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Abstract. In this paper we present a fuzzy version of SHOIN (D), the corre-
sponding Description Logic of the ontology description language OWL DL. We
show that the representation and reasoning capabilities of fuzzy SHOIN (D)
go clearly beyond classical SHOIN (D). We present its syntax and semantics.
Interesting features are that concrete domains are fuzzy and entailment and sub-
sumption relationships may hold to some degree in the unit interval [0, 1].

1 Introduction

In the last decade a substantial amount of work has been carried out in the context of
Description Logics (DLs) [2]. DLs are a logical reconstruction of the so-called frame-
based knowledge representation languages, with the aim of providing a simple well-
established Tarski-style declarative semantics to capture the meaning of the most pop-
ular features of structured representation of knowledge.

Nowadays, DLs have gained even more popularity due to their application in the
context of the Semantic Web [4, 15]. Semantic Web has recently attracted much attention
both from academia and industry, and is widely regarded as the next step in the evolution
of the World Wide Web. It aims at enhancing content on the World Wide Web with
meta-data, enabling agents (machines or human users) to process, share and interpret
Web content.

Ontologies [10] play a key role in the Semantic Web and major effort has been put
by the Semantic Web community into this issue. Informally, an ontology consists of a
hierarchical description of important concepts in a particular domain, along with the de-
scription of the properties (of the instances) of each concept. DLs play a particular role
in this context as they are essentially the theoretical counterpart of the Web Ontology
Language OWL DL, the state of the art language to specify ontologies. Web content is
then annotated by relying on the concepts defined in a specific domain ontology.

However, OWL DL becomes less suitable in all those domains in which the concepts
to be represent have not a precise definition. If we take into account that we have to deal
with Web content, then it is easily verified that this scenario is, unfortunately, likely the
rule rather than an exception. For instance, just consider the case we would like to
build an ontology about flowers. Then we may encounter the problem of representing
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concepts like1 “Candia is a creamy white rose with dark pink edges to the petals”,
“Jacaranda is a hot pink rose”, “Calla is a very large, long white flower on thick stalks”.
As it becomes apparent such concepts hardly can be encoded into OWL DL, as they
involve so-called fuzzy or vague concepts, like “creamy”, “dark”, “hot”, “large” and
“thick”, for which a clear and precise definition is not possible.2

The problem to deal with imprecise concepts has been addressed several decades
ago by Zadeh [31], which gave bird in the meanwhile to the so-called fuzzy set and
fuzzy logic theory and a huge number of real life applications exists. Unfortunately,
despite the popularity of fuzzy set theory, relative little work has been carried out in
extending DLs towards the representation of imprecise concepts, notwithstanding DLs
can be considered as a quite natural candidate for such an extension [5, 6, 13, 23, 25, 26,
27, 29, 30] (see also [9], Chapter 6).

In this paper we consider a fuzzy extension of SHOIN (D), the corresponding DL
of the ontology description language OWL DL, and present its syntax and semantics.
The main feature of fuzzy SHOIN (D) is that it allows us to represent and reason
about vague concepts. None of the approaches to fuzzy DLs deal with the expressive
power of the fuzzy extension of SHOIN (D) we present here. Our purpose is also to
integrate most of these contributions within an unique setting and, thus, hope to define
a reference language for fuzzy SHOIN (D). A main feature of fuzzy SHOIN (D) is
that the subsumption relation between classes and the entailment relation is no more a
crisp yes/no problem, but it becomes now fuzzy, i.e. is established to some degree.

We will proceed as follows. In the following section we recall the description logic
SHOIN (D). In Section 3 we extend SHOIN (D) to the fuzzy case and discuss some
properties of it. Section 4 concludes and presents some topics for further research.

2 Preliminaries

The ontology language OWL DL is a syntactic variant of SHOIN (D) [15]. Although
several XML and RDF syntaxes for OWL-DL exist, in this paper we use the tradi-
tional description logic notation. For explicating the relationship between OWL DL
and DLs syntax, see e.g. [15, 16]. The purpose of this section is to make the paper self-
contained. More importantly it helps in understanding the differences between classical
SHOIN (D) and fuzzy SHOIN (D). The reader confident with the SHOIN (D) ter-
minology may skip directly to Section 3.

Syntax. SHOIN (D) allows to reason with concrete data types, such as strings and
integers using so-called concrete domains [1, 18, 20, 21]. A concrete domain D is a pair
〈∆D, ΦD〉, where ∆D is an interpretation domain and ΦD is the set of concrete domain
predicates d with a predefined arity n and an interpretation dD ⊆ ∆n

D . For instance,
over the integers ≥20 may be an unary predicate denoting the set of integers greater or

1 Taken from a text book on flowers.
2 Another issue relates to the representation of terms like “very”, which are called fuzzy concepts

modifiers, as we will see later on.
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equal to 20. For instance, Person � ∃age. ≥20 denotes a person whose age is greater
or equal to 20. So, let C, Ra, Rc, Ia and Ic be non-empty finite and pair-wise disjoint
sets of concepts names, abstract roles names, concrete roles names, abstract individual
names and concrete individual names. An abstract role is an abstract role name or the
inverse S− of an abstract role name S (concrete role names do not have inverses). An
RBox R consists of a finite set of transitivity axioms trans(R), and role inclusion
axioms of the form R � S and T � U , where R and S are abstract roles, and T and U
are concrete roles. The reflexive-transitive closure of the role inclusion relationship is
denoted with �∗. A role not having transitive sub-roles is called simple role. The set of
SHOIN (D) concepts is defined by the following syntactic rules, where A is an atomic
concept, R is an abstract role, S is an abstract simple role, Ti are concrete roles, d is a
concrete domain predicate, ai and ci are abstract and concrete individuals, respectively,
and n ∈ N:

C −→ 
 | ⊥ | A | C1 � C2 | C1 � C2 | ¬C | ∀R.C | ∃R.C | ≥ n S | ≤ n S |
{a1, . . . , an} | ≥ n T | ≤ n T | ∀T1, . . . , Tn.D | ∃T1, . . . , Tn.D

D −→ d | {c1, ..., cn}

For instance, we may write the concept Flower � (∃hasPetalWidth.(≥20mm � ≤40mm

))�∃hasColour.Red) to informally denote the set of flowers having petal’s dimension
within 20mm and 40mm, whose colour is red. Here ≥20mm (and ≤40mm) is a concrete do-
main predicate. We use (= 1 S) as an abbreviation for (≥ 1 S) � (≤ 1 S). A TBox T
consists of a finite set of concept inclusion axioms C � D, where C and D are concepts.
For ease, we use C = D ∈ T in place of C � D,D � C ∈ T . An ABox A consists
of a finite set of concept and role assertion axioms and individual (in)equality axioms
a:C, (a, b):R, (a, c):T , a ≈ b and a �≈ b, respectively. A SHOIN (D) knowledge base
K = 〈T ,R,A〉 consists of a TBox T , a RBox R, and an ABox A.

Semantics. An interpretation I with respect to a concrete domain D is a pair I =
(∆I , ·I) consisting of a non empty set ∆I (called the domain), disjoint from ∆D, and
of an interpretation function ·I that assigns to each C ∈ C a subset of ∆I , to each
R ∈ Ra a subset of ∆I × ∆I , to each a ∈ Ia an element in ∆I , to each c ∈ Ic

an element in ∆D, to each T ∈ Rc a subset of ∆I × ∆D and to each n-ary concrete
predicate d the interpretation dD ⊆ ∆n

D . The mapping ·I is extended to concepts and
roles as usual: 
I = ∆I , ⊥I = ∅,

(C1 � C2)
I = C1

I ∩ C2
I

(C1 � C2)
I = C1

I ∪ C2
I

(¬C)I = ∆I \ CI

(S−)I = {〈y, x〉: 〈x, y〉 ∈ SI}
(∀R.C)I = {x ∈ ∆I : RI(x) ⊆ CI}
(∃R.C)I = {x ∈ ∆I : RI(x) ∩ CI �= ∅}
(≥ n S)I = {x ∈ ∆I : |SI(x)| ≥ n}
(≤ n S)I = {x ∈ ∆I : |SI(x)| ≤ n}

{a1, . . . , an}I = {a1
I , . . . , an

I}
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and similarly for the other constructs, where RI(x) = {y: 〈x, y〉 ∈ RI} and |X| de-
notes the cardinality of the set X . In particular,

(∃T1, . . . , Tn.d)I = {x ∈ ∆I : [T1
I(x) × . . . × Tn

I(x)] ∩ dD �= ∅} .

The satisfiability of an axiom E in an interpretation I = (∆I , ·I), denoted I |= E, is
defined as follows: I |= C � D iff CI ⊆ DI , I |= R � S iff RI ⊆ SI , I |= T � U
iff T I ⊆ UI , I |= trans(R) iff RI is transitive, I |= a:C iff aI ∈ CI , I |= (a, b):R
iff 〈aI , bI〉 ∈ RI , I |= (a, c):T iff 〈aI , cI〉 ∈ T I , I |= a ≈ b iff aI = bI , I |= a �≈ b
iff aI �= bI . An abstract simple role S is called functional if the interpretation of role
S is always functional. A functional role S can always be obtained from an abstract
role by means of the axiom 
 � (≤ 1 S). Therefore, whenever we say that a role is
functional, we assume that 
 � (≤ 1 S) is in the ABox. For a set of axioms E , we say
that I satisfies E iff I satisfies each element in E . If I |= E (resp. I |= E) we say that I
is a model of E (resp. E). I satisfies (is a model of) a knowledge base K = 〈T ,R,A〉,
denoted I |= K, iff I is a model of each component T ,R and A, respectively. An axiom
E is a logical consequence of a knowledge base K, denoted K |= E iff every model
of K satisfies E. According to [16], the entailment and subsumption problem can be
reduced to knowledge base satisfiability problem, for which decision procedures and
reasoning tools exists (e.g. RACER [11] and FACT [14]).

Example 1. Let us consider the following excerpt of a simple ontology (TBox T ) about
cars, with empty RBox (R = ∅):

Car � (= 1 maker) � (= 1 passanger) � (= 1 speed)

(= 1 maker) � Car 
 � ∀maker.Maker
(= 1 passanger) � Car 
 � ∀passanger.N
(= 1 speed) � Car 
 � ∀speed.Km/h

Roadster � Cabriolet � ∃passenger.{2}
Cabriolet � Car � ∃topType.SoftTop
SportsCar = Car � ∃speed.≥245km/h

In T , the value for speed ranges over the concrete domain of kilometers per hour,
Km/h, while the value for passengers ranges over the concrete domain of natural num-
bers, N. The concrete predicate ≥245km/h is true if the value is greater or equal than to
245km/h. The ABox A contains the following assertions:

mgb:Roadster � (∃maker.{mg}) � (∃speed.{170km/h})
enzo:Car � (∃maker.{ferrari}) � (∃speed.>350km/h)
tt:Car � (∃maker.{audi}) � (∃speed.{243km/h})

Consider the knowledge base K = 〈T ,R,A〉. It is then easily verified that, e.g.

K |= Roadster � Car K |= mg:Maker
K |= enzo:SportsCar K |= tt:¬SportsCar .
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The above example illustrates an evident difficulty in defining the class of sport cars.
Indeed, it is highly questionable why a car whose speed is 243km/h is not a sport car
any more. The point is that essentially, the higher the speed the more likely a car is
a sports car, which makes the concept of sports car rather a fuzzy concept, i.e. vague
concept, rather than a crisp one. In the next section we will see how to represent such
concepts more appropriately.

3 Fuzzy OWL DL

Fuzzy sets have been introduced by Zadeh [31] as a way to deal with vague concepts
like low pressure, high speed and the like. Formally, a fuzzy set A with respect to a
universe X is characterized by a membership function µA : X → [0, 1], assigning an
A-membership degree, µA(x), to each element x in X . µA(x) gives us an estimation of
the belonging of x to A. Typically, if µA(x) = 1 then x definitely belongs to A, while
µA(x) = 0.8 means that x is “close” to be an element of A.

When we switch to fuzzy logics, the notion of degree of membership µA(x) of an
element x ∈ X w.r.t. the fuzzy set A over X is regarded as the degree of truth in [0, 1]
of the statement “x is A”. Accordingly, in our fuzzy DL, (i) a concept C, rather than
being interpreted as a classical set, will be interpreted as a fuzzy set and, thus, concepts
become imprecise; and, consequently, (ii) the statement “a is C”, i.e. a:C, will have
a truth-value in [0, 1] given by the degree of membership of being the individual a a
member of the fuzzy set C.

In the following, we present first some preliminaries on fuzzy set theory (for a
more complete and comprehensive presentation see e.g. [7]) and then define fuzzy
SHOIN (D).

3.1 Preliminaries on Fuzzy Set Theory

Let X be a countable crisp set and let A be a fuzzy subset of X , with membership
function µA(x), or simply A(x) ∈ [0, 1], x ∈ X . The support of A, supp(A), is the
crisp set supp(A) = {x ∈ X:A(x) �= 0}. The scalar cardinality of A, |A|, is defined
as |A| =

∑
x∈X A(x). The fuzzy powerset of X , F(X), is the set of all the fuzzy sets

over X . Let A,B ∈ F(X). We say that A and B are equal iff A(x) = B(x),∀x ∈ X .
A is a subset of B iff A(x) ≤ B(x),∀x ∈ X . We will see later on a different notion
of subset, in which A is a subset of B to some degree in [0, 1]. We next give the basic
definitions on fuzzy set operations (complement, intersection and union).

The complement of A, ¬A, is given by membership function (¬A)(x) = n(A(x)),
for any x ∈ X . The function n: [0, 1] → [0, 1], called negation, has to satisfy the
following conditions and extends boolean negation:

– n(0) = 1 and n(1) = 0;
– ∀a, b ∈ [0, 1], a ≤ b implies n(b) ≤ n(a);
– ∀a ∈ [0, 1], n(n(a)) = a.
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Several negation functions have been given in the literature, e.g. Lukasiewicz negation
nL(a) = 1 − a (syntax, ¬L) and Gödel negation nG(0) = 1 and n(a) = 0 if a > 0
(syntax, ¬G).

The intersection of two fuzzy sets A and B is given (A ∧ B)(x) = t(A(x), B(x)),
where t is a triangular norm, or simply t-norm. A t-norm is a function t: [0, 1]×[0, 1] →
[0, 1] that has to satisfy the following conditions:

– ∀a ∈ [0, 1], t(a, 1) = a;
– ∀a, b, c ∈ [0, 1], b ≤ c implies t(a, b) ≤ t(a, c);
– ∀a, b ∈ [0, 1], t(a, b) = t(b, a);
– ∀a, b, c ∈ [0, 1], t(a, t(b, c)) = t(t(a, b), c).

Examples of t-norms are: tL(a, b) = max(a + b − 1, 0) (Lukasiewicz t-norm, syntax
∧L), tG(a, b) = min(a, b) (Gödel t-norm, syntax ∧G), and tP (a, b) = a · b (product
t-norm, syntax ∧P ). Note that ∀a ∈ [0, 1], t(a, 0) = 0.

The union of two fuzzy sets A and B is given (A∨B)(x) = s(A(x), B(x)), where
s is a triangular co-norm, or simply s-norm. A s-norm is a function s: [0, 1] × [0, 1] →
[0, 1] that has to satisfy the following conditions:

– ∀a ∈ [0, 1], s(a, 0) = a;
– ∀a, b, c ∈ [0, 1], b ≤ c implies s(a, b) ≤ s(a, c);
– ∀a, b ∈ [0, 1], s(a, b) = s(b, a);
– ∀a, b, c ∈ [0, 1], s(a, s(b, c)) = s(s(a, b), c).

Examples of s-norms are: sL(a, b) = min(a + b, 1) (Lukasiewicz s-norm, syntax ∨L),
sG(a, b) = max(a, b) (Gödel s-norm, syntax ∨G), and sP (a, b) = a+ b−a · b (product
s-norm, syntax ∨P ). Note that if we consider Lukasiewicz negation, then Lukasiewicz,
Gödel and product s-norm are related to their respective t-norm according to the De
Morgan law: ∀a, b ∈ [0, 1], s(a, b) = n(t(n(a), n(b))).

Another important operator is implication, denoted →, that gives a truth-value to
the formula A → B, when the truth of A and B are known. A fuzzy implication is a
function i: [0, 1] × [0, 1] → [0, 1] that has to satisfy the following conditions:

– ∀a, b, c ∈ [0, 1], a ≤ b implies i(a, c) ≥ i(b, c);
– ∀a, b, c ∈ [0, 1], b ≤ c implies i(a, b) ≤ i(a, c);
– ∀a ∈ [0, 1], i(0, b) = 1;
– ∀a ∈ [0, 1], i(a, 1) = 1;
– i(1, 0) = 0.

In classical logic, a → b is a shorthand for ¬a ∨ b. A generalization to fuzzy logic
is, thus, ∀a, b ∈ [0, 1], i(a, b) = s(n(a), b). For instance, ∀a, b ∈ [0, 1], iKD(a, b, ) =
max(1− a, b) is the so-called Kleene-Dienes implication (syntax, →KD). Another ap-
proach to fuzzy implication is based on the so-called residuum. His formulation starts
from the fact that in classical logic ¬a∨ b can be re-written as max{c ∈ {0, 1}: a∧ c ≤
b}. Therefore, another generalization of implication to fuzzy logic is

∀a, b ∈ [0, 1], i(a, b) = sup{c ∈ [0, 1]: t(a, c) ≤ b} .
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For residuum based implication, i(a, b) = 1 if a ≤ b. If a > b then, according to the
chosen t-norm, we have that e.g. iL(a, b) = 1 − a + b for Lukasiewicz implication
(syntax, →L), iG(a, b) = b for Gödel implication (syntax, →G)) and iP (a, b) = a/b
for product implication (syntax, →P ). Note that, for Lukasiewcz implication, s-norm
and negation, we have iL(a, b) = sL(nL(a), b). The same holds using Kleene-Dienes
implication, Lukasiewicz negation and Gödel s-norm. On the other hand iP (a, b) �=
sP (nG(a), b) (for instance, for 0 < a ≤ b < 1, iP (a, b) = 1, while sP (nG(a), b) =
b < 1).

Another interesting question is when ∀a, b ∈ [0, 1], i(a, b) = n(t(a, n(b)) holds,
which in formulae is formulated as a → b ≡ ¬(a∧¬b). It turns out that e.g., in Zadeh’s
logic [31] (i.e. using →KD,∧G,¬L) this relation holds. It holds as well in the so-called
Lukasiewcz logic (i.e. using →L,∧L,¬L), while it does neither hold for Gödel logic
(i.e. using →G,∧G,¬G) nor for the product logic (i.e. using →P ,∧P ,¬G). For them,
just consider the case 1 > a > b > 0 to verify the inequality. We will see later on that
whenever i(a, b) �= n(t(a, n(b)) then under the fuzzy semantics, ∀R.C is not equivalent
to ¬∃R.¬C.

Fuzzy implication can also be used to determine the degree of subset relationship be-
tween two fuzzy subsets A and B over X . Indeed, we define the degree of subsumption
between A and B, denoted A → B, as infx∈X i(A(x), B(x)), where i is an implication
function. Note that if ∀x ∈ [0, 1], A(x) ≤ B(x) holds then A → B evaluates to 1. Of
course, it may be that A → B evaluates to a value 0 < v < 1 as well.

We conclude the discussion on fuzzy implication by noting that we have the follow-
ing inferences: assume a ≥ n and i(a, b) ≥ m. Then

– under Kleene-Dienes implication we infer that if n > 1 − m then b ≥ m. Indeed,
from i(a, b) = max(1 − a, b) ≥ m, either 1 − a ≥ m or b ≥ m. But a ≥ n, so
1 − a ≥ m implies 1 − m ≥ a ≥ n > 1 − m, a contradiction. Therefore, b ≥ m
must hold.

– under residuum based implication w.r.t. a t-norm t, we infer that b ≥ t(n,m).
Indeed, from i(a, b) = sup{c: t(a, c) ≤ b} ≥ m and a ≥ n we have t(n,m) ≤
t(n, c) ≤ t(a, c) ≤ b.

A (binary) fuzzy relation R over two countable crisp sets X and Y is a function R:X ×
Y → [0, 1]. The inverse of R is the function R−1:Y × X → [0, 1] with membership
function R−1(y, x) = R(x, y), for every x ∈ X and y ∈ Y . The composition of
two fuzzy relations R1:X × Y → [0, 1] and R2:Y × Z → [0, 1] is defined as (R1 ◦
R2)(x, z) = supy∈Y t(R1(x, y), R2(y, z)), where t is a t-norm. A fuzzy relation R is
said to be transitive iff R(x, z) = (R ◦ R)(x, z).

We conclude this part with fuzzy modifiers. Fuzzy modifiers applies to fuzzy sets
to change their membership function. Well known examples are modifiers like very,
more or less, slightly, etc. These allow us to define fuzzy sets like very(High)
and slightly(Mature). Formally, a modifier, m, is a function m: [0, 1] → [0, 1]. For
instance, we may define very(x) = x2, while define slightly(x) =

√
x.

In the following, we use ∧,∨,¬ and → in infix notation, in place of a t-norm t,
s-norm s, negation n and implication operator i.
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3.2 Fuzzy SHOIN (D)

In this section we give syntax and semantics of fuzzy SHOIN (D), using the fuzzy op-
erators defined in the previous section. We generalize the semantics given in
[13, 26, 29].

Syntax. We have seen that SHOIN (D) allows to reason with concrete data types, such
as strings and integers using so-called concrete domains. In our fuzzy approach, con-
crete domains may be based on fuzzy sets as well. A concrete fuzzy domain is a pair
〈∆D, ΦD〉, where ∆D is an interpretation domain and ΦD is the set of concrete fuzzy
domain predicates d with a predefined arity n and an interpretation dD:∆n

D → [0, 1],
which is a n-ary fuzzy relation over ∆D. For instance, as for SHOIN (D), the predi-
cate ≤18 may be an unary crisp predicate over the natural numbers denoting the set of
integers smaller or equal to 18, i.e. ≤18: Natural → [0, 1] and ≤18(x) = 1 if x ≤ 18,
≤18(x) = 0 otherwise. So,

Minor = Person � ∃age. ≤18 (1)

defines a person, whose age is less or equal 18, i.e. it defines a minor. On the other hand,
Young: Natural → [0, 1] may be a fuzzy concrete predicate over the natural numbers
denoting the degree of youngness of a person’s age. The concrete fuzzy predicate Young
may be defined as Young(x) = max(0, 1 − 0.00075x2). So,

YoungPerson = Person � ∃age.Young (2)

will denote a young person. Furthermore, by referring to Example 1, we may define the
concept of sports car as the concept

SportsCar = Car � ∃speed.very(High) , (3)

where very is a concept modifier and High is a fuzzy concrete predicate over the do-
main of speed expressed in kilometers per hour and may be defined as High(x) =
min(1, 0.004x).

Similarly, we may represent “Calla is a very large, long white flower on thick stalks”
as

Calla = Flower � (∃hasSize.very(Large)) � (∃hasPetalWidth.Long)�
�(∃hasColour.White) � (∃hasStalks.Thick) ,

where Large, Long and Thick are fuzzy concrete predicates.
The interesting point is that according to our semantics, e.g. a minor is likely a young

person. Indeed, a minor will be a young person with degree at least (1 − 0.00075 ·
182) ≈ 0.76. Informally, this value corresponds of the computation of the degree of
subsumption between the two defined concepts, i.e. the degree of ∀x.Minor(x) →
YoungPerson(x), which is determined by infx∈Natural i(≤18(x), Young(x)), where i
is an implication function. The fact that, as expected, a minor is a young person (to some
degree) is obtained without explicitly mentioning it. This inference cannot be achieved
in classical SHOIN (D).
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Similarly, by referring to Example 1, we will have that the car tt will be a sports
car to a certain degree given by (0.004 ·243)2 ≈ 0.94. Therefore, unlike Example 1, tt
is now likely a sport car, as it should be.

Concerning concepts and roles, the syntax is as for SHOIN (D), except that we
allow modifiers in concept expressions. That is, if M is a new alphabet for modifier
symbols, m ∈ M is a modifier and C is a SHOIN (D) concept, then m(C) is fuzzy
SHOIN (D) concept as well. For instance, the definition of SportsCar above involves
a modifier. Modifiers are allowed in fuzzy description logics such as [13, 29].

Concerning the axioms, similarly to [26], we introduce fuzzy axioms. For n ∈ (0, 1],

– a fuzzy RBox R is a finite set of SHOIN (D) transitivity axioms trans(R) and
fuzzy role inclusion axioms of the form 〈α ≥ n〉, 〈α ≤ n〉, 〈α > n〉 and 〈α > n〉,
where α is a SHOIN (D) role inclusion axiom;

– a fuzzy TBox T consists of a finite set of fuzzy concept inclusion axioms of the
form 〈α ≥ n〉, 〈α ≤ n〉, 〈α > n〉 and 〈α < n〉 where α is a SHOIN (D) concept
inclusion axiom (C � D);

– a fuzzy ABox A consists of a finite set of fuzzy concept and fuzzy role asser-
tion axioms of the form 〈α ≥ n〉, 〈α ≤ n〉, 〈α > n〉, or 〈α < n〉, where α is a
SHOIN (D) concept or role assertion. As for the crisp case, A may also contain a
finite set of individual (in)equality axioms a ≈ b and a �≈ b, respectively.

For instance, 〈a:C ≥ 0.1〉, 〈(a, b):R ≤ 0.3〉, 〈R � S ≥ 0.4〉, or 〈C � D ≤ 0.6〉 are
fuzzy axioms. Informally, from a semantics point of view, a fuzzy axiom 〈α ≤ n〉 con-
strains the membership degree of α to be less or equal to n (similarly for ≥, >,<). For
instance, 〈jim:YoungPerson ≥ 0.2〉, i.e. 〈jim:Person � ∃age.Young ≥ 0.2〉, dictates
that jim is a YoungPerson with degree at least 0.2. On the other hand, a fuzzy con-
cept inclusion axiom of the form 〈C � D ≥ n〉 dictates that the subsumption degree
between C and D is at least n. A SHOIN (D) fuzzy knowledge base K = 〈T ,R,A〉
consists of a fuzzy TBox T , a fuzzy RBox R, and a fuzzy ABox A.

Semantics. The semantics extends [26]. The main idea is that concepts and roles are
interpreted as fuzzy subsets of an interpretation’s domain. Therefore, SHOIN (D) ax-
ioms, rather being satisfied (true) or unsatisfied (false) in an interpretation, become a
degree of truth in [0, 1].

A fuzzy interpretation I with respect to a concrete domain D is a pair I = (∆I , ·I)
consisting of a non empty set ∆I (called the domain), disjoint from ∆D, and of a fuzzy
interpretation function ·I that assigns

– to each abstract concept C ∈ C a function CI :∆I → [0, 1];
– to each abstract role R ∈ Ra a function RI :∆I × ∆I → [0, 1];
– to each abstract individual a ∈ Ia an element in ∆I ;
– to each concrete individual c ∈ Ic an element in ∆D;
– to each concrete role T ∈ Rc a function RI :∆I × ∆D → [0, 1];
– to each modifier m ∈ M a fixed function m: [0, 1] → [0, 1];
– to each n-ary concrete predicate d the fuzzy relation dD:∆n

D → [0, 1].
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The mapping ·I is extended to concepts and roles as specified in the following table
(where x, y ∈ ∆I , v ∈ ∆D):


I(x) = 1
⊥I(x) = 0

(C1 � C2)
I(x) = C1

I(x) ∧ C2
I(x)

(C1 � C2)
I(x) = C1

I(x) ∨ C2
I(x)

(¬C)I(x) = ¬CI(x))
(m(C))I(x) = m(CI(x))
(∀R.C)I(x) = infy∈∆I RI(x, y) → CI(y)
(∃R.C)I(x) = supy∈∆I RI(x, y) ∧ CI(y)
(≥ n S)I(x) = supy1,...yn∈∆I

∧n
i=1 SI(x, yi)

(≤ n S)I(x) = ¬(≥ n + 1 S)I(x)
{a1, . . . , an}I(x) =

∨n
i=1 ai

I = x
d(v) = dD(v)

{c1, . . . , cn}I(v) =
∨n

i=1 ci
I = v

(∀T1, . . . , Tn.D)I(x) = infy1,...,yn∈∆D
I (

∧n
i=1 Ti

I(x, yi)) → DI(y1, . . . , yn)
(∃T1, . . . , Tn.D)I(x) = supy1,...,yn∈∆D

I (
∧n

i=1 Ti
I(x, yi)) ∧ DI(y1, . . . , yn)

(S−)I(x, y) = SI(y, x) .

We comment briefly some points. The semantics of ∃R.C

(∃R.C)I(d) = supy∈∆I RI(x, y) ∧ CI(y)

is the result of viewing ∃R.C as the open first order formula ∃y.FR(x, y) ∧ FC(y)
(where F is the obvious translation of roles and concepts into First-Order Logic -FOL)
and the existential quantifier ∃ is viewed as a disjunction over the elements of the do-
main. Similarly,

(∀R.C)I(x) = infy∈∆I RI(x, y) → CI(y)

is related to the open first order formula ∀y.FR(x, y) → FC(y), where the universal
quantifier ∀ is viewed as a conjunction over the elements of the domain. However, as
we already pointed out in Section 3.1, unlike the classical case, in general we do not
have that (∀R.C)I = (¬∃R.¬C)I . If the t-norm and negation are chosen such that
∀a, b ∈ [0, 1], i(a, b) = n(t(a, n(b)) holds, i.e. in formulae a → b ≡ ¬(a ∧ ¬b), then
(∀R.C)I = (¬∃R.¬C)I holds.

Another point concerns the semantics of number restrictions. The semantics of the
concept (≥ n S)

(≥ n S)I(x) = supy1,...yn∈∆I
∧n

i=1 SI(x, yi)

is the result of viewing (≥ n S) as the open first order formula

∃y1, . . . , yn.
n∧

i=1

FS(x, yi) ∧
∧

1≤i<j≤n

yi �= yj .
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That is, there are at least n distinct elements that satisfy to some degree FR(x, yi). This
guarantees us that ∃S.
 ≡ (≥ 1 S). The semantics of (≤ n S) is defined in such a way
to guarantee the classical relationship (≤ n S) ≡ ¬(≥ n + 1 S).

An alternative definition for the (≥ n S) and the (≤ n S) constructs may rely on the
scalar cardinality of a fuzzy set. However, we prefer to stick on the formulation, which
derives directly from its FOL translation.

Finally, the mapping ·I is extended to non-fuzzy axioms as specified in the following
table (where a, b ∈ Ia):

(R � S)I = infx,y∈∆I RI(x, y) → SI(x, y)
(T � U)I = infx,y∈∆I T I(x, y) → UI(x, y)
(C � D)I = infx∈∆I CI(x) → DI(x)

(a:C)I = CI(aI)
((a, b):R)I = RI(aI , bI) .

Note here that e.g. the semantics of a concept inclusion axiom C � D is derived directly
from its FOL translation, which is of the form ∀x.FC(x) → FD(x). This definition
is novel and is clearly different from the approaches in which C � D is viewed as
∀x.C(x) ≤ D(x). This latter approach has the effect that the subsumption relationship
is a classical {0, 1} relationship, while the former has the advantage that subsumption
is determined up to a certain degree in [0, 1].

The notion of satisfiability of a fuzzy axiom E by a fuzzy interpretation I, de-
noted I |= E, is defined as follows: I |= trans(R), iff ∀x, y ∈ ∆I .RI(x, y) ≥
supz∈∆I RI(x, z)∧RI(z, y). I |= 〈α ≥ n〉, where α is a role inclusion or concept in-
clusion axiom, iff αI ≥ n. Similarly, for the other relations ≤, < and >. I |= 〈α ≥ n〉,
where α is a concept or a role assertion axiom, iff αI ≥ n. Similarly, for the other
relations ≤, <,>. Finally, I |= a ≈ b iff aI = bI and I |= a �≈ b iff aI �= bI .

For a set of fuzzy axioms E , we say that I satisfies E iff I satisfies each element in
E . If I |= E (resp. I |= E) we say that I is a model of E (resp. E). I satisfies (is a model
of) a fuzzy knowledge base K = 〈T ,R,A〉, denoted I |= K, iff I is a model of each
component T ,R and A, respectively. A fuzzy axiom E is a logical consequence of a
knowledge base K, denoted K |= E iff every model of K satisfies E.

Example 2. Let us consider Example 1, where all axioms of the TBox and ABox are as-
serted with degree 1, i.e. are of the form 〈α ≥ 1〉. We replace the definition of
SportsCar with Definition (3) and replace the assertion involving mgb with

〈mgb:Roadster � (∃maker.{mg}) � (∃speed.≤170km/h) ≥ 1〉 .

Then we have that

K |= 〈SportsCar � Car ≥ 1〉 K |= 〈mgb:SportsCar ≤ 0.46〉
K |= 〈enzo:SportsCar ≥ 1〉 K |= 〈tt:SportsCar ≥ 0.94〉 .

Note how the maximal speed limit of the mgb car (≤170km/h) induces an upper limit,
0.46, of the membership degree. Neither this inference is possible in classical
SHOIN (D), nor the one involving tt.
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Example 3. Consider the knowledge base K with Definitions (1) and (2). Then we have
that

K |= 〈Minor � YoungPerson ≥ 0.76〉 ,

which is a relationship not captured with classical SHOIN (D).

Finally, given K and an axiom α, where α is neither a transitivity axiom, nor an indi-
vidual (in) equality axiom, it is of interest to compute α’s best lower and upper degree
value bounds. The greatest lower bound of α w.r.t. K (denoted glb(K, α)) is

glb(K, α) = sup{n:K |= 〈α ≥ n〉} ,

while the least upper bound of α with respect to K (denoted lub(K, α) is

lub(K, α) = inf{n:K |= 〈α ≤ n〉} ,

where sup ∅ = 0 and inf ∅ = 1. Determining the lub and the glb is called the Best
Degree Bound (BDB) problem. For instance, the entailments in Examples 2 and 3 are
the best possible degree bounds. Furthermore, note that,

lub(Σ, a:C) = ¬glb(Σ, a:¬C) , (4)

i.e. the lub can be determined through the glb (and vice-versa). Similarly,
lub(Σ, (a, b):R) = ¬glb(Σ, a:¬∃R.{b}) holds. Also, note that, Σ |= 〈α ≥ n〉 iff
glb(Σ,α) ≥ n, and similarly Σ |= 〈α ≤ n〉 iff lub(Σ,α) ≤ n hold.

Concerning the entailment problem, it is quite easily verified that, as for the crisp
case, the entailment problem can be reduced to the unsatisfiability problem:

〈T ,R,A〉 |= 〈α ≥ n〉 iff 〈T ,R,A ∪ {〈α < n〉}〉 is not satisfiable

〈T ,R,A〉 |= 〈α ≤ n〉 iff 〈T ,R,A ∪ {〈α > n〉}〉 is not satisfiable .

Unfortunately, from a computational point of view, no calculus exists yet checking sat-
isfiability of fuzzy SHOIN (D) knowledge bases. [13, 29] report a calculus for the case
of ALC [24] (with concept constructors 
,⊥,¬,�,�,∀,∃) with modifiers and simple
TBox, with min,max and →KD connectives. No indication for the BDB problem is
given. [25, 26] reports a calculus for ALC and simple TBox, with min,max and →KD

connectives and addresses the BDB problem and, [27] shows how the satisfiability prob-
lem and the BDB problem can be reduced to classical ALC and, thus, can be resolved
by means of a tools like FACT and RACER. However, despite these negative results, re-
cently [28] reports a calculus for ALC(D) whenever the connectives, the modifiers and
the concrete fuzzy predicates are representable as a bounded Mixed Integer Program.
For instance, Lukasiewicz logic satisfies these conditions as well as the membership
functions for concrete fuzzy predicates we have presented in this paper. Additionally,
modifiers should be a combination of linear functions. In that case the calculus con-
sists of a set of constraint propagation rules and an invocation to an oracle for bounded
Mixed Integer Programming. But, indeed, the computational aspect is definitely a point
that has to be addressed in forthcoming works.
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4 Conclusions and Outlook

We have presented a fuzzy extension of SHOIN (D) showing that its representation
and reasoning capabilities go clearly beyond classical SHOIN (D). Interestingly, we
allow modifiers, fuzzy concrete domain predicates and fuzzy axioms to appear in a
SHOIN (D) knowledge base and the entailment and the subsumption relationship hold
to a certain degree. To the best of our knowledge, no other work has yet extended the
semantics to SHOIN (D) in such a way. The argument supporting the necessity of such
an extension relies on the fact that vague concepts are abundant in human knowledge
and, thus, appear likely in Web content.

The main direction for future work involves the computational aspect. Currently,
we are addressing the fundamental issue to develop a calculus for reasoning within
ALC(D), i.e. ALC with concrete domains and arbitrary t-norm, co-norm, negation and
residuum as implication. We are investigating the possibility to use the methods devel-
oped in the context of Many-Valued Logics [12], which seem to particularly well-suited
to our context. These procedures have then to be combined with a procedure to deal
with fuzzy concrete domains, for which we plan to rely on [18].

Another direction is in extending fuzzy SHOIN (D) with fuzzy quantifiers, where
the ∀ and ∃ quantifiers are replaced with fuzzy quantifiers like most, some, usually
and the like (see [23] for a preliminary work in this direction). This allows to define
concepts like

TopCustomer = Customer � (Usually)buys.ExpensiveItem
ExpensiveItem = Item � ∃price.High .

Here, the fuzzy quantifier Usually replaces the classical quantifier ∀ and High is a
fuzzy concrete predicate.

Fuzzy quantifiers can be applied to inclusion axioms as well, allowing to express,
for instance:

(Most)Bird � FlyingObject .

Here the fuzzy quantifier Most replaces the classical universal quantifier ∀ assumed in
the inclusion axioms. The above axiom allows to state that most birds fly.

Ultimately, we believe that the fuzzy extension of SHOIN (D) is of great interest to
the Semantic Web community, as it allows to express naturally a wide range of concepts
of actual domains, for which a classical SHOIN (D) representation is unsatisfactory.
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