
J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 667–674, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Xilinx System Generator Based HW Components for
Rapid Prototyping of Computer Vision SW/HW Systems*

Ana Toledo1, Cristina Vicente-Chicote2, Juan Suardíaz1, and Sergio Cuenca3

1 Departamento de Tecnología Electrónica, Universidad Politécnica de Cartagena, Spain
{ana.toledo,juan.suardiaz}@upct.es

2 Departamento de Tecnologías de la Información y Comunicaciones
Universidad Politécnica de Cartagena, Spain

cristina.vicente@upct.es
3 Departamento de Tecnología Informática y Computación, Universidad de Alicante, Spain

sergio@dtic.ua.es

Abstract. This paper shows how the Xilinx System Generator can be used to
develop hardware-based computer vision algorithms from a system level ap-
proach without the necessity of in-depth knowing neither a hardware descrip-
tion language nor the particulars of the hardware platform. Also, it is demon-
strated that Simulink can be employed as a co-design and co-simulation plat-
form for rapid prototyping of Computer Vision HW/SW systems. To do this, a
library of optimized image processing components based on XSG and Matlab
has been developed and tested in hybrid schemes including HW and SW mod-
ules. As a part of the testing, results of the prototyping and co-simulation of a
HW/SW Computer Vision System for the automated inspection of tangerine
segments are presented.

Keywords: image processing applications, FPGAs, prototyping, co-simulation,
Simulink.

1 Introduction

Nowadays, the key for implementing high-performance digital signal processing
(DSP) systems, especially in digital communications, video and image processing
applications, is the use of programmable logical devices, in particular Field Pro-
grammable Gate Arrays (FPGAs). However, for those applications in which high-
level complex algorithms are involved, a complete HW implementation is unpracti-
cal. In these cases it is usual to employ a hybrid SW/HW implementation, in which
the hardware (typically a FPGA) carries out the acceleration of specialized functions
and a processor, usually a conventional CPU, accomplishes general purpose comput-
ing.

Traditionally, the HW/SW application prototyping is performed in different envi-
ronments, using a high-level programming language for the SW, e.g. C, C++ or Mat-

* This work has been partially supported by the Spanish CITYT Project COSIVA (TIC 2000-

1765-C03-02).

668 Ana Toledo et al.

lab, and a Hardware Description Language (VHDL or Verilog) for the HW descrip-
tion. This makes the co-simulation difficult, and leads to two versions of the same
code in different programming languages. Moreover, the rapid evolution of FPGAs
makes the time employed in the development of hardware-based applications be a
critical parameter. For these reasons, some efforts have been made to construct co-
design environments allowing rapid prototyping, high-level modeling, co-simulation,
and straightforward HW/SW code generation [1-3].

Currently, there exist two main tendencies in the system-level co-design environ-
ments: high-level languages [4] and dataflow-based visual environments [5, 6]. High
level languages are efficient for specification modelling and algorithm verification,
but they are not suitable for the implementation of high-performance dataflow sys-
tems as in the Computer Vision Systems (CVS). On the contrary, the visual dataflow-
based environments are similar to the traditional schematic-based tools, which usually
provide libraries composed of blocks with a high degree of functional abstraction that
allow graphically constructing system models.

Simulink is an extension of the widely-used MATLAB environment that is spe-
cifically oriented for graphic prototyping and simulation of dynamical systems [7]. It
also has a natural interface with MATLAB, so that its analysis and graphical repre-
sentation tools can be used in the MATLAB workspace for post-processing and visu-
alization. Like MATLAB, Simulink supports the extension of its functionalities by
means of the add-in of application-specific libraries of components (toolboxes). Since
the inclusion of toolboxes that allow the simulation and generation of hardware com-
ponents, as the DSP Blockset toolbox or more recently the Xilinx System Generator
(XSG) [5] and the Altera DSP Builder Altera [6] toolboxes, Simulink has become a
powerful tool for HW/SW co-design [8, 9].

The Xilinx blockset contains high-level blocks that map intellectual property (IP)
cores that have been handcrafted for efficient implementation in the target Xilinx
FPGA. However, the XSG toolbox includes only some basic blocks that can be used
as “bricks” for developing more complex structures. Based in these simple blocks, in
this work the development of a visual processing library is presented. The library
components have been optimized both in processing efficiency and in FPGA occu-
pancy. Taking advantage of the XGS link with Matlab, the library blocks have been
parameterized. This greatly eases the use of the library, as it can be used for a wide
variety of applications without the need for the user of changing the code. Also, some
Matlab-based software components have been implemented to allow co-simulation.
They constitute the foundations of a complete HW/SW co-design and co-simulation
Simulink-based scheme that will allow the rapid prototyping and implementation of
hybrid CVS applications using Xilinx FPGAs.

The rest of this paper is organized as follows. The blocks of the visual processing
library, jointly with a brief description of some of the underlying algorithms are ex-
plained in Section 2. The steps followed to design an HW/SW CVS using this library
are briefly reviewed in Section 3. In Section 4, the use of this library to develop a
complete study case is presented. Finally, conclusions and future research lines are
included in Section 5.

Xilinx System Generator Based HW Components 669

2 The HW-SW Visual Processing Library

The designed CVS library consists of Simulink blocks. This library, whose purpose is
the modelling and generation of HW-SW image processing and computer vision
applications, behaves as any other Simulink library, and fully integrates with the
Matlab/Simulink simulation environment. The design of a HW-SW system is thus
performed by “dragging and dropping” the library blocks onto the Simulink editor, in
which they are linked to construct the functional prototype.

2.1 HW Blocks

The HW components process the input pixels as they come in raster-scan order (from
left to right and from top to bottom), so there is no necessity of having a whole image
stored to begin the processing. This reduces the storage requirements and the amount
of memory accesses, which generally constitute a bottleneck.

All the blocks have been homogeneously designed to assure interconnectivity. At
each clock cycle, every block receives jointly with the input data (usually a pixel
value) two control signals corresponding with the synchronization signals: line blank
(LBL) and frame blank (FBL). Besides of the output data (generated at each cycle),
the blocks include two additional output signals corresponding with the LBLo and
FBLo control signals of the output stream.

The designed blocks are straightforwardly parameterized, so that they can be used
for processing images with different sizes or formats without reprogramming. The
arithmetic precision of the blocks in the data path is specified using Matlab expres-
sions, making possible to minimize the hardware used, and avoiding the possibility of
overflow. Therefore, changing parameters automatically gives an appropriately cus-
tomized implementation.

Several image processing algorithms have been implemented using XSG.

• Colour space conversions.
• Image cropping.
• Brightness/Contrast shift and scale.
• Threshold and double threshold.
• Specific filters: Gaussian, Laplacian, Prewitt, Sobel, Mean, Sharpening Me-

dian…
• Generic convolutions 3x3 and 5x5.
• Morphological binary operations with generic 3x3 and 5x5 structuring elements:

erosion and dilation.
• Logical and Arithmetic operations: and, or, nor, add, sub…
• Connected Component Labelling.
• Calculus of the zero and first-order moments.

Some of them are detailed in the following lines.
Specific convolutions: As there exist some very frequently used convolution ker-

nels, as the Prewitt, Laplacian and the Sobel kernels for edge detection, the Mean and
Gaussian filters for noise filtering or the Sharpening kernel for image enhancement,

670 Ana Toledo et al.

specific optimized code has been developed for them, to minimize resources while
achieving high performance.

The input data stream arrives to the convolver in “row scan” format, which means
that for every processing pixel it is necessary to wait until all the elements involved
are available. Therefore, it is required a delay to store N-1 image lines (N being the
row number of the convolution mask) that is implemented using N-1 FIFO memories.

<< 3

in

+

+ -

FIFO

FIFO

+

+

+

Z-1 Z-1
Z-1

Z-1

in

+

FIFO

+

<< 3+

+
Z-1 Z-1

+ +
FIFO

+
Z-1

- +

Z-1

Z-1

-1 -1 -1
-1 8 -1
-1 -1 -1

W=

Fig. 1. Two implementations of a 3x3 convolution. Left: proposed scheme. Right: Lisa’s
scheme.

Lisa [10] offers a column-access architecture, which minimizes the amount of re-
sources used in the FPGA by in-parallel processing the columns of pixels involved on
each computation. Besides, by decomposing the mask weights in their binary repre-
sentation, many multipliers can been replaced by shift-registers and adders. From the
Lisa architecture, the convolutions have been optimized by decreasing the number of
adders. To illustrate the followed procedure, in Fig. 1 the Lisa scheme for a simple
filter is shown on the right, while the implemented one is shown on the left of the
figure.

Another implemented algorithm that requires special mention is the connected
component labelling. This algorithm is usually in the base of high-level image proc-
essing. Its input is a binary or grey-level image, while its output is a symbolic image,
in which a label (usually a natural number) is attributed to each pixel in the image to
symbolize that it belongs to an object represented by the label.

Since the shape of the object can be arbitrary, connected component labelling in-
volves significant data computation and communication between the pixels in the
image. To solve this problem, several sequential and parallel algorithms have been
proposed [11]. In the library, the classical algorithm, which makes two forward raster
scan passes through the image, has been implemented.

However, most times labelling is only required as a previous step for calculating
properties of the objects as their masses, centres-of-mass or higher-order moments.

Xilinx System Generator Based HW Components 671

Taking this into account, special blocks have been constructed that perform these
calculations without needing the second forward pass through the image, thus saving
processing time and FPGA occupancy.

2.2 SW Blocks

Generic high-level image processing algorithms have been implemented by encapsu-
lating in Simulink blocks some functions from the Image Processing Toolbox of
MATLAB. In the construction of these wrappers, it has been taken into account that
while the hardware processing is pixel-oriented, the software processing is frame-
oriented. This causes synchronization problems, as the SW and HW will typically run
on different frequencies. To tackle this, each SW block has been provided with an
enable input that is marked as TRUE every time a frame is available from the HW.

For allowing the simulation of a whole system including acquisition, some blocks,
which do not generate code in the final implementation, have been developed.

Camera blocks. Several camera blocks are provided, which model the behaviour of
various common digitizers and non-interlaced digital cameras. Currently, there are
available three kinds of blocks, giving YCrCb 4:2:2, Luminance and RGB output
signals respectively. These blocks read one or more image files (they accept most of
the common file formats for image storage) and provide, jointly with the correspond-
ing pixel values, the appropriate LBL and FBL synchronization signals.

Viewer blocks. A number of viewer blocks have been built, to allow an easy inspec-
tion of the data flowing by the pipelines. At the moment, there are viewers for all the
image types given by the camera blocks, plus several specific viewers that show the
outputs of some blocks like the labelling block or the area and centre-of-mass blocks.

3 Design Flow

Using this library, to create a CVS application the user must only drag the corre-
sponding blocks from the library and drop them into a Simulink empty model, then
interconnect the blocks to form the application flow diagram. The constructed model
can be simulated in Simulink, employing the stimuli and visualization blocks in-
cluded in the library. This simulation allows verifying if the desired functionality has
been achieved, and it is considerably faster than simulations performed by specific
hardware simulators as ModelSim [12]. Due to the library HW blocks are made up of
XSG simple blocks, for the HW the simulation results are identical to those that
would be obtained in the real FPGA implementation.

After simulation, if the functional requirements are met, the user must decide on
the target platform for the HW partition. Once the target platform has been selected,
the hardware code (VHDL) can be automatically generated. This code incorporates
optimized Xilinx LogiCORES, thus assuring that the implementation will be efficient.

The generated HW code is automatically encapsulated inside a VHDL project, in
which the specific code for I/O interfacing related to the selected platform is in-

672 Ana Toledo et al.

cluded. This is required because XSG is a good setting in which to implement data
paths, but is less well suited for sophisticated external interfaces that have strict tim-
ing requirements (for example, it can not work with several external clock sources).
To tackle this, a HDL wrapper has been created that automatically generates the nec-
essary code for the I/O interfaces, i.e. the video transfer from the digitizer (or from
the camera), the transfers to/from external memories and the data transfer to/from SW
blocks. As said before, this wrapper is specific for each HW target platform.

This enveloping VHDL project can then be automatically synthesized. As a result
of the synthesis, the cost (measured in FPGA area occupancy), the maximum working
frequency for the FPGA and the HW execution time are obtained.

Finally, if the temporal requirements are fulfilled, the FPGA on the HW platform
is configured with the bitstream file (automatically generated during the synthesis),
by means of the appropriate tool provided by the manufacturer.

4 A Practical Study Case

In order to test the capabilities of the library, a CVS for tangerine segment inspection
has been constructed from scratch. The objective of the CVS is to reject the tangerine
segments that appear split in pieces, or that are simply too small to be canned. This
must be done in real-time, because the inspection system is working on line in the
final step of the canning line. This canning line is composed of a conveyor belt,
which transports the tangerine segments under a camera and through several air-jet
ejectors to the canning mechanism.

The scheme of the HW/SW proposed CVS is shown in Fig 2. The algorithm works
as follows: as the pixel information is submitted from the camera, a cropping is per-
formed to discard pixels from areas outside the conveyor belt. On the passing pixels,
a 3x3 Gaussian filter (with standard deviation = 0.9) is applied to remove noise. Thus,
a thresholding is carried out to separate the tangerine segments (dark) of the conveyor
belt (bright). A binary opening (erosion + dilatation) is then performed with a 3x3
solid structural element, to remove binary noise in the form of small blobs. After this,
the pipeline forks. In one of the lines, the binary image is processed to obtain the area
and center-of-mass of the blobs. This information is fed into a HW/SW interface
block which pumps the data into the SW blocks. Simultaneously, in the other line,
edge detection is carried out, so that a binary image containing the borders of the
blobs is obtained. This image is processed by a block that gives the area of these
borders. In this way, a measure of the perimeter of the blobs is obtained and, though
the HW/SW interface block, it is fed to the SW processing blocks.

The HW part of the algorithm was implemented in a Nallatech Ballynuey 3 card
[13]. This card is a general-purpose PCI board, specially designed for prototype de-
velopment, and it is based on a Virtex 2V3000 FPGA. It incorporates two external
ZBT SSRAM memories (8 Mb) and four DIME slots of expansion. In one of them, a
Nallatech Ballyvision module was connected, to allow input from an external PAL
camera.

Xilinx System Generator Based HW Components 673

Fig. 2. Simulink co-simulation screenshot. SW blocks are shown in a plain-color while pat-
terned ones denote HW components. Images resulting from some SW/HW processing steps are
shown together with the corresponding temporization cycles.

As a result of the synthesis on the Virtex 2V3000 FPGA, the proposed hardware
architecture is able of processing 778x576 images with a cycle time of 11.62 ns (82
MHz). This implies that more than 190 frames per second can be processed, thus
allowing a high pace to the conveyor belt.

5 Conclusions

In this work, a CVS library has been developed, which allows using the Mat-
lab/Simulink environment for prototyping, co-simulating and automatic HW code

674 Ana Toledo et al.

generation of HW/SW computer vision systems. The hardware blocks, based on the
XSG tool, have been parameterized and optimized. Also, the HW code generation has
been fully automated, including wrapping mechanisms that extend the original capa-
bilities of the XSG. The result is a library of blocks fully integrated in Mat-
lab/Simulink that greatly eases the functional prototyping, verification and final im-
plementation of HW/SW computer vision systems without the necessity of mastering
neither a hardware description language nor the intricacies of the hardware platform.

To test the CVS library, a HW/SW computer vision system for the automated in-
spection of tangerine segments has been constructed form scratch, with excellent
results.

References

1. Arnout G., C for System Level Design, Proceedings of Design, Automation and Test in
Europe Conference and Exhibition, March 1999.

2. Panda P.R., SystemC - a modeling platform supporting multiple design abstractions, Pro-
ceedings of the 14th ISSS, 2001 pp. 75 -80

3. Hwang J, Milne B, Shirazi N, Stroomer J., System Level Tools for DSP in FPGAs. FPL
2001, Lecture Notes in Computer Science, pp 534-543.

4. SystemC. Available: http://www.systemc.org
5. System Generator: Reference guide, http://www.xilinx.com/
6. DSP builder. Available: http://www.altera.com/
7. The Math Works Inc., http://www.mathworks.com
8. ������ ��	�
����� ��	� ����� ��	� ����� ���� �������
������ ������ �� ������!"� #���

Rapid-FPGA-Prototyping. FPL 2003.Vol. 2778, pp 984-987.
9. Denning D., Harold N., Devlin M., Irvine J.: Using System Generator to Design a Recon-

figurable Video Encryption System. In: P.Y.K. Cheung et al. (Eds.): FPL 2003. Lecture
Notes in Computer Science, Vol. 2778, pp 980-983.

10. Lisa F, Cuadrado F, Rexachs D, Carrabina J: A reconfigurable coprocessor for a PCI-based
real time computer vision system. FPL 1997. pp 392-399.

11. Wang K., Chia T., Chen Z., Lou D.: Parallel Execution of a Connected Component Label-
ing Operation on a Linear Array Architecture. Journal of Information Science and Engi-
neering 19, pp 353-370 (2003).

12. ModelSim. Available: http://www.model.com
13. Nallatech. http:// www.nallatech.com

	Xilinx System Generator Based HW Components for Rapid Prototyping of Computer Vision SW/HW Systems
	1 Introduction
	2 The HW-SW Visual Processing Library
	2.1 HW Blocks
	2.2 SW Blocks

	3 Design Flow
	4 A Practical Study Case
	5 Conclusions
	References

