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Abstract. A co-location pattern is a set of spatial features whose ob-
jects are frequently located in spatial proximity. Spatial co-location pat-
terns resemble frequent patterns in many aspects. Since its introduc-
tion, the paradigm of mining frequent patterns has undergone a shift
from a generate-and-test based frequent pattern mining to a projection
based frequent pattern mining. However for spatial datasets, the lack
of a transaction concept, which is critical in frequent pattern definition
and its mining algorithms, makes the similar shift of paradigm in spatial
co-location mining very difficult. We investigate a projection based co-
location mining paradigm. In particular, we propose a projection based
co-location mining framework and an algorithm called FP-CM, for FP-
growth Based Co-location Miner. This algorithm only requires a
small constant number of database scans. It out-performs the generate-
and-test algorithm by an order of magnitude as shown by our preliminary
experiment results.

1 Introduction

We focus on a recent spatial data mining problem: finding spatial features that
tend to be located in spatial proximity. This problem is also referred to as spatial
co-lcoation patterns mining [7, 4, 2, 10, 9]. Let F = {f1, f2, . . . , fl} be a set of
spatial features. consider a number of l spatial datasets {SD1, SD2, . . . , SDl},
such that SDi, i ∈ [1, l] contains all and only the objects that have the spatial
feature fi, Let R be a given spatial neighbor relation (e.g. distance less than
1.5 miles). A set of spatial features X ⊆ F is a co-location if its value im(X)
of an interesting measure, is above a threshold min im. The problem of finding
the complete set of co-location patterns is called the co-location mining problem.
Mining spatial co-location patterns is an important spatial data mining task with
broad applications.

Spatial co-location patterns resemble frequent patterns [5], a more general
problem of mining association rules [1] in many aspects. Since its introduction,
the problem of mining frequent patterns from large databases, has been subject
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of numerous studies. The paradigm of frequent pattern mining algorithms has
undergone a fundamental shift from generate-and-test approaches [1] to projec-
tion based approaches [5]. Projection based approaches have major advantages
over generate-and-test approaches and avoids multiple database scans by com-
pressing transactional data into compact structures. However, the lack of pre-
materialized transactions becomes a major obstacle in adopting projection based
algorithms in spatial co-location pattern mining. A natural question to ask is:
can we push the same paradigm shift for mining spatial co-location patterns?

Many algorithms for co-location mining proposed in literature [7, 4, 10, 9, 3]
employ an generate-and-test co-location mining paradigm, which utilizes the
anti-monotone property of interestingness measures. In a clustering-based map
overlay approach[4, 3], every spatial feature is treated as a map layer and point-
data in each layer are clustered into regions. In a reference feature based approach
[7], transactions are created according to different algorithms, then a level wise
algorithm is applied . Under this model, a frequent pattern based algorithm can
be applied straightforwardly due to the fact that the interestingness measure is
defined based on the generated transactions. In distance based approaches [9, 10],
the number of instances for each spatial feature set is used to define the interest-
ingness measure. In an event centric model [10], a participation index was defined
as the interestingness measure. The participation index of a pattern is defined
as the minimal participation ratio of the objects of each feature in the pattern.

The contribution of this work is to study how to use a projection based
paradigm for event based spatial co-location pattern mining (CM). We proposed
a projection based framework for CM, which can incorporate any fast frequent
pattern mining algorithm. In particular, we developed an FP-growth based algo-
rithm for spatial co-location mining(FP-CM) based on the proposed framework.
We provide preliminary experiment results to show that the FP-CM is an order
of magnitude faster than the generate-and-test algorithm Co-location Miner.

Paper Outline: Section 2 recalls important concepts of co-location and frequent
pattern mining. Section 3 proposes our projection based FP-CM framework and
a FP-growth based co-location mining algorithm. We present the preliminary
experimental results in section 4 and summarize our work and present future
work in section 5.

2 Background

We review basic concepts of co-location patterns, a traditional generate-and-test
co-location mining algorithm, and a projection based frequent pattern mining
algorithm in this section.

In an event centric model [10], a participation index was defined as the in-
terestingness measure. For a set of spatial features X ⊆ F , a set of objects
{o1, o2, . . . , ok} is an instance of X iff (∀i, i ∈ [1, k], oi ∈ SDi) and (∀i∀j, 0 < i <
j ≤ k, (oi, oj) ∈ R). The participation ratio pr(f,X) of a feature f in a pattern
X is defined as:
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pr(f,X) =
number of objects of f that participate in any instance ofX

total number of objects of f

The participation index of a pattern X is defined as: pi(X) = min∀f∈X{pr(f,X)}.
Because of the downward closure property of the participation index [10], a
generate-and-test mining paradigm was employed by previous algorithms, e.g.
Co-location Miner. This approach generates the candidate size k + 1 co-location
set based on the size k co-location set. The candidate size k + 1 co-location set
includes all and only those size k + 1 spatial feature set whose size k subsets are
all co-locations. Then it uses spatial joins on the instances of size k co-locations
to generate the instances of the size k + 1 candidates and calculate the par-
ticipation indexes for them. It prunes false candidates before starting the next
iteration.

Projection based frequent pattern mining utilizes a highly condensed prefix-
tree structure to compress frequent patterns and employs a pattern fragment
growth method for mining the complete set of frequent patterns from the prefix-
tree. Due to the reduced number of database scans, this algorithm is very fast
compared with traditional generate-and-test algorithms [5]. (We refer readers to
[5] for the details of the FP-growth algorithm). However, a FP-growth based
algorithm can not be used directly in spatial co-location mining due to the
lack of transactions in spatial datasets. Transactionizing spatial datasets and
establishing the relationship between support and participation index to develop
a complete and correct projection based co-location mining algorithm is non-
trivial.

3 A Projection Based Co-location Mining Framework

Our proposed framework is shown in Figure 3. A transactional database TDi is
created for each spatial feature fi. Any fast maximal frequent pattern mining
algorithm may be applied to each transactional database TDi to find maximal
frequent patterns MFPs = ∪i=1...KMFPi using a support threshold min sup =
min pi. The mined maximal frequent patterns MFPi are combined by a pattern
combining component to generate a superset of all the co-location patterns.
Finally, a pattern filtering component filters out the false candidate co-locations.

Based on the projection based framework, we develop an algorithm called
FP-CM, for FP-growth Based Co-location Miner. This algorithm con-
sists of four components: transactionization, maximal frequent pattern mining,
combining patterns, and pattern filtering.

1. Transactionization (step 2)
For each spatial feature f , we create a transactional database TDf as follows.
For each object o of f , a transaction containing all other spatial features
whose object(s) is(are) within neighbor R of o is created.

2. Maximal Frequent Pattern Mining (step 3)
For each transactional database TDf , we find all maximal frequent patterns
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Fig. 1. Projection Based Co-location Pattern Mining Framework

Algorithm 1. FP-CM
1: for i = 1 to K do
2: TD[i] ← transactionize(SD[1], SD[2], . . . , SD[K]);
3: MFP [i] ← FP − growth(TD[i], min pi);
4: end for
5: i ← 1;
6: C[1] ← {1, 2, . . . , K};
7: while C[i] �= ø do
8: C[i + 1] ← apriori gen(C[i]) /*refer to [1]*/;
9: C[i + 1] ← prune(C[i + 1], MFP [1], MFP [2], . . . , MFP [K]);

10: i ← i + 1;
11: C ← C ∪ C[i];
12: end while
13: P ← multi − way − spatial − join − prune(C, min pi);
14: return P ;

based on the FP-growth frequent pattern mining algorithm using a support
threshold min supf = min pi in this step.

3. Combining Patterns (step 5-12)
The basic structure of the combining pattern step is the level-wise structure
of CM [10]. However, it does not require expensive spatial joins to calculate
participation indexes. Instead, it consults the MFPs to prune the majority
of the false candidate patterns. This step will produce a superset of the true
co-location patterns to feed to the next pattern filtering step.
The prune step (step 9) works as follows. For each candidate pattern C,
∀f ∈ C, if MFPf does not contain a superset of (C − f), then C is pruned.
This will not falsely delete any true patterns since pr(f,X) ≥ min pi implies
(C − f) is frequent and should have a superset in MFPf .

4. Pattern Filtering (step 13)
Once we reduce the total number of candidate co-location patterns from



Can We Apply Projection Based Frequent Pattern Mining Paradigm 723

2#features to a small superset of the true co-location patterns, we can use
hash-based spatial join techniques [6] and multi-way spatial joins [8] to filter
the patterns. We hash spatial datasets into buckets using a grid [6] and then
use a multi-way spatial join which is based on a backtracking search heuristic
[8] to find all the maximal cliques. We keep the list of all the candidate
co-location patterns from the previous step and register the cliques to their
corresponding candidate co-location patterns. Finally we calculate the actual
participation indexes for each candidate co-location pattern and return the
set of all co-location patterns found.

The FP-CM algorithm requires a small number of database scans. One database
scan is required to transactionize the spatial data, then FP-growth based maxi-
mal pattern mining requires two or a few database scans depending on the aver-
age size of the FP-trees. Combining patterns involves only spatial features and
the maximal frequent pattern sets and usually is a memory based step. Finally,
the pattern filtering step using gridding and multi-way spatial joins requires two
more database scans. So the total number of database scans of FP-CM algorithm
is bounded by a small constant.

4 Experiment Results

We implemented both the co-location miner (CM) and FP-growth based co-
location miner (FP-CM) using C++ and all the experiments are carried out on
a Pentium IV 2.4GHz machine with 1GB memory, running the Debian linux
operating system. Our experiments are extensive and the results are consistent.
Limited by space, we only report representative results for various parameters.
Our dataset generator is similar to [1].

We use a notation like |P |50.PS5.|F |100.|I|24k.min pi0.4 to denote an ex-
periment with 50 pre-generated patterns whose average size is 5 and the number
of features participating in a pattern is 100, 24k spatial objects, and minimum
participation index threshold is 0.4. Since the time for computing size 2 co-
locations are the same (one database scan) for both algorithms, we only report
the time for calculating size 3 or more co-location patterns.

1. Effect of thresholds:
As Figure 2 (a) shows, FP-CM is much faster than CM for all the threshold
range in [0.5,0.2]. The advantage of FP-CM over CM increases when the
participation threshold decreases due to the increased number of candidate
patterns and associated spatial joins CM has to perform. FP-CM is an order
of magnitude faster than CM when the participation index threshold is low.

2. Effect of total number of Objects:
We compare the scalability of the two algorithms when the total number of
objects increase from 5k to 50k. As shown in Figure 2 (b), FP-CM is 5 to 40
times faster than CM and the running time of the FP-CM algorithms remains
almost the same while the running time of the CM increases dramatically.
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Fig. 2. Performance Comparison of CM and FP-CM

3. Effect of Average Maximal Pattern Size:
Figure 2 (c) shows the result when the size of the pattern ranges from 3 to
10. FP-CM is 3 to 18 times faster than CM. The running time of FP-CM is
stable as the size of the patterns increases while the the running time of CM
highly correlates with the total number of co-locations found.

4. Effect of Number of Patterns:
We range the number of non-noise spatial features from 50 to 250 as shown
in Figure 2 (d). FP-CM is up-to 12 times faster than CM when the number
of non-noise spatial features increases.

5 Conclusion and Future Work

In this paper we proposed a projection based framework for mining spatial co-
locations, which is flexible in incorporating any fast maximal frequent pattern
mining algorithm developed in literature to help spatial co-location mining. In
particular, we developed a complete and correct FP-tree based algorithm for
spatial co-location mining. It combines the salient features of FP-tree based
maximal frequent pattern mining [5] and fast multi-way spatial joins [8] to reduce
the total number of database scans into a small constant. Our experiment results
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showed that the FP-CM is an order of magnitude faster than a generate-and-test
algorithm Co-location Miner.

The proposed projection based co-location mining framework could be treated
as a new data-driver partitioning of spatial datasets according to the objects of
each spatial features. Compared with traditional spatial partition approaches
[11], this approach does not have the problem of combinatorial explosion of tem-
porary candidate patterns needed to be maintained by the algorithm before all
the partitions are processed as acknowledged by the authors in [11]. In future
work, comparing various partition based co-location mining algorithms would
be an interesting and imperative research direction.
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