

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 415 – 429, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Developing Adapters for Web Services Integration

Boualem Benatallah1, Fabio Casati2, Daniela Grigori3,
Hamid R. Motahari Nezhad1,4, and Farouk Toumani5

1 SCSE, University of New South Wales, Sydney NSW 2052, Australia
{boualem, hamidm}@cse.unsw.edu.au

2 HP Labs, Palo Alto, CA, 94304 USA
fabio.casati@hp.com

3 PriSM, Université de Versailles, 45 avenue des Etats-Unis,
78035 Versailles Cedex, France,

daniela.grigori@prism.uvsq.fr
4 NICTA, Australian Technology Park, Bay 15 Locomotive Workshop,

Sydney NSW 1430, Australia,
5 LIMOS, ISIMA, Campus des Cezeaux, BP 125, 63173 Aubière Cedex, France

ftoumani@isima.fr

Abstract. The push toward business process automation has generated the need
for integrating different enterprise applications involved in such processes. The
typical approach to integration and to process automation is based on the use of
adapters and message brokers. The need for adapters in Web services mainly
comes from two sources: one is the heterogeneity at the higher levels of the in-
teroperability stack, and the other is the high number of clients, each of which
can support different interfaces and protocols, thereby generating the need for
providing multiple interfaces to the same service. In this paper, we characterize
the problem of adaptation of web services by identifying and classifying differ-
ent kinds of adaptation requirements. Then, we focus on business protocol
adapters, and we classify the different ways in which two protocols may differ.
Next, we propose a methodology for developing adapters in Web services,
based on the use of mismatch patterns and service composition technologies.

1 Introduction

The push toward business process automation, motivated by opportunities in terms of
cost savings, higher quality and more reliable executions, has generated the need for
integrating the different enterprise applications involved in such processes. Applica-
tion integration has been one of the main drivers in the software market during the
late nineties and into the new millennium. The typical approach to integration and to
process automation is based on the use of adapters and of message brokers [YeSt97,
CFPT03]. Adaptors wrap the various applications (which are in general heterogeneous,
e.g., have different interfaces, speak different protocols, and support different data for-
mats) so that they can appear as homogeneous and therefore easier to be integrated.
Message brokers, and message-oriented middleware in general, provide an efficient and
reliable way to transport messages (typically corresponding to operation invocations or

416 B. Benatallah et al.

their replies) among the adapters, which in turn interact with the wrapped application.
While very effective and relatively successful, this approach presents several limita-
tions. In particular, process integration efforts require a high number of different
adapters, as the level of heterogeneity in IT infrastructures is typically very high. Fur-
thermore, whenever new versions of the wrapped applications are deployed, adapters
need to be modified to account for the differences in protocols and formats supported
by these new versions. This is also why enterprise application integration (EAI) plat-
forms are very expensive.

Web services were born as a solution to (or at least as a simplification of) the inte-
gration problem [ACKM04]. The main benefit they bring is that of standardization, in
terms of data format (XML), interface definition language (WSDL), transport mecha-
nism (SOAP) and many other interoperability aspects. Standardization reduces het-
erogeneity and makes it therefore easier to develop business logic that integrates dif-
ferent (Web service-based) applications. Web services also represent the most
promising technologies for the realization of service-oriented architectures (SOAs),
not only within but also outside companies' boundaries, as they are designed to enable
loosely-coupled, distributed interaction [BeCT04].

While standardization makes interoperability easier, it does not remove the need
for adapters. In fact, although the lower levels of the interaction stacks are standard-
ized (as discussed later), different Web services may still support different interfaces
and protocols. In addition, the novel opportunities enabled by Web services have an
implication in terms of adaptation needs. In fact, having loosely-coupled and B2B in-
teractions imply that services are not designed having interoperability with a particu-
lar client in mind (as it was often the case with CORBA-style integration) [CFPT03].
They are designed to be open and possibly without knowledge, at development time,
about the type and number of clients that will access them, which can be very large.
The possible interactions that a Web service can support are specified at design
time, using what is called a business protocol or conversation protocol [BeCT04].
A business protocol specifies message exchange sequences that are supported by
the service, for example expressed in terms of constraints on the order in which ser-
vice operations should be invoked. This is important, as it rarely happens that ser-
vice operations can be invoked at will independently from one another. Hence, ad-
aptation should not be limited to handling heterogeneity at the operation level, but
also at the business protocol level.

This paper presents a framework for developing Web service adapters. First, we
characterize the problem of adaptation by identifying and classifying different kinds
of adaptation needs (Section 2). Then, we focus on interface and business protocol
adapters and we classify the different ways in which two interfaces and protocols may
differ (Section 3). These differences are captured using mismatch patterns. Patterns
help users in analyzing differences and in resolving them. In fact, among other infor-
mation, patterns include a template of business logic that can be used to semi-
automatically develop adapters to handle the mismatch captured by each pattern. We
provide a number of built-in patterns corresponding to the possible mismatch we have
identified at the interface and protocol levels. Finally, we discuss related work, con-
clusions and future directions in Sections 4 and 5.

 Developing Adapters for Web Services Integration 417

2 Toward a Methodology for Web Service Adapters

This section presents an overview of the proposed approach to semi-automated devel-
opment of service adapters. We first characterize the interoperability problem in gen-
eral, then we define the focus of our work, and finally we describe at a high level the
approach we adopt.

2.1 Interoperability at Business-Level Interfaces and Protocols

Interoperability among Web services, just like interoperability in any distributed sys-
tem, requires that services use the same (or compatible) protocols, data formats, and
semantics. In our work, we focus on interoperability issues at business-level interfaces
and protocols. To interact, services must have compatible:

− Interfaces (i.e., the set of operations supported by services),
− Business protocols (i.e., the allowed message exchange sequences). These can

be expressed for example using BPEL abstract processes, WSCI, or other proto-
col languages (see, e.g., [BeCT04]).

More precisely, we classify the need for adaptation in Web services in two basic cate-
gories: adaptation for compatibility and adaptation for replaceability. The first cate-
gory refers to wrapping a Web service S so that it can interact with another service C.
For example, consider a service S, offered by provider SP, allowing companies to or-
der office supplies. If SP wants to be able to do business with certain retailers (say,
Wal-Mart or Target), then it needs to adapt its service S so that it can interoperate
with these retailers. In general, many adapters can be defined depending on the num-
ber of different client protocols that SP must interact with. Hence, in this case, adapta-
tion is performed by considering the client's protocol. Note that adaptation may be re-
quired for one or more of the interoperability layers identified above, since for two
services to interact, compatibility must be achieved at all layers.

Adaptation for replaceability refers to modifying a Web service so that it becomes
compliant with (i.e., can be used to replace) another service. This is important espe-
cially in those business environments where the interaction, even at the interface and
business protocol level, has been standardized either de jure or de facto (e.g. due to
the presence of a dominant player in the market). For example, the RosettaNet consor-
tium standardizes the external behaviour of services in the IT supply chain space. In
these cases, service providers may have to adapt their services so that they can follow
the guidelines prescribed by the standards.

Adaptation for replaceability is also needed when a new version of a service is de-
veloped, possibly with a different external behaviour, but we want to preserve back-
ward compatibility (that is, an adapter should be provided so that the service is also
offered in a version that behaves like the old one). Replaceability may be partial or
total [BeCT04a]. Total replaceability occurs when a service SR behaves externally
like another service S. This means that any service that interacts correctly (i.e., with-
out generating runtime faults) with S will also be able to interact correctly with SR
(note that the opposite is not necessarily true). Partial replaceability occurs when a
service SR can behave like S only in certain interactions (that is, SR behaves like S in
some but not all conversations). For example, an ordering service SR may need or be

418 B. Benatallah et al.

able to replace ordering service S only for orders of certain products but not other, or
may able to process all orders but does not allow cancellations, while S does. We re-
fer the reader to [BeCT04a] for a detailed definition of compatibility and replaceabil-
ity among services, as well as other important relations among different elements of
service descriptions.

This paper proposes a technique for developing adapters to achieve total replace-
ability. As mentioned above, this is a very important and relevant problem. The re-
lated issues of partial replaceability and compatibility can be handled in an analogous
manner. We also decided to initially focus on developing adapters to resolve differ-
ences at the interface and business protocol level. Replaceability at the lower layers
has been either addressed by standardization (e.g., messaging) or has been the subject
of excellent research work by other groups [RyWo], and hence research on protocol
replaceability constitutes the next level up the interoperability stack in supporting in-
teraction among services. Incidentally, although we discuss the problem of protocol
replaceability in the context of business protocols, analogous techniques can be used
for other service aspects characterized by protocols (e.g., trust negotiation protocols
or basic coordination).

2.2 Developing Service Adapters Using Mismatch Patterns

The intended benefit of this work is to help programmers develop adapters through a
methodology and semi-automated code development, starting from the protocol defi-
nitions. The adapters have the goal of making a service SR, characterized by protocol
PR, "look like" (interact as) another service S that has protocol P, so that SR can then
interact with any client that can interact with S (see Figure 1).

Service SR

Service S

Client

Client

Interacting based
on protocol P

Interacting based
on protocol P

Adapter A

Interacting based
on protocol PR.

.

.

.

.

.

.

.

.

.

.

.

Fig. 1. Adapters allows achieving protocol replaceability

Hence, the adapter A for SR is a Web service that, to clients, behaves like S from
an interaction perspective. In particular, if S supports protocol P, then adapter A also
supports protocol P when interacting with clients. Adapter A will implement protocol
P by invoking methods of SR. From the perspective of SR, A looks like a service
whose protocol is compatible with PR (Figure 1).

The approach proposed in this paper to adapter development is based on mismatch
patterns, which are design patterns that can be used to capture the possible differences
among services (and specifically among interfaces and protocols). We have analyzed
interfaces and protocols to identify common differences and for those we have speci-
fied the corresponding mismatch patterns. Indeed we believe that the identification of

 Developing Adapters for Web Services Integration 419

the various kinds of differences among interfaces and, most of all, protocols, is a con-
tribution in itself. Developers can, however, add to the set of patterns if there are spe-
cific mismatches that they would like to handle differently or if there are mismatches
that are not captured in the built-in set.

Besides capturing differences, patterns can be used both as guidelines for designer
in developing adapters and as input to a tool that automatically generates the adapter
code. In fact, mismatch patterns contain both formal and informal descriptions of the
type of adapter (called adapter template) used to resolve that type of mismatch. The
table below summarizes the structure of an adapter pattern. In the following of this
section we discuss and exemplify in more detail the part related to adapter templates
and their instantiation.

Name Name of the pattern
Mismatch Type A description of the type of difference captured by the pattern
Template parame-
ters

Information that needs to be provided by the user when instantiat-
ing an adapter template to derive the adapter code

Adapter template

Code or pseudo-code that describes the implementation of an
adapter that can resolve the difference captured by the pattern

Sample usage The sample usage section contains information that guides the de-
veloper in customizing (or manually generating) the adapter, by
providing examples on how to instantiate the template

To describe the approach to adapter template specification and adapter generation

and to motivate our choices, we begin by discussing what is expected of an adapter
and how they can be modelled and implemented. As mentioned above, the job of an
adapter consists in mapping interactions with protocol P into interactions with proto-
col PR. This requires performing activities such as receiving messages, storing mes-
sages, transforming message data, and invoking service operations. These tasks can
be very well modelled by process-centric service composition languages such as
BPEL (http://www-128.ibm.com/developerworks/library/ws-bpel/). Hence, our aim is
to leverage patterns to manually or automatically generate process skeletons that map
interactions according to protocol P into interactions according to protocol PR.
Analogous solutions can be identified if third-generation programming languages like
Java or C# or if other process languages instead of BPEL are used. In any case, the
generated specifications can be then enacted by the corresponding execution engine
(e.g., a BPEL engine, or a Java virtual machine). We chose a process-based notation
because it is well-suited to model business logic and because it is easy to derive the
protocol specifications of a service when its implementation is specified as a business
process [BBCT04] (although, as we will see, other aspects such message transforma-
tions need to be modelled). A high-level process-based notation is also appropriate to
compose complex adapters from primitive adapter templates, possibly leveraging one
of the many process management tools available on the market. In addition, this nota-
tion can be mapped to others (e.g., state machines or state-charts), which are endowed
with formal semantics. Using a high level notation allows, e.g., using formal analysis
techniques to verify the correctness of adaptors.

Given that we aim at generating and customizing a process definition, it was natu-
ral to select a process language for defining the adapter templates as well, as using a

420 B. Benatallah et al.

similar modelling framework simplifies adapter generation, especially when it is per-
formed manually. Indeed, we borrow BPEL notation, concepts, and terminology for
this purpose, endowed with additional annotations to specify adaptation abstractions.
In particular, the additional annotations may include XQuery
(www.w3.org/TR/xquery/) functions to specify message transformations that are
commonly needed in adapters, directives to help developers understand how to instan-
tiate certain elements of the adapter template.

Example. As an example, consider the MapPoint (www.microsoft.com/mappoint/)
and Arcweb (www.esri.com/software/arcwebservices/) route Web services, which of-
fer similar functionalities for finding driving routes between two points using differ-
ent WSDL interfaces (operations CalculateRoute and findRoute, respectively).
Suppose that Arcweb corresponds to service SR and MapPoint to service S according
to the architecture presented in Figure 11. The names, number, and types of the in-
put/output parameters of the operations CalulateRoute and findRoute differ.
The operation CalculateRoute requires one input parameter called Specification
whose type is SegmentSpecification. The operation findRoute requires two
parameters: routeStops and routeFinderOptions whose types are RouteStops
and RouteFinderOptions, respectively. The values of both parameters routeS-
tops and routeFinderOptions can be computed from the value of the parameter
Specification.

This type of difference is handled by a mismatch pattern called SMP (Signatures
Mismatch Pattern). This pattern concerns differences that occur when two services S
and SR have operations that have the same functionality but differ in operation name,
number, order or type of input/output parameters. In general, adapters that resolve this
kind of differences need to perform the actions described below, which therefore con-
stitute our adapter template for this pattern (written here in pseudo-code for ease of
presentation):

Template
Parameters

Signatures of operations O of service S and OR of service SR, XQuery
functions for message transformations
Receive the input message OI of operation O from client (BPEL receive ac-
tivity)
Transform OI into a format that is compliant with the type of input message
ORI of operation OP, using XQuery transformation functions (one or more
BPEL assign activity, depending on the parameters to be transformed)
Invoke operation OR (BPEL invoke activity)
Transform output message ORO of operation OR into a format that is com-
pliant with the type of the output message OO of operation O, using
XQuery transformation functions (one or more BPEL assign activity, de-
pending on the parameters to be transformed)

Adapter
Template

Send reply of operation O to client (BPEL reply activity)

Note that the template is parametric: to instantiate it and generate an executable
BPEL process, the user needs to provide several parameters. In this case, the parame-
ters are the signatures of the operations that have a mismatch and the XQuery trans-

1 The idea for using the arcweb vs MapPoint example is taken from [PoFo04].

 Developing Adapters for Web Services Integration 421

formation functions. The parameters that the user needs to specify are part of the tem-
plate parameters field of the pattern. This information is used to (manually or automati-
cally) generate a process skeleton from the template. The developer may then want or
need to further customize the resulting process skeleton to add some custom business
logic, or can just directly use the generated process skeleton to deploy the adapter. For
built-in patterns, we have automated code that actually generates adapters given the pat-
tern name and template parameters. Note that complex adapters, i.e., those resolving
several mismatch types, can be constructed by composing primitive templates.

Figure 2 shows an adapter that resolves the signature mismatch among operation
CalculateRoute of S and operation findRoute of SR according to the adapter
template of SMP pattern.

CalculateRouteIn

CalculateRouteOut

!

Client
Provider SR

(Arcweb)

Receive CalculateRoute <Specification>

Assign routeFinderOptions
! XQuery_TransformOptions (Specification. Options)

Invoke findRoute <inputVariable: routeStops, routeFinderOptions,
outputVariable: Result >

Assign CalculateRouteResult ! XQuery_TransformResult (Result)

Reply CalculateRoute <CalculateRouteResult>

findRouteIn

findRouteOut

"

Assign routeStops ! XQuery_TransformStops (Specification)

CalculateRouteIn

CalculateRouteOut

!

Client
Provider SR

(Arcweb)

Receive CalculateRoute <Specification>

Assign routeFinderOptions
! XQuery_TransformOptions (Specification. Options)

Invoke findRoute <inputVariable: routeStops, routeFinderOptions,
outputVariable: Result >

Assign CalculateRouteResult ! XQuery_TransformResult (Result)

Reply CalculateRoute <CalculateRouteResult>

findRouteIn

findRouteOut

"

Assign routeStops ! XQuery_TransformStops (Specification)

Fig. 2. Sample usage of SMP

In the process skeleton, the parts in bold indicate the parameters that are provided by
the adapter developer. The symbol "<>" is used to denote parameters of operations. We
also identify the input and output messages of operations by adding "In" and "Out" to
the end of operation name in the examples.

In Figure 2, the adapter first receives a message that contains the value of the input
parameter Specification of operation CaculateRoute (hence behaving like S).
Then it computes the values of routeStops and routeFinderOptions (i.e, input pa-
rameters of the operation findRoute) from the value of the parameter Specifica-
tion, via XQuery transformation functions. These functions are specified by the devel-
oper, possibly by using one of the many XQuery tools being developed by major
software vendors. After performing message transformations, the adapter invokes the
operation findRoute of SR (Arcweb), and performs symmetric actions on the reply. In
this example, the configuration of the template activities consists of specifying XQuery
functions, namely XQuery_TransformStops, XQuery_TransformOptions and
XQuery_TransformResults.

We conclude the section by pointing out aspects that are outside the scope of this
work. The work in this paper does not address the problem of automatically identifying
differences between two actual protocols. For example, a type of difference occurs
when protocol P requires two messages, ma and mb to be in sequence, while PR allows

422 B. Benatallah et al.

them to be in any order. Referring to this example, we do not present here a mecha-
nism for finding out that the difference between P and PR consists in the different or-
dering constraints on ma and mb. The problem of identifying the actual differences
constitutes a separate research thread in itself and is extremely complex. This is, how-
ever, an orthogonal issue. In this paper, we assume that an analyst will identify the
differences and the corresponding pattern. For example, an analyst (or, in the future, a
tool) will look at P and PR and identify that there is a difference of type ordering con-
straint involving ma and mb. From there, we derive the corresponding mismatch pat-
tern that resolves the difference so that the adapter can appear as supporting protocol
P and is implemented by invoking operations of PR.

3 Characterizing and Resolving Differences Between Business
Protocols

This section describes our approach for developing Web service adapters at the inter-
face and business protocol levels. For each level, we present a taxonomy of possible
mismatches and propose a solution to tackle each kind of mismatch. The rationale be-
hind the proposed taxonomy is to characterize differences based on how we can ap-
proach/solve them. For each pattern we also provide an example (which corresponds
to a sample usage for that pattern).

3.1 Differences at the Operation Level

In addition to SMP pattern that we described in section 2.3 for resolving operation
signatures mismatch, in this section we describe a mismatch pattern called PCP (Pa-
rameter Constraints Pattern) that handles parameter constraints mismatch as de-
scribed below. This type of mismatch occurs when the operation O of S imposes con-
straints on input parameters, which are less restrictive than those of OR input
parameters in SR (e.g., differences in value ranges).

Template
Parameters

Signatures of operations O of service S and OR of service SR, XQuery
functions for checking parameter constraints
Receive the input message OI of operation O from client (BPEL receive ac-
tivity)
If OI verifies OR constraints (BPEL switch activity):

Invoke operation OR (BPEL invoke activity) Then
Send reply of operation O to client (BPEL reply activity)

Adapter
Template

Else Raise a constraint-violation exception and terminate conver-
sation (BPEL reply activity)

In this adapter template, input messages of operation O are first checked to verify

if they are compliant with OR constraints. For instance, suppose that element Pref-
erence (a sub-element of the parameter Specification of operation Calcu-
lateRoute) accepts "quickest", "shortest" and "Least Toll" as possible values. But,
element RouteType (an element of parameter routeFinderOptions of operation
findRoute) accepts "quickest" and "shortest" as possible values. In this case, there is
no possible value of RouteType that corresponds to the value "Least Toll" of Pref-

 Developing Adapters for Web Services Integration 423

erence. If the value of RouteType is in {"quickest", "shortest"}, the adapter will
forward the invocation message to Arcweb. Otherwise, the adapter will raise a con-
straint violation exception. Figure 3 shows an adapter resolving this constraint mis-
match. We observe again that in the case of built-in patterns we have pattern-specific
code that generates the adapter given the user-defined parameters. However, the same
can be done manually by the developer by looking at the adapter template field of the pat-
tern and at the sample usage. Note that constraint-checking conditions is expressed using
XQuery queries. For example, the condition Verify_Specifica tion_Constraints
checks if Specification verifies the constraints of RouteType.

!

Client Provider SR
(Arcweb)

Invoke findRoute

findRouteIn

findRouteOut

CalculateRouteIn

"

Receive CalculateRoute <Specification>

Reply CalculateRouteCalculateRouteOut

Switsch

Reply Constraint-Vio lation

[Verify_Specification_Constraints][Not Verify_Speci fication_Constraints]
Constraint-Violation

Fig. 3. Sample usage of PCP

3.2 Differences at the Protocol Level

We now consider the problem of developing adapters to resolve service mismatches
that occur at the protocol level. We build our approach using the extend business pro-
tocol model presented in [BeCT04]. That protocol model allows a richer description
of the external behavior of a service by providing specific abstractions that enable, for
example, to model temporal and transactional properties of service conversations.

In this section we use a supply chain example to illustrate adapter templates. For
instance, protocol P may expect to exchange messages in the following order: clients
can invoke login, then getCatalogue to receive the catalogue of products includ-
ing shipping options and preferences (e.g., delivery dates), followed by submitOr-
der, sendShippingPreferences, issueInvoice, and makePayment operations.
In contrast, protocol PR allows the following sequence of operations: login, get-
Catalogue, submitOrder, issueInvoice, makePayment and sendShipping-
Preferences. This is possible, e.g., because provider SR does not charge differently
according to the shipping preferences. Clients are allowed to specify their shipping
preferences at a final step. Note that for the sake of clarity, we omitted the acknowl-
edgements from the message sequences.

Message Ordering Mismatch
This type of difference is concerned with the order in which protocols expect to re-
ceive certain message. Mismatch occurs when protocols P and PR support the same
message but in different orders. This type of difference is handled by a mismatch pat-
tern called OCP (Ordering Constraint Pattern) described below:

424 B. Benatallah et al.

Template
Parameters

Protocols P and PR, message m to be re-ordered

Perform activities as prescribed by P for parts that do need adaptation
(BPEL receive, invoke, reply activities)
Receive message m according to protocol P (BPEL receive activity)
Store m in the adapter (BPEL assign activity)

Adapter
Template

Send m to SR when it is expected (BPEL invoke activity)

Figure 4 shows an adapter that resolves the ordering constraints for the message

sendShippingPreferencesIn. From the input parameters of the template, it is
possible to determine the message ordering constraints of protocols P and PR. In this
case, the adapter can temporarily store the parameter of operation sendShipping-
Preferences of protocol P and forward the operation to service SR according to the
messages choreography of protocol PR. Note that the adaptation will be more com-
plex if protocol P issues a reply or acknowledgement for the sendShippingPref-
erencesIn message and the client expect receiving such message. We will discuss
such a scenario in the following when we discuss the need for generating missing
messages.

Receive sendShippingPreferences <ShippingPrefIn>

"

!

Client Provider SR
… other activities (the operations issueInvoice and

makePayment in this example)…

sendShippingPreferencesIn

Other messages

sendShippingPreferencesIn

Assign ShippingPref ! ShippingPrefIn

Invoke sendShippingPreferences <ShippingPref>

Other messages

Fig. 4. Sample usage of OCP

Extra Message Mismatch
This type of differences occurs in situations where protocol PR issues an extra mes-
sage that protocol P does not issue. This type of difference is handled by a mismatch
pattern called EDP (Extra Message Pattern). The adapter template of EDP allows inter-
cepting and discarding the extra message in order to make PR look like P. It should be
noted that such an adaptation makes sense only if the extra message of PR does not af-
fect the semantics of the target protocol (i.e., does not change the functionality of PR).

Template
Parameters

Protocols P of S and PR of SR, message m of PR to be discarded

Perform activities as prescribed by P for parts that do need adaptation
(BPEL receive, invoke, reply activities)

Adapter
Template

Discard m when received (BPEL receive activity)

 Developing Adapters for Web Services Integration 425

In the supply chain scenario, assume that protocol PR sends an acknowledgement
after receiving message issueInvoiceIn but protocol P does not. Figure 5 shows an
adapter that when receives the message InvoiceAck, it discards it (does not perform
any action).

Receive issueInvoice

Receive InvoiceAck

Reply issueInvoice

!

Provider
SR

issueInvoiceIn

issueInvoiceOut

InvocieAck

"

issueInvoiceIn

issueInvoiceOut

Client

Receive issueInvoice

Invoke issueInvoice

Receive issueInvoice

Receive InvoiceAck

Reply issueInvoice

!

Provider
SR

issueInvoiceIn

issueInvoiceOut

InvocieAck

"

issueInvoiceIn

issueInvoiceOut

Client

Receive issueInvoice

Invoke issueInvoice

Receive issueInvoice

Assign InvoiceAck
! Acknowledgement

Reply issueInvoice

"

!

Client Provider
SR

issueInvoiceIn

issueInvoiceIn

issueInvoiceOut

InvoiceAck

Invoke issueInvoice

Receive issueInvoice

reply InvoiceAck

issueInvoiceOut

Receive issueInvoice

Assign InvoiceAck
! Acknowledgement

Reply issueInvoice

"

!

Client Provider
SR

issueInvoiceIn

issueInvoiceIn

issueInvoiceOut

InvoiceAck

Invoke issueInvoice

Receive issueInvoice

reply InvoiceAck

issueInvoiceOut

 Fig. 5. Sample usage of EMP Fig. 6. Sample usage of MMP

Missing Message Mismatch
This type of differences occurs when protocol P issues an extra message that protocol
PR does not issue. It should be noted that this extra message does not affect the se-
mantics of the protocol PR. This type of difference is handled by a mismatch pattern
called MMP (Missing Message Pattern). The adapter template of MMP generates a
new message to make PR look like P.

Template
Parameters

Protocols P of S and PR of SR, message m of P to be generated

Perform activities as prescribed by P for parts that do need adaptation
(BPEL receive, invoke, reply activities)
Generate m when expected by P (BPEL assign activity)

Adapter
Template

Reply m according to P (BPEL reply activity)

Consider the opposite case of the previous example, where protocol P issues an ac-

knowledgement when receiving a request for invoice (i.e., the message issueIn-
voiceIn), while protocol PR does not. Figure 6 shows an adapter that generates the
message InvoiceAck and sends it to the client after receiving the message issue-
InvoiceIn and invoking the operation issueInvoice of SR.

Message Split Mismatch
This type of differences occurs when the protocol P requires a single message to
achieve certain functionality, while in protocol PR the same behavior is achieved by
receiving several messages. This type of difference is handled by a mismatch pattern
called OMP (One to Many messages Pattern) described below:

426 B. Benatallah et al.

Template
Parameters

Protocols P and PR, message m of P to be split and messages mr1, ...,
mrn of PR to be extracted from m, XQuery functions for parameters
extraction
Perform activities as prescribed by P for parts that do need adaptation
(BPEL receive, invoke, reply activities)

Adapter
Template

 Generate mr1, ..., mrn from m when m is received, send mr1, ..., mrn as pre-
scribed by PR (BPEL assign, invoke activities)

Suppose that protocol P requires to receive the purchase order as well as shipping
preferences in one message called submitOrderIn, while protocol PR needs two sepa-
rate messages for this purpose, namely, sendShippingPreferencesIn and submi-
tOrderIn. Figure 7 shows an adapter that resolves this mismatch. In this case, when
the adapter receives submitOrderIn, it generates the parameters of the operations
sendShippingPreferences and submitOrder of PR from the parameter of the op-
eration submitOrder of P, using XQuery transformation functions, namely
XQuery_SplitShipping and XQuery_SplitOrder. Following that messages sub-
mitOrderIn and sendShippingPreferencesIn are forwarded to SR. Note that in
other cases, since messages are stored in the adapter, the adapter can forward them to
SR in the order prescribed by PR.

Receive submitOrder <OrderPrefIn>

Assign ShippingPrefIn
! XQuery_SplitShipping (OrderPrefIn)

"

!

Client Provider
SR

submitOrderIn

submitOrderIn

sendShippingPrefIn

Invoke submitOrder <OrderIn>

Invoke sendShippingPref <ShippingPrefIn>

Assign OrderIn
! XQuery_SplitOrder (OrderPrefIn)

Receive submitOrder <OrderPrefIn>

Assign ShippingPrefIn
! XQuery_SplitShipping (OrderPrefIn)

"

!

Client Provider
SR

submitOrderIn

submitOrderIn

sendShippingPrefIn

Invoke submitOrder <OrderIn>

Invoke sendShippingPref <ShippingPrefIn>

Assign OrderIn
! XQuery_SplitOrder (OrderPrefIn)

Assign OrderPrefIn
!XQuery_MergeOrder (Order, shippingPref)

"

!

Client
Provider

SR

submitOrderIn

Receive sendShippingPreferences <ShippingPrefIn>

Invoke submitOrder <OrderPrefIn>

submitOrderIn

sendShippingPreferencesIn

Assign Order ! OrderIn

Assign shippingPref ! ShippingPrefIn

Receive submitOrder <OrderIn>

Fig. 7. Sample Usage of OMP Fig. 8. Sample usage of MOP

Message Merge Mismatch
This type of differences occurs when protocol P needs to receive several messages for
achieving certain functionality while protocol PR requires one message to achieve the
same functionality. This type of difference is handled by a mismatch pattern called
MOP (Many to One message Pattern) described below.

Template
Parameters

Protocols P and PR, messages m1, ..., mn of P to be merged into mes-
sage mr of PR, XQuery function for parameter computation
Perform activities as prescribed by P for parts that do need adaptation
(BPEL receive, invoke, reply activities)
Receive m1, ..., mn according to P (BPEL receive activities) and store them
until mr is generated (BPEL assign activities)

Adapter
Template

Generate mr by merging m1, ..., mn when mr is expected by PR (BPEL as-
sign, invoke activities)

 Developing Adapters for Web Services Integration 427

Suppose that protocol P requires messages submitOrderIn and sendShipping-
PreferecesIn separately, but protocol PR needs all of this information included in
the submitOrderIn message. Figure 8 shows an adapter that resolves this mismatch.
In this template, when the adapter receives the messages submitOrderIn and send-
ShippingPreferencesIn, it generates the parameter of operation submitOrder of
PR using an XQuery function, namely XQuery_MergeOrder that merges the pa-
rameters of the operations submitOrder and sendShippingPreferences of P.
The adapter knows the order of messages of protocols P and PR from the input, so it
is able to generate receive and storage activities for messages and to invoke opera-
tions of SR according to PR.

It should be noted that differences can be complex (i.e., cannot be reduced to one
of the above primitive patterns). Adapters resolving several mismatch types can be
constructed by composing primitive templates. We plan to extend the set of protocols
management operators provided in our framework and reported in [BeCT04a] to cater
for adapter templates composition.

4 Related Work

Although a lot of work and progress has already been done in the area of web services
in the last few years, efforts have been mostly focused on service description models
and languages, and on automated service discovery and composition [ACKM04].

Very recently, authors in the academia have published papers that discuss similar-
ity and compatibility at different levels of abstractions of a service description (e.g.,
[BeCT04a, Bordeaux04, DHMN+04, PoFo04, WMFN04]). In terms of protocols
specification and analysis, existing approaches provide models (e.g., based on pi-
calculus or state machines) and mechanisms to compare specifications (e.g., protocols
compatibility and replaceability checking). In particular, the work that is more related
to ours, also in terms of overall line of research, is that of Lenezirini and Mecella's
group. Specifically, in [Bordeaux04] a protocol analysis framework based on con-
cepts analogous to those of replaceability and compatibility is presented. In
[PoFo04], the authors proposed a framework for handling differences among service
interfaces, but protocols are not discussed.

The framework we propose in this paper builds upon this previous work as well as
on work we did over the past three years in the area of service protocols modeling,
analysis, and management to classify differences among service protocols providing
similar functionalities and bridge these differences via adapters (see [BeCT04,
BeCT04a] for representative examples of our line of research).

Our aim is to provide a comprehensive framework for managing differences at
various abstraction layers including interface, protocol, and policy aspects. In this pa-
per, we focus on both interface and protocol levels. To the best of our knowledge,
there is no existing work that considers the classification and management of differ-
ences between service protocols and the development of adapters to resolve them.

In the software engineering area, few approaches exist for analyzing software
components mismatch. In [ZaWi97], the authors focus on analyzing differences re-
lated to data types and to pre- and post-conditions in component interfaces. In
[YeSt97, CFPT03] the focus is on specifying interface mappings and using these

428 B. Benatallah et al.

mappings to build component adaptors. These efforts provide mechanisms that can
be leveraged for Web service protocols adaptation, but are not sufficient. In fact, ser-
vice protocols require richer description models than component interfaces. This is
because clients and services are typically developed by separate teams, possibly even
by different companies, and service descriptions are all client developers have to un-
derstand to know how the service behaves.

5 Discussion and Ongoing Work

We argue that, while standardization is crucial in making service oriented computing
a reality, the effective use and widespread adoption of service technologies and stan-
dards requires high-level frameworks and methodologies for supporting automated
development and interoperability (e.g., mechanisms for analyzing protocol compati-
bility, replaceability and compliance, semi-automated generation of adaptors). We see
the evolution of the work in Web services interoperability as mirroring in a way, at
least conceptually, the work done in databases over the last thirty years and leading to
standard models and languages, algebras, theoretical foundations, and transformation
techniques. We believe that Web services protocols require the same kind of back-
ground work in terms of simple models, operators, algebras, and support for manipu-
lation/transformation. The work we have been doing goes in this direction, and the re-
search presented in this paper is a key part of it. Indeed. The framework presented in
this paper is one of the components of a broader CASE tool, partially implemented,
that manages the entire service development lifecycle.

In this paper, we focused on identifying differences among heterogeneous business
protocols in Web services and on semi-automatically resolving such differences when
possible via adapters. We have identified mismatch patterns as a convenient mean to
capture the differences among interface/protocols of two services and to encapsulate
the solution to such differences. This solution is in the form of process fragments that
can be manually or automatically instantiated to generate actual adapters. Other com-
ponents of our framework focus on modeling and specifying service abstractions:
composition logic, business protocols, and trust negotiation policies [BeCT04,
SBC03]. Based on these models, service lifecycle can be automated, from develop-
ment through analysis, management, and enforcement [BBCT04, BeCT04a]. We be-
lieve that this work will result in a comprehensive methodology and platform that can
support large-scale interoperation of Web services and facilitate service lifecycle.

As the reader will have noticed, there are several aspects that we have not dis-
cussed in this paper, some due to lack of space, others because we have not developed
a solid, validated solution as yet. An issue is that of automated code generation in re-
lation to the adapter template. In the current framework, the code for generating the
adapter is pattern-specific, that is, each pattern comes with an associated function that
takes actual values for the pattern parameters as input and generates the adapter code.
If a user wants to develop a new pattern, then the functions must also be provided. In
reality, in the current version of the framework these functions do not access the
adapter templates, which can therefore be specified semi-formally (its main purpose
right now is to help the developer understand the pattern and its solution, especially in
case a manual adapter generation is needed). In the future we plan to define a formal

 Developing Adapters for Web Services Integration 429

language (an extension of BPEL) that can be used to formally specify adapter tem-
plates. Then, generic (as opposed to pattern-specific) code will generate adapters by
reading the adapter template. As mentioned, we use annotated BPEL for this purpose,
but at the time of writing we have not finalized the language design nor the generation
code. We believe this will be an improvement as pattern developers can use this
BPEL-like language to specify the template and do not need to write low-level code
for adapter generation.

References

[ACKM04] Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archtec-
tures, and Applications. Springer Verlag (2004).

[BBCT04] Baina, K., Benatallah, B., Casati, F., Toumani, F.: Model-Driven Web Service De-
velopment. Procs of CAiSE’04, Riga, Latvia (2004).

[BeCT04] Benatallah, B., Casati, F., Toumani, F.: Web services conversation modeling: A Cor-
nerstone for E-Business Automation. IEEE Internet Computing, vol. 8, no. 1 (2004).

[BeCT04a] Benatallah, B., Casati, F., Toumani, F.: Analysis and Management of Web Services
Protocols. ER’04, Shanghai, China (2004).

[Bordeaux04] Bordeaux, L., et al: When are two Web Services Compatible?. VLDB TES'04.
Toronto, Canada (2004).

[CFPT03] Canal, C., Fuentes, L., Pimentel, E., Troya, J., Vallecillo, A.: Adding Roles to
CORBA Objects. IEEE TSE, vol. 29, no. 3 (2003).

[DHMN+04] Dong, X., A., Halevy, Y., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search
for Web Services. VLDB’04. Toronto, Canada (2004).

[PoFo04] Ponnekanti, S. R., Fox, A.: Interoperability among Independently Evolving Web Ser-
vices. Middleware’04. Toronto, Canada (2004).

[RyWo] Ryan, N. D., Wolf, A. L.: Using Event-Based Translation to Support Dynamic Proto-
col Evolution. ICSE'04. Edinburgh, Scotland, United Kingdom (2004).

[SBC03] Skogsrud, H., Benatallah, B., Casati, F.: Model-Driven Trust Negotiation for Web
Services. IEEE Internet Computing, vol. 7, no. 6 (2003) 45-52.

[YeSt97] Yellin, D. M., Strom, R. E.: Protocol specification and Component adaptors. ACM
TOPLAS, vol. 19, no. 2 (1997).

[WMFN04] Wombacher, A., Mahleko, B., Fankhauser, P., Neuhold, E.: Matchmaking for Busi-
ness Processes based on Choreographies. EEE’04, Taipei, Taiwan (2004).

[ZaWi97] Zaremski, A. M., Wing, J. M.: Specification Matching of Software Components.
ACM TOSEM, vol. 6, no. 4 (1997).

	Introduction
	Toward a Methodology for Web Service Adapters
	Interoperability at Business-Level Interfaces and Protocols
	Developing Service Adapters Using Mismatch Patterns

	Characterizing and Resolving Differences Between Business Protocols
	Differences at the Operation Level
	Differences at the Protocol Level

	Related Work
	Discussion and Ongoing Work
	References

