initial protocol specification.

Now suppose that the customer does not need a quote (perhaps the customer and
merchant have interacted in the past), and begins the interaction with sendAccept. The
merchant replies to the sendAccept with sendGoods. At this point in the interaction the
customer’s acceptance commitment CC(good � pay) becomes a commitment to pay,
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C(pay), since the goods have been received. The customer then fulfils their obligation
by paying. At this point we are in a final state — there are no remaining commitments —
and goods have been received and payment made. However, this state is an undesirable
one because the customer has not received a receipt.

The important point is that the omission of the Initiates rule is detected by checking
whether undesirable (final) states are reachable, rather than by only checking whether
desirable ones can be reached. If we had simply taken the variant protocol and asked
for sequences which result in goods being delivered along with payment and a receipt
then the problem would not have been noticed. In other words, the undesirable states
can be used as a check on the interaction rules, which in this case results in the problem
being easily found.

3.2 Failure to Discharge Conditional Commitments

There are anomalies in the rules that govern the discharge of conditional commitments.
These anomalies can, in certain situations, result in conditional commitments not being
discharged when, intuitively, they ought to be.

Consider the following sequence of steps:

1. The customer asks for a quote
2. The merchant replies with a quote. At this point the merchant has promised to send

the goods if the customer accepts, and has promised to send a receipt if the customer
pays.

3. The customer, misunderstanding the protocol perhaps, decides to accept but sends
payment instead of an acceptance.

At this point the merchant becomes committed to sending a receipt, which it does,
resulting in the following final state:

– fluents: pay, receipt
– commitments of merchant: CC(CC(goods � pay) � goods)

The crucial point here is that this is a final state and the merchant is not committed
to sending the goods. The reason is that in order for CC(CC(goods � pay) � goods)
to become C(goods) the commitment CC(goods � pay) must hold: it is not enough
according to the formal framework for pay to hold. This is counter-intuitive because
pay is stronger than CC(goods � pay) in that it discharges the commitment. The
formal framework does recognise this, but only at the top level – the reasoning process
that discharges CC(goods � pay) when pay becomes true is not applied to nested
commitments.

3.3 Commitment Discharge Is Not Symmetrical

The axiom/postulate defining the conditions when a commitment (or conditional com-
mitment) is discharged says that the commitment is discharged when it already exists
and its condition is brought about by an event.

A problem with this is that it is possible to create a commitment C(p) when p already
holds. This commitment will not be discharged unless an event takes place subsequently
which re-initiates p.
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For example, consider the following sequence:

1. The customer sends an accept. The customer has now committed to paying if the
goods are received (CC(goods � pay))

2. The merchant sends the goods. Since the goods have been sent, the customer now
is committed to paying (C(pay)).

However, lets consider what happens if the two steps occur in the reverse order:

1. The merchant sends the goods to the customer3

2. The customer sends an accept.

What is the resulting state? When sending the acceptance the customer initiates the
conditional commitment to pay if the goods are received. This conditional commitment,
however, does not become a commitment to pay even though the goods have already
been sent. Consequently, the resulting state has no base-level commitments and so is an
(undesirable) final state (state 13 in Figure 4).

3.4 Pre-condition Mechanism Does Not Prevent Action

A standard view of actions that goes back to STRIPS is that an action definition contains
a pre-condition and a post-condition. The formalization of actions in the CM framework
uses these, but the way in which pre-conditions are handled has a slight problem.

Pre-conditions in a CM are defined by putting conditions on the action effect def-
initions. For example, in [1] the effects of the sendEPO action are defined using the
clause4

Initiates(sendEPO, pay, t) ← HoldsAt(goods, t)

The intended reading in line with traditional pre-conditions is that “the goods must
have been delivered in order for payment to be possible”5 However, what this formal-
ization actually does is limit the effects of sendEPO rather than the action itself. In
the event calculus the causality between sendEPO and pay is captured by the predi-
cate Intiates(sendEPO, pay, t), not by the implication. The implication only places a
condition on when the causality holds, not on when the action may be performed. Thus,
this does not prevent the event sendEPO from occurring if goods is false, it merely
means that if the event sendEPO occurs without goods being true then the fluent pay
does not become true as a result of sendEPO.

From the perspective of the reasoning mechanism, the formalisation of pre-conditions
introduces an additional link from a state back to that state that corresponds to perform-
ing an action whose pre-conditions are not satisfied (see Figure 5).

This is a fairly subtle difference but it does have one significant implication: if we
consider agents that use an implementation of commitment machines to reason about

3 As discussed in [2–example 2], this may be a sensible strategy if the goods are cheap to copy
- e.g., software.

4 Notation has been slightly changed. The actual clause in [1] is:
Initiates(sendEPO(i, m), pay(m), t) ← HoldsAt(goods(i), t).

5 Note that this is the only Initiates clause concerning sendEPO.



206 M. Winikoff, W. Liu, and J. Harland

Action

(preconditions

satisfied)

Action

(preconditions

not satisfied)

Fig. 5. Additional action link created by incorrect formalisation of pre-conditions

what actions to perform, then, for example, a customer agent who has not received the
goods is not prevented from executing the sendEPO action. Although the reasoning
module will, in this case, believe that the effects of payment have not taken place, if the
sendEPO action is executed resulting in credit card details being sent, then in the real
world the action’s execution will have resulted in the undesired effect of payment.

3.5 Communication Mode Assumptions Not Clear

The state space defined by the available events (actions) includes sequences of events
where an event representing an action by an agent (e.g., the merchant) is followed by an
event representing another action by the same agent. This may not be desirable, if the
intention is to define interactions where a message from M to C can only be followed
by a response from C to M .

The point here is that in the CM framework, there is no explicit specification of how
the conversation should be carried out between the two parties, i.e., whether it should
follow a synchronous mode or an asynchronous mode. Were the synchronous commu-
nication mode clearly specified, the action sendReceipt by the Merchant would have
been prevented in state 8 as the actors for the incoming and outgoing arc are the same.

However, there are situations where consecutive actions from the same agent are de-
sirable. A typical CM state that may result in multiple actions from the same agent (or
simultaneous actions from multiple agents) would have more than one base level com-
mitment. See Section 4 for an example of a state with multiple base level commitments
(state 10 in Figure 9).

A related issue is that the axioms allow an agent to perform actions that have no
effect. For example, in the state where a request has been sent, sending another request
has no effect on the state. In the FSMs that we show these arcs from a state S to itself
have been elided.

We do not address these issues in this paper; we will return to them in subsequent
work.

4 Proposed Extended CM Model

In this section we propose an extended CM model which addresses some of the concerns
discussed in the previous section.
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4.1 Labelling Undesirable States

This isn’t a change to the model so much as an extension and a change to how it is
used (the methodology). As part of developing the commitment machine the designer
indicates which states are undesirable (bad), which are desirable (good) and which are
acceptable but not desirable (neutral). Indicating the desirability of states can be done by
specifying conditions. For example, one could specify that all final states which satisfy
pay ∧ ¬receipt are undesirable.

The indication of good/bad states is specific to a particular interaction and the pref-
erences of the parties involved. For example, in [2–example 2] where the goods are
cheap to copy, the merchant may not consider state 8 in Figure 4, which has goods but
not pay or receipt, to be a bad state.

The desirability of states, particularly of those states that are undesirable, is then
used to perform safety checking.

4.2 Issues with Commitment Discharge

We now present a revised axiomatisation that remedies both anomalies associated with
commitment discharge (Sections 3.2 and 3.3). We first consider the issue discussed
in Section 3.2. Our proposed solution involves treating certain commitments as being
“implied”. For example, if pay is true, then any commitment of the form CC(X � pay)
that occurs as a condition can be treated as having implicitly held (and been discharged).

We introduce predicates Implied and Subsumes which capture when a commit-
ment (base or conditional) holds implicitly or is subsumed by a condition. These are
used in the rules that govern commitment dynamics. When checking whether a condi-
tion p holds, we also check whether it is implied or subsumed6.

In [2], fluents are initiated directly by an action through the initiates axioms (e.g.
Initiates(sendGood, goods, t)). On the other hand, commitments, both base-level and
conditional, are created through the Create axioms. The Create axioms then initiate the
commitments when the action happens according to the first axiom in Figure 6. How-
ever, this does not adequately distinguish commitments from other fluents. In particular,
it makes no difference if we remove the first axiom in Figure 6 and replace all the Cre-
ate axioms with Initiates axioms. In other words, according to the original commitment
axioms and protocol specification, we can use initiates axioms for not only the flu-
ents, but also all commitments. Such specifications dictate the action effects regardless
of the current state of the world. However, an action should only initiate a base level
commitment when the committed fluent is not already true, or when the premises but
not the conclusion of a conditional commitment are true. An action should only initi-
ate a conditional commitment when neither its premises nor conclusion are true. The
axioms in Figure 6 fail to address this, which results in the asymmetrical discharge of
commitments (Section 3.3).

In order to make commitment discharge symmetrical (Section 3.3) we de-couple
intended causation from actual causation: instead of stating that an action initiates a

6 Implied(p, t) checks whether p is implied at time t and is used to check whether a condition
(implicitly) holds at the current time. Subsumes(p, p′) checks whether p subsumes p′ and is
used to check whether an event would cause a condition to (implicitly) hold.
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Initiates(e, C(x, y, p), t) ← Happens(e, t) ∧ Create(e, x, C(x, y, p))
Initiates(e, CC(x, y, p, q), t) ← Happens(e, t) ∧ Create(e, x, CC(x, y, p, q))

Terminates(e, C(x, y, p), t) ← Happens(e, t) ∧ Discharge(e, x, C(x, y, p))
Discharge(e, x, C(x, y, p)) ← HoldsAt(C(x, y, p), t) ∧ Happens(e, t) ∧
Initiates(e, p, t)

Initiates(e, C(x, y, p), t) ← HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t) ∧
Initiates(e, p, t)
Terminates(e, CC(x, y, p, q), t) ← HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t)∧

Initiates(e, p, t)
Terminates(e, CC(x, y, p, q), t) ← HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t)∧

Initiates(e, q, t)

Fig. 6. Commitment Machine Axiom 2,3,8,9,10 from [2]

commitment (e.g., Initiates(sendGoods, promiseReceipt, t)), we state that the ac-
tion is intended to cause the initiation of the commitment (e.g., Causes(sendGoods,
promiseReceipt)). We then link the two notions by defining Initiates in terms of
Causes. When p is a fluent (not a commitment) then an event Initiates the fluent p
exactly when it Causes it. However, for a base level commitment C(p) even though
Causes(e,C(p)), the event e will not make C(p) true if p already holds. Similarly, for
Causes(e,CC(p � q)), if p holds then e will create C(q), not CC(p � q), and if q
holds then e will have no effect. The rules in Figure 7 realise these cases and Figure 8
illustrates the additional commitment discharge and creation rules. Note that the axioms
of figure 7 have been implemented and can be found in the appendix.

We then have the following action effect rules for the NetBill CM (the roles, fluents
and commitments remain unchanged):

Causes(sendRequest, request)
Causes(sendQuote, offer)
Causes(sendAccept, accept)
Causes(sendGoods, goods)
Causes(sendGoods, promiseReceipt)
Causes(sendEPO, pay)
Causes(sendReceipt, receipt)
Terminates(sendQuote, request, t)

We now explain how the revised axiomatisation and rules address the two commit-
ment discharge anomalies. Let us begin with the first anomaly (Section 3.2). Consider
the following sequence of steps:

1. The customer asks for a quote
2. The merchant replies with a quote. At this point the merchant has promised to send

the goods if the customer accepts, and has promised to send a receipt if the customer
pays.
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Implied(p, t) ← HoldsAt(p, t)
Implied(C(x, y, p), t) ← Implied(p, t)
Implied(CC(x, y, p, q), t) ← Implied(q, t)
Implied(CC(x, y, p, q), t) ← Implied(C(x, y, q), t)

Subsumes(p, p)
Subsumes(p, C(x, y, p′)) ← Subsumes(p, p′)
Subsumes(p, CC(x, y, q, p′)) ← Subsumes(p, p′)
Subsumes(C(x, y, p), CC(x, y, q, p′)) ← Subsumes(p, p′)

Happens(e, t) ← AgentTry(a, e, t) ∧ Precond(e, p) ∧ HoldsAt(p, t)

Initiates(e, p, t) ← Happens(e, t) ∧ Causes(e, p) ∧ isF luent(p)
Initiates(e, C(x, y, p), t) ← Causes(e, C(x, y, p))∧Happens(e, t)∧¬Implied(p, t)
Initiates(e, C(x, y, p), t) ← Causes(e, CC(x, y, q, p)) ∧ Happens(e, t) ∧
Implied(q, t)∧

¬Implied(p, t)
Initiates(e, CC(x, y, p, q), t) ← Causes(e, CC(x, y, p, q)) ∧ Happens(e, t)∧

¬Implied(q, t) ∧ ¬Implied(p, t)
Initiates(e, C(x, y, q), t) ← HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t)∧

Subsumes(p′, p) ∧ Initiates(e, p′, t)
Terminates(e, C(x, y, p), t) ← HoldsAt(C(x, y, p), t) ∧ Happens(e, t) ∧
Subsumes(p′, p)

∧Initiates(e, p′, t)
Terminates(e, CC(x, y, p, q), t) ← HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t)∧

Subsumes(q′, q) ∧ Initiates(e, q′, t)
Terminates(e, CC(x, y, p, q), t) ← HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t)∧

Subsumes(p′, p) ∧ Initiates(e, p′, t)

Fig. 7. Revised Commitment Machine Framework

3. The customer, misunderstanding the protocol perhaps, decides to accept but sends
payment instead of an acceptance.

Unlike previously, the payment causes the merchant to become committed to sending
the goods (as well as a receipt). Through the postulate

Implied(CC(x, y, p, q), t) ← Implied(q, t),
the fact that the pay fluent holds indicates that the conditional commitment CC(goods
� pay) implicitly holds7 at the same time. This implied conditional commitment dis-
charges the promiseGoods (CC(CC(goods � pay) � goods)) conditional com-
mitment and creates the base level commitment C(goods). Once the commitments
C(goods) and C(receipt) are discharged we are in a desirable final state.

7 More precisely, it could be considered to hold: there is no actual commitment, because it has
been discharged, since pay is true.
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Fig. 8. Additional Commitment Transition Rules for base level commitment (left) and conditional
commitment (right)

Consider now the second anomaly (non-symmetric commitment discharge, Section
3.3). Using the new predicate Causes, a conditional commitment is resolved to a base
level commitment if the premise is already true using the clause

Initiates(e, C(x, y, p), t) ←
Causes(e, CC(x, y, q, p)) ∧ Happens(e, t) ∧ Implied(q, t) ∧ ¬Implied(p, t)

Consider the transition from state 8 to state 13, where the customer accepts af-
ter the goods have been sent. The customer’s sendAccept is meant to cause accept
(CC(goods � pay)), but because goods already holds, sending the acceptance actually
creates the (base level) commitment C(pay).

Figure 9 shows (part of) the state machine implicitly defined by the revised Net-
Bill protocol and CM axiomatisation. The differences are in states 10, 11 and 13.
Whereas previously state 10 had pay, C(receipt) and promiseGoods, now it has
pay, C(receipt) and C(goods). As a result state 11 now includes a commitment to
send the goods and is no longer a final state. State 13, which previously had goods,
promiseReceipt and accept now has goods, C(pay) and promiseReceipt which is
actually state 5, therefore state 13 no longer exists, and performing sendAccept in state
8 leads to state 5. As before, final states are shaded. Also, dotted lines indicate actions
that are affected by pre-conditions. Note that once pre-conditions are fixed (in the next
sub-section) states 10, 11 and 12 will no longer be reachable. Note also that the result-
ing interaction space maintains the flexible interaction that is characteristic of the CM
framework.

4.3 Issues with Pre-conditions

As discussed in Section 3.4 trying to capture pre-conditions by adding conditions to
Initiates clauses does not work.

Our proposed solution is to extend the agents with a proper notion of pre-condition
that specifies when actions should not be performable (as opposed to preventing the
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Fig. 9. Revised Transitions in example (partial), final states are shaded and dotted lines depict
actions that are affected by pre-conditions

effects of the action from being caused). In the NetBill example we have the pre-
conditions Precond(sendEPO, goods) and Precond(sendReceipt, pay).

We then need to de-couple an agent wanting to perform an action from the action
actually occurring. This can be done by using a new predicate AgentTry(a, e, t) to
indicate that an agent a wants to perform an action e at time t. If the pre-conditions of
the action e hold8 at time t then this will imply that the event e happens.

8 This assumes that p does not involve commitments. If it does then replace HoldsAt(p, t) with
Implied(p, t).
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Happens(e, t) ← AgentTry(a, e, t) ∧ Precond(e, p) ∧ HoldsAt(p, t)

Note that the definition of the interaction cannot prevent an agent from performing
an action (any more than it can force an agent to honour its commitments). However, it
can specify when an action should not be performed, and detect violations, in the same
way that violations of commitments are detected.

5 Applications

Having proposed an improvement to the commitment machine framework, let us see
how it works on another example of mutual commitment. This simple (and unrealistic)
example is intended to show how the improved framework sharpens the interactions
between the agents.

The example involves two roles, called “me” and “you”. The two roles are friends
who would like to negotiate with the outcome that both of them get an outrageous
haircut for the last day of classes. It is highly undesirable that only one person have
the haircut. There are two fluents (yourscut and minecut) representing who has had
the haircut. We define two commitments: Dare which is the conditional commitment
CC(you, me, Ok, yourscut), i.e., the commitment from you to me that if I agree
(Ok) then you will get your hair cut;9 and Ok, which is the conditional commitment
CC(me, you, yourscut,minecut), i.e., the commitment from me to you that if you get
a haircut then I will get a haircut. There are four actions: cutme (which makes the fluent
minecut true), cutyou (which makes the fluent yourscut true), Offer (which you can use
to make Dare true), and Accept (which I can use to make Ok true). The actions of me
cutting my hair (cutme) and you cutting your hair (cutyou) have the precondition that
I (respectively you) have a commitment to do so (C(me, you, minecut), respectively
C(you, me, yourscut)).

Figure 10 shows the complete finite state machine corresponding to this CM, de-
rived using the old axioms, whereas Figure 11 shows the complete finite state machine
derived using the new axioms. It should be immediately clear that the new axioms yield
a much simpler behaviour that correctly reflects the intentions of this very simple ex-
ample.

Note also the symmetry of Figure 11, reflecting that the order in which the Offer and
Accept messages are sent is immaterial. Hence changing Dare to CC(me, you, Ok,
minecut) and Ok to CC(you, me, minecut, yourscut) will result in the same ma-
chine, except for the relabelling of me to you and vice-versa throughout.

On the other hand, using the old axioms (Figure 10), even this very simple example
has anomalies. For example, consider the following sequence:

– accept from state 1 to state 25: CC(me, you, yourscut,minecut)

9 This is the agent equivalent of “I will if you will”.
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2 Dare = CC(you, me, CC(me, you, yourscut, minecut), yourscut)
3 C(you, me, yourscut), Ok = CC(me, you, yourscut, minecut)
4 yourscut, C(me, you, minecut)
5 yourscut, minecut
6 Ok = CC(me, you, yourscut, minecut)

Fig. 11. Complete Finite State Machine for Haircut Example (new axioms)

– offer to state 26: CC(me, you, yourscut,minecut),
CC(you, me,CC(me, you, yourscut,minecut), yourscut)

– accept (again) to state 3: CC(me, you, yourscut,minecut),
C(you, me, yourscut)

– cutyou to state 4: yourscut, C(me, you, minecut)

– accept (again) to state 22: yourscut, C(me, you, minecut),
CC(me, you, yourscut, minecut)

– offer (again) to state 23: yourscut, C(me, you, minecut), CC(me, you, yourscut,
minecut), CC(you, me,CC(me, you, yourscut,minecut), yourscut)

– accept (again) to state 20: yourscut, C(me, you, minecut),
CC(me, you, yourscut,minecut),C(you, me, yourscut)

– cutme to state 11: yourscut, C(you, me, yourscut),minecut

– cutyou (again) to state 5, which is a final state.

Because of anomalies with commitment creation and discharge, the action of accept-
ing can be performed four times along this path, leading each time to a distinct state.
Further, in order to fulfil the commitments, you have to cut you hair twice, which is
counter-intuitive.
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Note also the lack of symmetry in Figure 10. This reflects the fact that the
order in which the commitments are expressed is not immaterial (i.e. that Dare is
defined in terms of Ok means that the Offer and Accept actions are not entirely
symmetric).

Let us now turn to the Net Bill example. Figure 12 shows the complete state machine
for the interaction using the old axioms. This figure is not meant to be readable, but il-
lustrates the size of the space and its complexity. By contrast, Figure 13 shows the same
interaction, but using the new axioms10. The old axioms generate many more states
(166 compared with 16) because of the discharge anomalies. For example, consider the
following sequence of actions and resulting states:

1. sendQuote: results in the state with the two commitments promiseGoods and promis-
eReceipt.

CC(accept � goods),CC(pay � receipt)
2. sendAccept: creates the commitment accept, which results in promiseGoods being

transformed into the commitment to send the goods.

CC(goods � pay),C(goods),CC(pay � receipt)
3. sendQuote: creates the two commitments promiseGoods and promiseReceipts. The

latter makes no difference (since it already holds), but the former is re-introduced,
even though it is redundant.

CC(goods � pay),C(goods),CC(pay � receipt),CC(accept � goods)

6 Conclusion

We analyzed the reasoning process of commitment machines and identified several
anomalies in the current reasoning mechanism. We then indicated how these anomalies
could be remedied, giving detailed rules for fixing the anomalies involving commitment
discharge and pre-conditions.

The aim of this work is to make agent interactions more flexible and robust. There
is a range of other work that has similar aims.

The work of Fornara and Colombetti [7] also uses commitments, but they use them
to define the meanings of speech acts, rather than defining protocols in terms of their
effects on commitments.

Kumar et al. [8] model interaction in terms of landmarks that need to be reached.
They use the framework of joint intention theory to formalise both landmarks and
speech acts. Given the complexity of the multi-modal logics used, implementation
would seem to be a challenge, and no details of an implementation appear to be avail-
able. Baldoni et. al. [9] also use a multi-modal logic to formalise interaction, in their
case within the DCaseLP environment using the DyLOG language.

10 Note that the numbering of states has changed, since this figure was automatically generated.
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Fig. 12. Complete Finite State Machine for Net Bill using Old Axioms. This figure is not intended
to be readable, but to illustrate the size and complexity of the interaction space

Hutchison and Winikoff [10] use belief-desire-intention agents and realise inter-
action using goal-triggered plans, where a given goal may have many plans that can
achieve it. This work is more implementation-oriented, but is not particularly well
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Fig. 13. Complete Finite State Machine for Net Bill using New Axioms, final states are shaded

developed. It provides a set of guidelines for a human to follow when designing and
implementing agent interaction, rather than a formally specified interaction mechanism.

Küngas and Matskin [11] use linear logic to formalise negotiation. Their approach
has been implemented, but it is not clear whether it generalises to types of interaction
other than negotiation.

Chopra et. al. [12] formalise the commitment machine framework using the π cal-
culus. However, their formalisation is based on the axioms of [13] and suffers from the
shortcomings discussed in this paper.

There are a number of papers in these proceedings that are concerned with verifying
agent interactions in various ways [14, 15].

There are a number of areas for future work including extending the CM framework
to deal with protocols involving open numbers of participants (1 − N ) such as auction
protocols.
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One area where we believe that commitment machines could be simplified concerns
pre-conditions. In a sense pre-conditions and commitments are dual: the former state
that a certain action must not be performed (under the prescribed conditions) whereas
the latter state that a certain state must be brought about. It may be that the commit-
ment machines framework could be simplified by merging the two concepts into a
more generalised form of commitment. Specifically, pre-conditions could be replaced
by commitments to avoid certain actions. These avoidance commitments, might be bet-
ter termed prohibitions. A prohibition of the form P(x, a) would state that agent x is
prohibited from performing action a. A conditional prohibition of the form CP(x, a, p)
would state that agent x is prohibited from performing action a if p holds. For example,
a merchant could have a conditional prohibition against sending a receipt if payment
has not been made: CP(M, sendReceipt,¬pay). Prohibitions are more flexible than
pre-conditions in that they can vary over time.

An additional issue in the CM framework concerns the termination of interactions. If
an interaction reaches a state where there are no base-level commitments, but there are
conditional commitments, then an agent, A, might decide that it wants to consider the
interaction finished, and delete any record of it from its memory. However, after A drops
the interaction, agent B might act in a way that changes a conditional commitment to
a base-level commitment. The underlying issue is that a final state is only final in the
sense that the interaction could end in that state, a final state does not require that the
interaction must end there. As a result, an agent cannot consider the interaction to be
completed if it could be continued.

Another area for future work would be applying our changes to the presentation of
commitment machines in [13, 16]. Whereas the presentation of commitment machines
in [1, 2] uses the event calculus to formalise commitment machines, the presentation of
[13, 16] defines a process for compiling a commitment machine to a finite state machine.

Finally, the reasoning that each agent performs when deciding which action to do
needs to be specified in more detail. The reasoning could resemble a form of game
playing where an agent wants to ensure that states that it considers undesirable cannot be
reached by other agents’ actions while trying to achieve states that it considers desirable.
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A Source Code for the Implemented Axioms

The complete source code is available from http://www.cs.rmit.edu.au/∼winikoff/CM

New Axioms

implied(P,T) :- holdsAt(P,T).
implied(c(_,_,P),T) :- implied(P,T).
implied(cc(_,_,_,Q),T) :- implied(Q,T).
implied(cc(X,Y,_P,Q),T) :- implied(c(X,Y,Q),T).

subsumes(P,P).
subsumes(P,c(_,_,PP)) :- subsumes(P,PP).
subsumes(P,cc(_,_,_,PP)) :- subsumes(P,PP).
subsumes(c(X,Y,P),cc(X,Y,_Q,PP)) :- subsumes(P,PP).

happens(E,T) :- isAction(E), precond(E,P), holdsAt(P,T).

initiates(E,P,T) :- happens(E,T), isFluent(P), causes(E,P).
initiates(E,c(X,Y,P),T) :- causes(E,c(X,Y,P)),

happens(E,T), \+(implied(P,T)).
initiates(E,c(X,Y,P),T) :- causes(E,cc(X,Y,Q,P)),

happens(E,T), implied(Q,T), \+(implied(P,T)).
initiates(E,cc(X,Y,P,Q),T) :- causes(E,cc(X,Y,P,Q)),

happens(E,T), \+(implied(Q,T)), \+(implied(P,T)).
initiates(E,c(X,Y,Q),T) :- holdsAt(cc(X,Y,P,Q),T), happens(E,T),

subsumes(PP,P), initiates(E,PP,T).

terminates(E,c(X,Y,P),T) :- holdsAt(c(X,Y,P),T), happens(E,T),
subsumes(PP,P), initiates(E,PP,T).

terminates(E,cc(X,Y,P,Q), T) :- holdsAt(cc(X,Y,P,Q),T),
happens(E,T), subsumes(QP,Q), initiates(E,QP,T).

terminates(E,cc(X,Y,P,Q), T) :- holdsAt(cc(X,Y,P,Q),T),
happens(E,T), subsumes(PP,P), initiates(E,PP,T).

Old Axioms

initiates(E,P,T) :- happens(E,T), causes(E,P).
initiates(E,c(X,Y,Q),T) :- holdsAt(cc(X,Y,P,Q),T), happens(E,T),

initiates(E,P,T).

terminates(E,c(X,Y,P),T) :- holdsAt(c(X,Y,P),T), happens(E,T),
initiates(E,P,T).

terminates(E,cc(X,Y,P,Q), T) :- holdsAt(cc(X,Y,P,Q),T),
happens(E,T), initiates(E,Q,T).

terminates(E,cc(X,Y,P,Q), T) :- holdsAt(cc(X,Y,P,Q),T),
happens(E,T), initiates(E,P,T).
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