
Formal Specification of Holonic Multi- gent
Systems Framework

Sebastian Rodriguez Vincent Hilaire Abder Koukam

UTBM
Systems and Transports Laboratory

90010 Belfort Cedex
F

el: +33 384 583 009 ax +33 384 583 342

Abstract Even if software agents and multi-agent systems (MAS) are
recognized as both useful abstractions and effective technologies for mod-
eling and building complex distributed applications, they are still difficult
to engineer. When massive number of autonomous components interact
it is very difficult to predict the behavior of the system and guarantee
that the desired functionalities will be fulfilled. Moreover, it seems im-
probable that a rigid unscalable organization could handle a real world
problem. This paper presents a holonic framework where agents exhibit
self-organization according to the tasks at hand. We specify formally this
framework and prove some properties on the possible evolutions of these
systems.

HolonicMulti -Agent Systems, self-organised system, formal

specification, model checking

1 Introduction

Even if software agents and multi-agent systems (MAS) are recognized as both
useful abstractions and effective technologies for modeling and building com-
plex distributed applications, they are still difficult to engineer. When massive
number of autonomous components interact it is very difficult to predict the
behavior of the system and guarantee that the desired functionalities will be ful-
filled. Moreover, it seems improbable that a rigid unscalable organization could
handle a real world problem. The aim of this paper is to present a formally
specified framework for holonic MAS which allows agent to self-organise. We
prove some pertinent properties concerning the self-organising capabilities of
this framework.

The termholonwas originally introduced in1967 by theHungarianPhilosopher
Arthur Koestler[7] to refer to natural or artificial structures that are neither
wholes nor parts in an absolute sense. According to Koestler, a holon must re-
spect three conditions: (1) being stable, (2) having the capability of autonomy

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3516, pp. 719–726, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

, , and

T , F

.

vincent.hilaire@utbm.fr

a

,
,

,
,rance

Keywords:

.



and, (3) being capable of cooperation. Holonic organizations have proven to be
an effective solution to several problems associated with hierarchical self orga-
nized structures (e.g. [10], [1], [12]). In many MAS applications, an agent that
appears as a single entity to the outside world may in fact be composed of several
agents. This hierarchical structure corresponds to the one we find in Holonic Or-
ganizations. Frameworks have been proposed to model specific problem domains,
mainly in Flexible Manufacturing Systems (FMS) and Holonic Manufacturing
Systems (HMS), such as PROSA (PROSA stands for Product-Resource-Order-
Staff Architecture) , [14] and MetaMorph[9]. However, the Holonic paradigm has
also been applied in other fields such as e-health applications [11].

Our framework isn’t application domain dependent so it can be easily reused.
This framework is based upon organizational concepts which have been suc-
cessfully used in the MAS domain [6,13]. We base our approach on the Role-
Interaction-Organization (RIO) Methodology. RIO uses a specific process and
a formal notation OZS that is described in [6]. OZS is a multi-formalisms no-
tation that integrates in Object-Z classes [3] a statechart [5]. OZS classes have
then constructs for specifying functional and reactive aspects. We have defined
a formal semantics for OZS [4]. This semantic is based upon the translation of
Object-Z and statecharts into transition systems and allows the use of theorem
proover and model checker.

The paper is organized as follows : section 2 presents RIO and specifies
the holonic framework, the section 3 describes proven properties and eventually
section 4 concludes.

2

In this section we present the RIO framework and its extension for Holonic MAS.
We use the OZS formalism which is based upon the integration of Object-Z and
statecharts. Object-Z is an object oriented extension of Z and thus uses the set
theory and first order predicate logic. Statecharts add hierarchy of state, paral-
lelism and broadcasted communication to finite state automata. Each concept
of the RIO Framework is specified by an OZS class.

2.1

The RIO Methodology is based on three main concepts. A Role is an abstraction
of the behaviour of an acting entity. For example, we can see an university as an
organization with several roles such as Researcher , Professor , etc.

We have chosen to specify it by the Role class. This class represents the
characteristic set of attributes whose elements are of [Attribute] type. These
elements belong to the attributes set. A role is also defined by stimulus it can
react to and actions it can execute. They are specified by stimulus set and actions
set respectively. The [Attribute], [Event ] and [Action] types are defined as given
types which are not defined further.

720 S. Rodriguez, V. Hilaire, and A. Koukam

RIO and Holonic Framework Overview

RIO Classes



The reactive aspect of a role is specified by the sub-schema behaviour which
includes a statechart. It is to say that the behaviour schema specifies the differ-
ent states of the role and transitions among these states. The obtainConditions
and leaveConditions attributes specify conditions required to obtain and leave
the role. These conditions require specific capabilities or features to be present
in order to play or leave the role. Stimuli, which trigger reactions in the role
behaviour, must appear in one transition at least. The action belonging to the
statechart transitions must belong to the actions set.

Role

attributes : P Attribute
stimulus : P Event
actions : P Action
obtainConditions : Condition
leaveConditions : Condition

∀ s ∈ stimulus,∃ e ∈ behaviour •
(∃ t ∈ e.transitions
• t .label .event = s)

∀ e ∈ behaviour •
(∀ t ∈ e.transitions
• t .label .action ⊆ actions)

behaviour

Interaction

orig , dest : Role
op1, op2 : Action

op1 ∈ orig .action
op2 ∈ dest .action

3(orig .op1‖dest .op2)

An interaction is specified by a couple of role which are the origin and the
destination of the interaction. The role orig and dest interacts by the way of
operations op1 and op2. These operations are combined by the ‖ operator which
equates output of op1 and input of op2. The 3 symbol is a temporal logic op-
erator which states that eventually the predicate is true. In order to extend
interaction to take into account more than two roles or more complex interac-
tions involving plan exchange one has to inherit from the Interaction class. For
example, the two roles Proferssor and CoursePlanner interact at the beginning
of the year. The CoursePlanner sends the schedule to the Professor role.

2.2 HMAS Framework

In this section we present a set of roles which contitutes the kernel of the HMAS
Framework. They describe the behaviour and interactions of the components of
a holonic organization: holons. The holons inside a holonic organization, may
join or create other holons to colaborate towards a shared goal. Inside a Holon
there is one that acts as the representative (Head) and others as members (Part)
of the Holon.

In order to enable holons to dynamically change their roles, we define a satis-
faction based on the progress of his current task. This satisfaction, called instant

Formal Specification of Holonic Multi-agent Systems Framework 721



satisfaction, depends on the played role and is calculated using the following
definition, where Ri is the role played by the holon i .:

Self Satisfaction (SSi) Satisfaction for the agent i produced by his own work.
Collaborative Satisfaction (CSH

i ) Satisfaction produced for the Agent i by
his collaboration with other member agents of the Holon H,

Instant Satisfaction (ISi) Satisfaction produced by the work done up to the
moment

∀ i ∈ HMAS ISi =
{

CSi + SSi if Ri = Part ∨ Ri = Head
SSi if Ri = Stand −Alone (1)

2.3

The inheritance relationships between the different roles is presented in the
figure 1.

Head

MultiPart

Part

Role

Holon

StandAlone

Inheritance relationships between
HMAS roles

HMAS

HeadStandAlone

Merging

Part

RIO diagram of the
HMAS framework

The RIO diagram of the figure 2 presents the possible interactions between
the different roles. A StandAlone role player may interact with Heads in order
to enter a specific holon. This interaction is specified by the Merging class which
inherits from Interaction. Part role players interact with their Head during the
holon’s life. These interactions are commands or requests. The Holon class inher-
its from Role class and defines the generic elements for all Holonic role players.
These elements are the different satisfaction criterions defined in the section 2.2.
SS stands for self-satisfaction and IS stands for instant satisfaction. The current
task of the holon is specified by current an element of a given type [Task ]. For
each task, the function NS associate a threshold. It is the minimum value for
the self-satisfaction of the holon in order to pursue the current task. The avail-
able services for other holons are specified by the function availableServices. All
following roles inherit from Holon and add specific attributes, operations and
behaviours.

�	
� �� �	
� ��

722 S. Rodriguez, V. Hilaire, and A. Koukam

Framework Specification

.
.

.



Holon
Role

satisfied : B
SS , IS : R
current : Task
NS : Task 7→ R
availableServices : Service → B

A StandAlone role is the entry point of an holonic organization. Each holon
which is satisfied by its progress and with no engagement with other holons,
plays this role. As soon as its satisfaction is less than the threshold defined by
the NS function, the StandAlone holon searches a holon to merge with.

StandAlone
Holon

leaveCondition = {SS < NS(current)}
IS = SS

behaviour

[NS>IS] / Merging
Idle SearchingHolon

Merging
Interaction

answers : P Answer

orig ⊆ StandAlone
dest ⊆ Holon

The [Answer] given type specifies the answers given by heads in response to
a merge request. This interaction requires that the origin of the interaction is
a holon playing the StandAlone role and the destination can be any Holon (a
Head or another StandAlone holon).

The Part class specifies a role which is part of a holon . A holon part of a bigger
holon knows the other members of the holon which are the elements of the
others set. It also knows the head of its holon, myHead . The Part role has one
more satisfaction criterion than a Holon, CollaborativeSatisfaction. It may also
be engaged on some of its available services. These engagements are specified by
the engagements function

Part
Holon

others : P Holon,myHead : Head
CS : R
engagements : Service 7→ B

IS = CS + SS
dom engagements ⊆ dom availableServices
leaveCondition = {CS < 0}

Formal Specification of Holonic Multi-agent Systems Framework 723



examineRequest
∆engagements
request? : P Service

engagements ′ = engagements
∨ engagements ′ = engagements⊕⋃

∀ r∈request?
(r , true)

examineCommand
∆engagements
command? : P Service

engagements ′ = engagements⊕⋃
∀ c∈command?

(c, true)

behaviour

waitingForCommands

command/examineCommand

waitingForRequests

request/examineRequest

Finally, a holon may play the Head role. In this case this holon is the rep-
resentative of the members of the Holon. Thus, it will examine the request of
other holons to join his Holon.

Head
Holon

holons : N 7→ Holon
CS : N 7→ R
availableServices, allocatedServices : Service → B

dom holons = dom CS
IS = CS + SS
leaveCondition = {CS < 0}
availableServices(s) ⇒ (∃ h ∈ ran holons • h.availableServices(s))
allocatedServices(s) ⇒ availableServices(s)

examineMergeRequest
∆holons
h? : P Holon

holons ′ = holons
∨ holons ′ = holons

⊕
h

behaviour

waitingForRequests

fusionRequest/examineMergeRequest

3 Proofs

OZS semantics [4] is based upon transition systems as defined in [8]. It means
that for each OZS specification there is an associated transition system. This

724 S. Rodriguez, V. Hilaire, and A. Koukam



transition system represents the set of possible computations the specification
can produce. With such transition systems and software tools like SAL [2] one
can verify specification properties.

Among the tools proposedbySAL wehave chosen the SALmodel checker which
enables the verification of the satisfiability of a property. The SAL model-checker
proves or refutes validity of Linear Temporal Logic (LTL) formulas relatively to
a transition system. To establish the satisfiability of history invariant H one
must actually establish that ¬ H is not valid. This technique is the simplest to
use but is limited by the specification state space.

The first property we have proven may be interpreted as ”if the holon’s satis-
faction is not enough then it will try to merge”. This property is specified as
follows :

∀ a : HMASAgent • a.is < a.ns ⇒ 3(StandAlone 6∈ a.playing)

It states that for all agent of an holonic MAS if its instant satisfaction becomes
less than the necessary satisfaction eventually this agent will not play the Stan-
dAlone role. It will try to be engaged in a holon and thus play either the Part
or the Head role. In other words, if the agent can not accomplish its task alone,
it will create a holon to cooperate with other having a share objective.

The second property we have proven may be interpreted as ”if the holon’s
satisfaction evolves and becomes less than necessary satisfaction the system will
try to reorganise”. This property is specified as follows :

∀ a :HMASAgent • instant = a.playing ∧ a.is < a.ns ⇒ 3(a.playing 6= instant)

It states that for all agent of an holonic MAS whatever role it plays if its instant
satisfaction becomes less than the necessary satisfaction eventually this agent
will change the role it is playing.

4 Conclusion

In this paper we have presented a framework for the design of Holonic MAS.
This framework is based upon roles the agent can play and satisfactions which
characterise the progression of the agent towards achievement of its goals. We
have presented this framework through its formal specification using the OZS
formalism. The semantics of this formalism enables the verification of properties.
We have proven two pertinent properties for this framework. The first property
we have proven may be interpreted as ”if the holon’s satisfaction is not enough
then it will try to merge”. It’s an important property of such self-organised sys-
tems. Indeed, it means that if one holon is unsatisfied by its current achievements
it will try to merge to find complementary capabilities or services.

The second property may be interpreted as ”if the holon’s satisfaction evolves
and becomes less than necessary satisfaction the system will try to reorganise”.
This property ensures that if the current holarchy doesn’t correspond to the
current context it will evolve in order to find a better one.

Formal Specification of Holonic Multi-agent Systems Framework 725



Other frameworks and methodologies have been proposed [9,14]and, although
they have shown to be effective inside specific domains, a more generic framework
is needed. Indeed, it is difficult to design a Holonic MAS without clear and spe-
cific definitions that can lead from the analysis in terms of holon to the design of
the system. Moreover, a framework with predictable properties, such as those we
have proven, constitutes a solid foundation for the development of Holonic MAS.

References

1. Hans-Jörgen Bürckert, Klaus Fischer, and Gero Vierke. Teletruck: A holonic fleet
management system.

2. Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby, N. Shankar, Maria
Sorea, and Ashish Tiwari. SAL 2. In Rajeev Alur and Doron Peled, editors,
Computer-Aided Verification, CAV 2004, volume 3114 of Lecture Notes in Com-
puter Science, pages 496–500, Boston, MA, July 2004. Springer-Verlag.

3. Roger Duke, Paul King, Gordon Rose, and Graeme Smith. The Object-Z spec-
ification language. Technical report, Software Verification Research Center, De-
partement of Computer Science, University of Queensland, AUSTRALIA, 1991.

4. Pablo Gruer, Vincent Hilaire, Abder Koukam, and P. Rovarini. Heterogeneous
formal specification based on object-z and statecharts: semantics and verification.
Journal of Systems and Software, 70(1-2):95–105, 2004.

5. David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, June 1987.

6. Vincent Hilaire, Abder Koukam, Pablo Gruer, and Jean-Pierre Müller. Formal
specification and prototyping of multi-agent systems. In Andrea Omicini, Robert
Tolksdorf, and Franco Zambonelli, editors, Engineering Societies in the Agents’
World, number 1972 in Lecture Notes in Artificial Intelligence. Springer Verlag,
2000.

7. Arthur Koestler. The Ghost in the Machine. Hutchinson, 1967.
8. Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.

Springer, 1995.
9. Francisco Maturana. MetaMorph: an adaptive multi-agent architecture for ad-

vanced manufacturing systems. PhD thesis, The University of Calgary, 1997.
10. Sebastian Rodriguez, Vincent Hilaire, and Abderrafia Koukam. Towards a method-

ological framework for holonic multi-agent systems. In Fourth International Work-
shop of Engineering Societies in the Agents World, Imperial College London, UK
(EU), 29-31 Octubre 2003.

11. M. Ulieru and A. Geras. Emergent holarchies for e-health applications: a case in
glaucoma diagnosis. In IECON 02 [Industrial Electronics Society, IEEE 2002 28th
Annual Conference of the], volume 4, pages 2957– 2961, 2002.

12. Gero Vierke and Christian Russ. Agent-based configuration of virtual entreprises.
13. Michael Wooldridge, Nicholas R. Jennings, and David Kinny. A methodology for

agent-oriented analysis and design. In Oren Etzioni, Jörg P. Müller, and Jeffrey M.
Bradshaw, editors, Proceedings of the Third Annual Conference on Autonomous
Agents (AGENTS-99), pages 69–76, New York, May 1-5 1999. ACM Press.

14. J. Wyns. Reference architecture for Holonic Manufacturing Systems - the key to
support evolution and reconfiguration. PhD thesis, Katholieke Universiteit Leuven,
1999.

726 S. Rodriguez, V. Hilaire, and A. Koukam


	Introduction
	RIO and Holonic Framework Overview
	RIO Classes
	HMAS Framework
	Framework Specification

	Proofs
	Conclusion
	References



