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Abstract. Despite recent progress in modelling the shape memory alloy
(SMA) behaviour, many difficulties remain due to various limitations of
the existing free energy models and strong nonlinearity of these nonlin-
ear materials. Phase kinetics of SMA coupled with thermoelastodynam-
ics is still not fully tractable, and one needs to deal with complicated
multiscale character of SMA materials requiring a linkage between their
microstructure and macroscopic properties. In this paper we develop a
new dynamic model of 3D SMA which employs an improved version of
the microscopic Landau theory. Essential properties of the single and
multivariant martensitic phase transformations are recovered using con-
sistent steps, which eliminates the problem of non-uniqueness of energy
partitioning and relaxes the over-sensitivity of the free energy due to
many unknown material constants in previously reported models. We
exemplify our results on a model for cubic to tetragonal transformations
in a rectangular SMA bar by showing key algorithmic steps which can
be extended to more complex cases.

1 Introduction

Modelling of dynamics of phase transformations (PT) in Shape Memory Al-
loys (SMAs) under the combined effect of stress and temperature is one of the
most challenging problems in computational science and engineering. Our better
understanding of such dynamics can be achieved with multi-physics multiscale
models which assist the researchers in designing new materials and devices by
harnessing the shape memory effect. Phenomenological framework based on Lan-
dau theory of martensitic transformations (e.g., [1]) has become a convenient
choice for basic building blocks in the computational models. However, most
of the phenomenological models are applicable at macroscopic and mesoscopic
scales as discussed in [2], and the strain field in such model is often beyond the
resolution of bain strain. Also it may be noted that a majority of the works (see
e.g.[3,4]) in this direction is based on selectively chosen strain gradient plas-
ticity models that require extensive parameter fitting from experimental data.
Also, in such framework, the true nature of nonlinearity and coupling is not fully
tractable. For a more detail description of the PT, one requires a microscopic
model, such as [5,6], where the invariance of the free energy with respect to
the crystallographic point group symmetry is preserved but the discontinuous
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nature of the deformation across the individual habit planes is introduced. This
provides the most essential information to describe the morphology of the mi-
crostructural evolution, whereas the process of reshuffling of the atoms, which
actually causes the reconstructive PT, remains beyond such a microstructural
scale. The latter process requires the description of chemical interaction energy
between atoms [7] and spin stabilized Hamiltonian [8]. Coupling such an atom-
istic process with the microstructural phenomenology means coupling a molecu-
lar dynamic model [9, 10] with a microscopic free energy model [6, 11, 12] through
the thermal fluctuation term, strain and the motion of the domain walls.

In the present paper we focus our attention on linking SMA microstructure
and macroscopic behaviour by developing the microscopic free energy and the
associated coupled field model to simulate the dynamics of 3D macroscopic sam-
ple of NiAl undergoing cubic to tetragonal PT. First, we observe that the free
energy is highly sensitive to many interdependent constants which are to be ob-
tained experimentally [11]. As a result of this sensitivity and due to a fairly com-
plex polynomial representation of the 3D Landau-Ginzburg free energy function,
there may be situations where multidimensional simulations produce unphysical
spurious oscillations. In the new model developed in the present paper, the above
set of interdependent constants, that need to be determined from experimental
data, is reduced to uniquely identifiable set of constants for each transformation
surface among the austenitic phase and a particular martensitic variant.

Note that earlier, a new low-dimensional model for the time-dependent dy-
namics of SMA was derived in [2] and a class of such reduced models was rig-
orously analyzed in [13]. Computational results presented in [2,13] confirmed
robustness of our modelling approach for a number of practically important
cases. The main results of the present paper are pertinent to the general three-
dimensional case. There are several recent studies where the time-dependent
Ginzburg-Landau (TDGL) (Langevin) equation with the correct microscopic
description of the Falk-Konopka type free energy function has been analyzed
(e.g. [14,12]). We are not aware of any dynamic model of 3D SMA samples that
bases its consideration on the correct Ginzburg-Landau free energy representa-
tion in the microscopic scale and the momentum balance and heat conduction in
the macroscopic scale. The Ginzburg-Landau free energy function derived in the
first part of this paper is incorporated in the coupled dynamic field model. This
model is exemplified for cubic to tetragonal PT with single martensitic variant
along the axis of a bar with rectangular cross-section under axial stress and heat
flux.

2 3D Landau Theory of Martensitic Phase
Transformation

It has been demonstrated by Levitas and Preston [6,12] that the polynomial
structures 2-3-4 and 2-4-6 of the Gibbs free energy in order parameter 7 in
Cartesian coordinate can eliminate the problem of unphysical minima and re-
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tain all the necessary properties of the Ginzburg-Landau free energy function
with respect to point group symmetry of the crystals. Such polynomial structure
can be constructed in such a way that the stability of the austenitic phase (A)
and martensitic variants (1;), non-extremal diffusion barrier and nucleation can
be described in stress-temperature space. Furthermore, while using such poly-
nomial structure the interfaces (domain walls) M; — M; between the martensitic
variants (4, 7) can be interpreted by using a newly introduced barrierless A nu-
cleation mechanism, i.e. by splitting the original into two simultaneously present
interfaces M; — A and A — M;. In this section a 2-3-4 polynomial structure is
constructed by improving upon the model of Levitas and Preston [6,11].

For analytical clarity we first consider a single variant of martensite and
single order parameter n € [0,1]. First we define the Gibbs free energy density
in stress-temperature space (o, 0) as

G=—-0:X:0/2—0:e1p(n)+ f(0,n), (1)

where A is the constant fourth-rank elastic compliance tensor, €; is the trans-
formation strain tensor at the thermodynamic equilibrium of the martensite
(obtained from crystallography), ¢(n) is a monotonic function with ¢(0) = 0
indicating stable A phase and ¢(1) = 1 indicating stable M phase. f(0,7) is the
chemical part of the energy with property: f(6,1) — f(0,0) = AG?(6), where
AGY is the difference between the thermal parts of the Gibbs free energy den-
sity of the M and A phases, which can be obtained indirectly from experiments
[15] The objective now is to obtain the functions ¢ and f by satisfying their
properties mentioned above and the conditions of extremum of the energy for
existence of equilibrium of A and M phases: 0G/0n =0 at n =0, 1.

The new model derived below is based on the assumption that G can be
uniquely represented by a polynomial structure in n with the extremum only at
n = 0,1 and out of these two extremum only one is minimum and the other is
maximum for phase transformation (PT) to happen. At equilibrium, we have

oG Op(n)  0f(0,n)

— =-0: + =0 =0,1. 2

n &t an an = @
The total strain tensor (¢ = —0G/00) is the sum of the elastic strain tensor

(A : o) and the transformation strain tensor (g:¢(n)). Hence, for reconstructive
PT through vanishing misfit strain, the condition
0 0

o: st—gg_n) — —f(&;_n) =0 VY(o,n) (3)
must be satisfied. It is observed in the reported results [6] that the transformation
barrier is dependent on stress. In the context of interface barrier, Levitas and
Preston [12] have treated the associated 1 to be dependent on o. In the present
paper, we propose an alternate approach by considering stress-dependent barrier
height because the stress o is the only driving factor for PT under isothermal
condition. The polynomial structure which satisfies the extremum properties can
be expressed as

0G[on =mn(n—1)(n—m), (4)
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so that its roots n = 0, 1 satisfy Eq. (2) and the root n = (0o, 0) represents the
A — M PT barrier. Integrating Eq. (4) and imposing the combined properties
of ¢(n) and f(0,7n) stated earlier as

G(0,0,0) — G(o,0,1) =0 : e, — AG? | (5)
we get that m, = —60 : & + 6AG? + 1/2. Using Eq. (1) in Eq. (4) and by

differentiating with respect to o, one has

o) Doty f0m) O 2,3
= on € gon T Bedy — g MM~ Dt +n’] . (6)

The term involving f can be eliminated from Eq. (6) with the help of Eq. (3),
and can be expressed as

& aﬁg,n) =n(n— 1)% = n(n —1)(~6ey) - @)

Integrating Eq. (7) and following the properties of the transformation strain, i.e.
©(0) = 0 and (1) = 1, we have p(n) = 3n? — 2173, 0 <n < 1. Substituting
this form in Eq. (3) and integrating with respect to 7, the chemical part of the
free energy density is obtained as

1 1 1
F0.m) = o &30 = 20°) + Smn® = 2w+ 1)n* + o0’ (8)
For A — M PT, the criteria for the loss of stability of A phase is 3*G//9n? < 0
at 7 = 0, which gives the stress driven condition:

1
ter > AGY + — . 9
g :.€&t =~ + 12 ( )
Similarly, for M — A PT, the criteria for the loss of stability is 9°G/9n? < 0 at
n = 1, which gives the stress driven condition:

. o 1
oie SAG - o (10)
M; < M; PT or diffused interface can evolve for stresses outside the range
obtained by Egs. (9) and (10). Note that no parameter fitting is required in the
present model as opposed to the earlier model [6]. Egs. (9) and (10) indicate a
nonlinear dependence of the transformation surface on the temperature, which
can be compared with the experimental data.

2.1  Cubic to Tetragonal Transformation Characteristics

We now consider the cubic to tetragonal PT for single variant martensitic case
in absence of the elastic part of the stress. After reducing the stress and strain
tensors in 1D, the equilibrium stress-transformation curve is obtained as

1—-2n
12 '

1
77:77b:>U=€—t[AGO+ (11)
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Note that the increase in 77 causes decrease in ¢ which is consistent. The stress
hysteresis (H) is obtained as

1

— 12
= (12)

H =0(=0) = 0@=1) =
which is independent of the temperature. Eq. (11) also shows nonzero tangent
moduli where A and M lose their stability. These observations coincide with the
results from the earlier model [6] (Figs.1, 2 and 5).

3  Multivariant Phase Transformation

In order to model realistic situations and macroscopic sample of SMA it is essen-
tial to incorporate the effects of (1) martensitic variants (M) (2) thermal strain
(3) unequal compliances across the interfaces and the resulting inhomogeneity.
For cubic to tetragonal transformation there are three variants of martensite ac-
cording to the point group of crystallographic symmetry. The Gibbs free energy
density thus should poses the associated invariance properties. In the mathemat-
ical model, this can be cross-checked by interchanging the variant indices (k). In
this paper we consider the same order of variation in the compliance tensor and
the thermal expansion tensor as in ¢(n) derived in Sec. 2. The Gibbs free energy
density for cubic-tetragonal transformation having three variants k& = 1,2, 3 is
expressed as

3 3
G=-0:|X+ Z(/\k - /\o)cp(nk)] o2 -0 Zetkgo(nk)
k=1 k=1
3 3 2 3
—o : |ego+ Y (eor —€o0)p(me) | + Y L0 )+ D> > Fymi,my), (13)
k=1 k=1 i=1 j=it1

where A is the second-order forth-rank compliance tensor (Ag is for A phase),
€00 = ap(0—0.), egr, = a(0—6,), ap and vy, are the thermal expansion tensor of
A and M. Fj; is an interaction potential required to preserve the invariance of G
with respect to the point group of symmetry and uniqueness of the multivariant
PT at a given material point. The description of PT can now be generalized
with three sets of order parameters: 0 = {0,n; = 0,0}, 1 = {0,7, = 1,0} and
it = {0,7nx, 0}. The extremum property of the free energy density requires

oG _
8— :nk(nk_l)(nk_nbk)zov ne=0,1, (14)
Mk
2 2
00 <0, m=0 (A=), 29 <0, m=1 (My—a). (5
on;; I,

The transformation energy associated with A « M}, is

G(0,0,0) — G(0,0,1) =0 : ey — AG? . (16)
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Combining Eqs. (14) and (16) with similar steps described in Sec. 2, we get
Mok = —60 : e, + 6AGY +1/2 (17)

Following the steps given in [11], we arrive at the symmetry preserving polyno-
mial structure of the interaction potential

Fij =mini(1—mni —n;) [B{(ni —n;)* = ni —n;} + Dnans| +nin} (0:Zs; + 0, Z5i)

(18)
such that
3 2 3
G=>_ [ Mok — _(nbk +1)ng + 477;)4 +Y 0> Fiitnmg)  (19)
k=1 i=1 j=i+1

leads to a 2-3-4-5 polynomial structure, where B, D are constants estimated from
experiments. The transformation energy associated with M; — M requires

G(O’,@,’f]i) — G(O’,@,ﬁj) =0 (stj — Eti) (20)

which is already satisfied through Eq. (17). The uniqueness of PT at a material
point is now imposed through similar steps described in context of Eq. (6).

4 Strongly Coupled Dynamics of the Phase
Transformation and Coupled Thermoelasticity in a
Rectangular NiAl Bar

The link between microstructure of SMA and its macroscopic behaviour is real-
ized via the coupled field model in which the phase kinetics is governed by the
Ginzburg-Landau equation

3

e
%:—ZLM) [877 —B,:VVn,| +0, (21)
D

where Ly, are positive definite kinetic coefficients, 3, are positive definite second
rank tensor, and the macroscopic energy conservation law is governed by the heat
transfer equation

oG ou

— —0c:V—+V.q=h 22
Py o Vg tVea=he, (22)
and the momentum balance equation
*u

where G = G — 090G /00 is the internal energy, p is the mass density, u is the
displacement vector, q is the heat flux, hy and f are the thermal and mechani-
cal loading, respectively. The displacement is related to the Green strain tensor
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as € = (1/2)[FTF — I] where F is the deformation gradient. For the purpose
of numerical simulation we consider a rectangular NiAl bar with macroscopic
domain ([0, L], [y~,y"],[27,2"]) undergoing single variant cubic to tetragonal
transformation under uniaxial stress (o11) due to boundary conditions f1(0,t) =
(yT—y7)(zt —27)oo(t), u1(0,y, 2,t) = 0, traction-free surfaces, thermal bound-
ary conditions at the ends 90(x = 0,t)/0x = 0(t)o, 08(x = L,t)/0x = (1)L,
on the surface (y = y*,y7), 00/0y = 05 and on the surface (z = z7,27),
00/0z = fg. The initial conditions are 6(x,0) = no(x), 0(z,y,2,0) = O(x),
u(z,y,2,0) = ug(x) and du(z,y,z,0)/0t = 0. A consistent form of the temper-
ature field is obtained as

g(xayazvt) :Hl(w,t)+(y+z)95 . (24)
The longitudinal displacement and strain fields are approximated as

ou 1 [ou\? Oug Ous
aﬁ(%) Com =g em =g ()

up =u(z,t), e11=

In the present example we assume that the habit planes are normal to e, such
that n = n(x, t). For microscopic deformation, the fine graining of strain requires
the property of cubic to tetragonal transformation. For this model, we obtain the
consistent form of the unknown fields us(z,y, 2,t) and us(x,y, z,t) by imposing
the geometric constraints for effectively one-dimensional dynamics, which leads
to

7 A1 1 /\21> ( )\21> /
Uy =—yY+ —yen—|=+— )¢ +afll—— 0 —0y)dy, (26
2 23/ >\11y 11 (2 M1 te(n)y M1 ( o)dy , (26)

2 A31

where p is the prescribed error in the volumetric strain. This quasi-continuum
model with discontinuous distribution of n(z,t), and continuous fields wu;(z, t),
01(z,t) is then solved by variational minimization of Eqgs. (21)-(23).

A 1 A A
usz = Hz + 2o Ye1r — <— + i) ep(ny + a (1 - i) /(9 —bo)dz, (27)
2 )\11 )\11

5 Concluding Remarks

In this paper, a new dynamic multiscale model for simulation of 3D SMA samples
has been developed by linking an improved version of the microscopic Landau
theory and macroscopic conservation laws. Essential properties of the A < M;
as well as M; < M; PTs are recovered using consistent steps, which eliminates
the problem of non-uniqueness of energy partitioning during PTs and relaxes
the over-sensitivity of the free energy due to many unknown material constants
in previously reported models. It has been shown how the new 3D model can be
reduced to a low dimensional model for simulating the strongly coupled phase
kinetics and thermoelasticity in a rectangular bar undergoing cubic to tetragonal
phase transformations.
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